Časopis pro pěstování matematiky
|
|
- Jana Křížová
- před 7 lety
- Počet zobrazení:
Transkript
1 Časopis pro pěstování matmatiky Miroslav Brdička Užití tnsorové symboliky v lasticitě Časopis pro pěstování matmatiky, Vol. 77 (1952), No. 3, Prsistnt URL: Trms of us: Institut of Mathmatics AS CR, 1952 Institut of Mathmatics of th Acadmy of Scincs of th Czch Rpublic provids accss to digitizd documnts strictly for prsonal us. Each copy of any part of this documnt must contain ths Trms of us. This papr has bn digitizd, optimizd for lctronic dlivry and stampd with digital signatur within th projct DML-CZ: Th Czch Digital Mathmatics Library
2 Časopis pro pěstování matmatiky, roč. 77 (1952) REFERÁTY O PŘEDNÁŠKÁCH V MATEMATICKÉ OBCI PRAŽSKÉ A V BRNĚ UŽITÍ TENSOROVÉ SYMBOLIKY V ELASTICITĚ (Rfrát o přdnášc M. Brdičky, přdnsné dn 23. ldna 1952.) V přdnášc autor ukázal na přdnosti a užití tnsorového poctu v klasické lasticitě, hlavně pokud jd o obcné úvahy. Tnsorový počt nní totiž jn těsnopism" matmatických postupů, al umožňuj i hlubší proniknutí k fysikální podstatě thori. Pro zjdnodušní úvah byly v této přdnášc uvažovány pouz kartézské tnsory, pro něž, jak j známo, odpadá rozdíl mzi složkami kontra variantními a kovariatními. Tnsory, jjichž složky s nzmění při libovolném otoění os souřadné soustavy nazývám isotropními. Tak Kronckrův symbol d is j (jdničkový) isotropní tnsor druhého řádu a Lvi-Civitův tnsor iik, antisymtrický v všch třch indxch, j (jdničkový) isotropní tnsor třtího řádu. Lz ukázati, ž obcný isotropní tnsor Čtvrtého řádu rj iikl lz vyjádřiti jako linární kombinaci výrazů á ti ó fcř, d ik 6 n d i si d ik v tvaru Vuki = MiAi + M^iA* + <5 t A*) + v(d ik d i d i d ik ). (1) Složky vktoru lastického posunutí označm pl { \ pak složky symtrického tnsoru dformac if jsou dfinovány vztahm u = JKi + v>i,i)l (2) kd čárkou j vyznačna parciální drivac podl souřadnic, na př. VIL u ifi == ^ -. Označím-li složky tnsoru napětí r ii {= r iť ), j vztah mzi cx i napětím a dformací dán zobcněným Hookovým zákonm r ii = C iik i kl ; (3) kd zavádím sumační pravidlo, ž s sčítá od 1 do 3 přs každý indx, ktrý s vyskytuj v jdnom článku dvakrát. Elastické koficinty C iikl v vzorci (3) jsou matriálové konstanty; ovšm jsou to konstanty jn pokud mám na mysli tělsa homognní. 311
3 Nyní nás zajímá tnsorový charaktr vličin dm- J-li orthogonální transformac souřadnic dána vztahm x i a ik X k> snadno dokážm, ž C im s transformují podl zákona ^ijkl == a im a jn a kr a ls ^mnrs-> t. j. jako složky tnsoru čtvrtého řádu. Z rovnic (3) j zřjmé, ž tnto tnsor j symtrický v indxch i a /, k a l a z nrgtických úvah plyn, ž j i symtrický v dvojicích indxů i, j a k, l. Obcně má tdy tnto tnsor 21 nzávislých složk; stjný počt nzávislých složk má i symtrický tnsor druhého řádu v šstirozměrném prostoru a tak lží na snadě možnost zobrazní tnsoru čtvrtého řádu v trojrozměrném prostoru C im jako symtrický tnsor druhého řádu v prostoru šstirozměrném ([1] str. 37). Tímto zobrazním (podobně jako v označní Voigtově pomocí jn dvou indxů) j ovšm jho přirozný tnsorový charaktr střn. Půjd-li o tělso isotropní, musí být zřjmě tnsor C im isotropní, * j- C im = rj ijkli kd 7j ijkt j dáno rovnicí (1). Dosadím-li do pravé strany rovnic (3) za rj im z (1), dostávám ta = AiS^ + 2/i ii9 ů = mm ; (4) to j znění Hookova zákona pro isotropní tělso, vyjádřné pomocí Laméových konstant A a //. Nuvážujm-li objmové síly, můžm psát podmínky rovnováhy v tnsorové symbolic takto: r iu = ( 5 ) a při úvahách o lastické rovnováz jd v podstatě o řšní těchto rovnic s příslušnými krajovými podmínkami. Jsou-li krajové podmínky dány v lastických posunutích ju i, vyjadřujm zpravidla v těchto posunutích pomocí Hookova zákona (4) i složky napětí r ij9 t. j. vycházím z rovnic IkAfki +(X + /i) Ů 9Í = 0, (6) kd A j Laplacův symbol v kartézských souřadnicích. Jsou-li krajové podmínky dány v napětích r ijy snažím s pochopitlně rovnici (5) intgrovati přímo. Funkc r^ njsou však navzájm nzávislé, nboť prostřdnictvím Hookova zákona (4) jsou spojny s funkcmi t y, mají-li pak tato {j vyjadřovati dformaci, t. j. mají-li mít tvar (2), musí být splněno šst rovnic kompatibility dformací (rovnic Saint-Vnantovy), ktré lz tnsorově psáti takto: 312 ikm iln khmn = 0. (7)
4 Z nich můžm po dosazní z (4) a úpravách odvoditi rovnic kompatibility napětí (rovnic Bltramiho) v tvaru l + o- kd 0 = r mm a o* j Poissonova konstanta. Mám tdy nalézti šst íunkcí x ih ktré by splňovaly rovnic (5) a (8), a pochopitlně i dané krajové podmínky. Mám-li intgrovati dvě soustavy rovnic (v našm případě jdna soustava sstává z tří a druhá z šsti rovnic), zpravidla s snažím nalézti takové funkc, pomocí ktrých by jdna soustava byla splněna idnticky, takž pak druhá soustava slouží k urční těchto nových funkcí. V lasticitě při intgraci výš uvdného problému nazývám tyto funkc funkcmi napětí. Položm na př. r ij == ikl 8 jmn ykm,ln> (9) kd funkc napětí y km jsou složkami symtrického tnsoru; rovnic (5) j splněna idnticky a dosazní (9) do rovnic (8) vd po úpravách na rovnici (ktrá ovšm rprsntuj šst rovnic) ikl sjmn I--V&.7I 1 j ~ km &] ^. (10) Rovnic (10) má však stjný vzhld jako rovnic kompatibility dformací (7), z čhož usuzujm, ž výraz v kulaté závorc má charaktr dformac, t. j. můžm jj vyjádřiti pomocí libovolného vktoru v i takto: dy km - YJ^J ^ 0 = = i K* + v k,i)- To j řšní, k ktrému jiným postupm (a nikoliv s použitím tnsorové symboliky) dospěl Krutkov ([2] str ), v jhož právě citované kniz j též toto řšní podrobně diskutováno. V tomto řšní j jako spciální případ zahrnuto řšní Maxwllovo (y 29 = y 3l = y 12 = 0) a řšní Morrovo (y n = y 22 = y 39 = 0). Připomňm závěrm, ž přd podobnou úlohou, jakou byla intgrac rovnic (5) a (8), stojím na př. v thorii lktromagntického pol při intgraci rovnic Maxwllových. V čtyřrozměrném prostoru spcilní thori rlativnosti můžm Maxwllovy rovnic pro vakuum psáti takto (x A = ict, c rychlost světla): Fik,k = 0, (11) iklm Fkl,m = 0, kd F ik jsou složky antisymtrického tnsoru druhého řádu, ktré odpovídají složkám intnsity lktrického a magntického pol, a kd 313
5 iklm j Lvi-Civitův tnsor v čtyřrozměrném prostoru. Každá z tnsorových rovnic (11) přdstavuj soustavu čtyř rovnic; jsou to ovšm parciální difrnciální rovnic prvého řádu, zatím co v (8) mám parciální difrnciální rovnic druhého řádu. Zavdm-li čtyřpotnciál <p ť tak., aby platilo = iklm <P,m> F ik j první rovnic z (11) splněna idnticky, zatím co druhá dává rovnici V TO( Pi D <Pi <Pk,ki = 0, kd j Laplacův symbol v čtyřrozměrném psudouklidovském prostoru. Bz omzní obcnosti vličin F ih lz vždy zvoliti cpi tak, aby platilo <p ktk = 0, takž rovnic pro <pi s zjdnoduší na tvar D <Pi = - Zobcnění uvdných výsldků na obcné orthogonální souřadnic bud podáno na jiném místě. Litratura [1] S. G. Lchnickij, Torija uprugosti anizotropnogo těla, Gostchizdat [2] Ju. A. Krutkov, Tnzor funkcij naprjažnij i obšči ršnija v statiko torii uprugosti, Izdatlstvo AN SSSR, DYNAMICKÉ ÚČINKY NA ŽELEZNIČNÍ MOSTY (Rfrát o přdnášc VI. Kolouska, proslovné 21. května 1952.) V úvodě přdnášky byl podán přhld o výzkumu dynamických účinků v mzinárodních organisacích a u žlzničních správ různých států. Rozsáhlá měřní byla konána v SSSR, Vlké Britanii a USA. Poněvadž poměry na žlznicích těchto zmí jsou odlišné od našich, nbylo možno výsldky prostě přvzíti..zkoumání v ostatních zmích, kd jsou poměry podobné jako u nás, nbylo dosti soustavné, a proto musly ČSD provésti měřní vlastní. Další část přdnášky pojdnávala o povaz dynamických vlivů na žlzniční mosty. Jsou to přdvším rázy, vliv pohybu břmn po mostě a harmonicky proměnné síly, vznikající při rotaci hnacích kol lokomotivy. Podl toho, jak tyto vlivy na mosty působí, můžm mosty rozděliti do tří skupin, na mosty s malým, střdním a vlkým rozpětím. V přdnášc bylo analysováno pouz kmitání mostů vlkého rozpětí a to oclových mostů njobvykljší konstrukc s hlavními nosníky prostými. Při thortickém vyštřování vycházím z pohybových rovnic délkového lmntu nosníku o délc do;, ktré mají při kmitání vlastní tvar 314
I. MECHANIKA 8. Pružnost
. MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních
O dynamickém programování
O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)
INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TEHNIKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADEH VIČENÍ Č. Ing. Ptra Schribrová, Ph.D. Ostrava Ing. Ptra Schribrová, Ph.D. Vsoká škola báňská Tchnická univrzita
Metody ešení. Metody ešení
Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané
O nerovnostech a nerovnicích
O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent
O dělitelnosti čísel celých
O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569
O dělitelnosti čísel celých
O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572
4. PRŮBĚH FUNKCE. = f(x) načrtnout.
Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.
Úvod do neeukleidovské geometrie
Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:
část 8. (rough draft version)
Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent
Nerovnosti v trojúhelníku
Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav
L HOSPITALOVO PRAVIDLO
Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o
O dynamickém programování
O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799
Funkcionální rovnice
Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent
Časopis pro pěstování matematiky
Časopis pro pěstování matematiky Jiří Bečvář; Miloslav Nekvinda Poznámka o extrémech funkcí dvou a více proměnných Časopis pro pěstování matematiky, Vol. 81 (1956), No. 3, 267--271 Persistent URL: http://dml.cz/dmlcz/117194
O rovnicích s parametry
O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms
Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní
Aplikace matematiky Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní (2m + 1) diagonální maticí Aplikace matematiky, Vol. 17 (1972), No. 4, 321--324 Persistent
FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění
FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt
Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole
Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol Otázka č.3 Vličiny používané pro kvantifikaci lktromagntického pol odrobnější výklad základu lktromagntismu j možno nalézt v učbním txtu:
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.
Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy
Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of
2. Frekvenční a přechodové charakteristiky
rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Kounovský O projektivnosti involutorní Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 3-4, 433--439 Persistent URL: http://dml.cz/dmlcz/109245
Rozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
hledané funkce y jedné proměnné.
DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325
Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp
Symetrické funkce Kapitola III. Symetrické funkce n proměnných In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, 1982. pp. 24 33. Persistent URL: http://dml.cz/dmlcz/404069 Terms
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých
Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)
pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),
Úvod do filosofie matematiky
Úvod do filosofie matematiky Axiom nekonečna In: Otakar Zich (author): Úvod do filosofie matematiky. (Czech). Praha: Jednota československých matematiků a fysiků, 1947. pp. 114 117. Persistent URL: http://dml.cz/dmlcz/403163
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.
Trivium z optiky 37. 6. Fotometrie
Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630
Aplikace matematiky František Šubart Odvození nejvýhodnějších dělících tlaků k-stupňové komprese, při ssacích teplotách lišících se v jednotlivých stupních Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375
Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly
Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Langr O čtyřúhelníku, jemuž lze vepsati i opsati kružnici Časopis pro pěstování mathematiky a fysiky, Vol. 28 (1899), No. 3, 244--250 Persistent URL: http://dml.cz/dmlcz/122234
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ladislav Klír Příspěvek ke geometrii trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol. 44 (1915), No. 1, 89--93 Persistent URL: http://dml.cz/dmlcz/122380
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Gabriel Blažek O differenciálních rovnicích ploch obalujících Časopis pro pěstování mathematiky a fysiky, Vol. 2 (1873), No. 3, 167--172 Persistent URL: http://dml.cz/dmlcz/109126
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vilém Jung Několik analytických studií o plochách mimosměrek (zborcených). [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 18 (1889), No. 6, 316--320 Persistent
Základy teorie matic
Základy teorie matic 23. Klasifikace regulárních párů matic In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 162--168. Persistent URL: http://dml.cz/dmlcz/401352 Terms
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Zdeněk Horský Písemnosti z pozůstalosti prof. dr. A. Seydlera In: Libor Pátý (editor): Jubilejní almanach Jednoty čs. matematiků a fyziků 1862
KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD
40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc
Aritmetické hry a zábavy
Aritmetické hry a zábavy 1. Doplnění naznačených výkonů In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 5 9. Persistent URL: http://dml.cz/dmlcz/4329
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.
Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869
Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru
Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505
, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty:
Radiomtri a fotomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá fotomtri. V odstavci Přnos nrgi
Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti
Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms
Univerzita Tomáše Bati ve Zlíně
Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační
F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )
Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty
Jednota českých matematiků a fyziků ve 150. roce aktivního života
Jednota českých matematiků a fyziků ve 150. roce aktivního života Organizace JČMF In: Jiří Dolejší (editor); Jiří Rákosník (editor): Jednota českých matematiků a fyziků ve 150. roce aktivního života. (Czech).
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Kongruence. 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence
Kongruence 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 43 54. Persistent URL: http://dml.cz/dmlcz/403656
INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE
Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Výpočet objemu tělesa In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004
Co víme o přirozených číslech
Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.
PANM 16. List of participants. http://project.dml.cz. Terms of use:
PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Jan Sobotka (1862 1931)
Jan Sobotka (1862 1931) Martina Kašparová Vysokoškolská studia Jana Sobotky In: Martina Kašparová (author); Zbyněk Nádeník (author): Jan Sobotka (1862 1931). (Czech). Praha: Matfyzpress, 2010. pp. 231--234.
3.3. Derivace základních elementárních a elementárních funkcí
Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH
Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation
Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Počítání se zlomky In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Emil Calda; Oldřich Odvárko Speciální třídy na SVVŠ v Praze pro žáky nadané v matematice a fyzice Pokroky matematiky, fyziky a astronomie, Vol. 13 (1968), No. 5,
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef B. Slavík; B. Klimeš Hluk jako methodická pomůcka při zjišťování příčin chvění v technické praxi Pokroky matematiky, fyziky a astronomie, Vol. 2 (957), No.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Úlohy Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 1, 140--144 Persistent URL: http://dml.cz/dmlcz/121666 Terms of use: Union of Czech Mathematicians
Exponenciální funkce a jejich "využití" - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu.
Josf PUNČOCHÁŘ: Epociálí fukc a ich "využití" ld Epociálí fukc a ich "využití" - A (Tato doplňková pomůcka můž v žádém případě ahradit systmatickou matmatickou přípravu. Epociálí fukc dfiováa obcě vztahm
Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule.
Lokální xtrémy - řšné příklady 1 Lokální xtrémy Vyštřt lokální xtrémy násldujících funkcí víc proměnných: 1 Příklad fx, y = x + xy + 3y + 5x + y Spočtm parciální drivac a položím j rovny nul Vznikn soustava
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Zdeněk Češpíro Výbojový vakuoměr bez magnetického pole Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 3, 299--302 Persistent URL: http://dml.cz/dmlcz/137111
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vladimír Kořínek Poznámky k postgraduálnímu studiu matematiky učitelů škol 2. cyklu Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 6, 363--366 Persistent
2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami
Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy
Komplexní čísla a funkce
Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 5. kapitola. Několik otázek z matematické statistiky In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 964. pp. 50 59. Persistent URL:
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jan Novák Aritmetika v primě a sekundě Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D254--D257 Persistent URL: http://dml.cz/dmlcz/120798
Kombinatorika. In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, pp. 3 [6].
Kombinatorika Předmluva In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, 1980. pp. 3 [6]. Persistent URL: http://dml.cz/dmlcz/403963 Terms of use: Antonín Vrba, 1080 Institute of
Matematicko-fyzikálny časopis
Matematicko-fyzikálny časopis Václav Havel Poznámka o jednoznačnosti direktních rozkladů prvků v modulárních svazech konečné délky Matematicko-fyzikálny časopis, Vol. 5 (1955), No. 2, 90--93 Persistent
je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme
DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě
Historický vývoj geometrických transformací
Historický vývoj geometrických transformací Věcný rejstřík In: Dana Trkovská (author): Historický vývoj geometrických transformací. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2015. pp. 171 174.
4.3.2 Vlastní a příměsové polovodiče
4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si
1. Okrajové podmínky pro tepeln technické výpo ty
1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol
MATEMATICKÝ MODEL POHODLÍ CESTUJÍCÍCH NA LINCE VEŘEJNÉ HROMADNÉ DOPRAVY
MATEMATICKÝ MODEL POHODLÍ CESTUJÍCÍCH NA LINCE VEŘEJNÉ HROMADNÉ DOPRAVY Jaroslav Klprlík 1 Anotac: Článk uvádí algoritmus pro přiřazní dopravních prostřdků na linky s cílm dosáhnout maximální pohodlí cstujících.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Sommer Pokus vysvětliti Machův klam optický Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 2, 101--105 Persistent URL: http://dml.cz/dmlcz/109224
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Cyril Dočkal Automatické elektromagnetické váhy Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Richard Pastorek ph-metrické stanovení disociačních konstant komplexů v kyselé oblasti systému Cr 3+ ---
Malý výlet do moderní matematiky
Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755
41 Absorpce světla ÚKOL TEORIE
41 Absorpc světla ÚKOL Stanovt závislost absorpčního koficintu dvou průhldných látk různé barvy na vlnové délc dopadajícího světla. Proměřt pro zadané vlnové délky absorpci světla při jho průchodu dvěma
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 2. Rozklady v množině In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 22--27. Persistent
Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z
7. Polarizované světlo 7.. Polarizac 7.. Linárně polarizované světlo 7.3. Kruhově polarizované světlo 7.4. liptick polarizované světlo (spc.případ) 7.5. liptick polarizované světlo (obcně) 7.6. Npolarizované
Jaká je logická výstavba matematiky?
Jaká je logická výstavba matematiky? 2. Výrokové vzorce In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, 1946. pp. 15
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Václav Simandl Poznámka ke kombinacím daného součtu z čísel přirozené řady číselné Časopis pro pěstování mathematiky a fysiky, Vol. 46 (1917), No. 2-3, 155--159