Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole

Rozměr: px
Začít zobrazení ze stránky:

Download "Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole"

Transkript

1 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol Otázka č.3 Vličiny používané pro kvantifikaci lktromagntického pol odrobnější výklad základu lktromagntismu j možno nalézt v učbním txtu: L.Ivánk: lktromagntismus. Základní vličiny používané v lktromagntismu jsou soustřděny v přiložné tabulc. lktromagntické pol j fnoménm, zprostřdkující přnos informac v vodivých i nvodivých médiích. Formálně, například pro zjdnodušní výpočtu, lz dělit na pol lktrické a magntické, v skutčnosti jsou al obě tato pol v jdnotě a nlz j oddělit. Zjdnodušně vysvětlno držím li v ruc nabité tělso, vytváří toto vzhldm k mé osobě pol lktrostatické, proltí-li kolm moucha, j vůči ní tnto náboj v pohybu a mouš s jví jako lktrický proud, ktrý kolm sb budí pol magntické. lktromagntické pol s navnk projvuj silovým působním na náboj. Množství a účinky lktromagntického pol j potřba kvantifikovat určitými fyzikálními vličinami, rozložnými v prostoru a čas. Základními vličinami budou ty, ktré intnzitu silového působní pol na náboj přímo dfinují. Dfinicí a popism základních vličin bud věnována násldující podkapitola. lktromagntické pol můž být jdnak různě rozložno v prostoru, jdnak můž nabývat různých hodnot v různých časch. Obcně můž být tnto prostor trojrozměrný. Například od vysílací antény s lktromagntické pol šíří v vlnoplochách různých tvarů (válcové, kulové, rovinné) do volného trojrozměrného prostoru. Samotné vličiny mohou být rovněž popsány víc souřadnicmi. Njvíc souřadnic má tnzor například = xx yx zx j tnzor prmitivity. Zápis má tvar matic, a význam zápisu lz vysvětlit na praktickém použití vličiny: D = xy yy zy xz yz zz D D D x y z = xx yx zx xy yy zy xz yz zz x y z Vličiny používané pro kvantifikaci lktromagntického pol řítomnost a účinky lktromagntického pol j potřba nějakým způsobm popsat kvalitativně, al i kvantitativně. Za tím účlm s běhm vývoj oboru ustálilo několik vličin, ktré njsou z dnšního hldiska zavdny naprosto přsně podl současných poznatků vědy, nicméně všchny vztahy jsou zažity s těmito vličinami a v praxi nám vyhovují i dns. okud jd o historické npřsnosti, jdná s zjména o nutnost zavdní znaménka v vztahu = - grad j a o názvy vličin magntického pol (vš j diskutováno v učbnici L.Ivánk: lktromagntismus). Vličiny jsou přhldně uvdny v tabulc. V podstatě j můžm rozdělit do dvou základních skupin vličiny difrnciální a vličiny intgrální. Vličiny difrnciální lz

2 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol dfinovat v konkrétním gomtrickém bodě, kdžto vličiny intgrální jsou vždy vztažny na určitý objm, plochu nbo trajktorii. Z jdnotk uvdných v tabulc j zřjmé, ž difrnciální vličiny jsou hustotami toků, proudu nbo náboj (jsou vztažny na gomtrickou jdnotku). Zatímco například intnzitu lktrického pol mzi dvěmi lktrodami můžm určit v ktrémkoliv bodě mzi lktrodami, potnciál musím vztáhnout na dva body na intgrační dráz. Jdnomu z těchto bodů můžm přisoudit nulový potnciál a můž být umístěn v nkončnu. odobně v vodiči lz v každém jho bodě určit proudovou hustotu, pokud potřbujm určit proud vodičm, j potřba jj vztáhnout k ploš, jíž protéká. lktrický náboj S pojmm lktrický náboj spojuj většina studntů pouz lktron. Skutčně náboj lktronu j njmnší množství v jakém s můž náboj nacházt = -, C. Náboj al nní hmotné podstaty, al j vlastnosti hmoty (částic), charaktrizovanou mít vlastní lktrické pol. Nosičm náboj tdy mohou být i jiné hmotné částic. Nní-li náboj hmotné podstaty nmá ani hmotnost ani hybnost. Jdnotkou náboj v soustavě SI j coulomb [kulom] C = As. V makroskopické torii znám tři druhy střdních hodnot hustoty náboj a to v prostoru objmovou hustotu náboj na ploš plošnou hustotu náboj r = s = na vlákně liniovou (čárovou) hustotu náboj t = lim0 Dl lim0 Dv lim 0 Ds DV DS Dl Z těchto vyhlazných skalárních vličin můžm invrzními vztahy vytvořit pol náboj Q nbo další skalární či vktorová pol. Invrzní vztahy pro Q jsou: dq dl dq dv Q = ò r dv Q 0 = ò s ds Q = ò t dl V dilktriku xistuj náboj v podobě lmntárních dipólů, tj. dva stjně vlké náboj s vzájmnou vzdálností mnohm mnší, nž j vzdálnost tohoto dipólu od sldovaného bodu prostoru, v němž účinky dipólu hldám. Natáčním takovéhoto dipólu vzniká posuvný proud, zatímco vdný lktrický proud j vlastně pohyb lktrických nábojů, rspktiv částic s nábojm (v přvážné většině případů lktronů, al můž s jdnat i o ionty). Intnzita lktrického pol Mějm dvě rovinné vlmi rozsáhlé rovnoběžné dskové lktrody vzdálné od sb o rozměr d = m. Napětí mzi lktrodami nchť j = 000 V. Mzi lktrodami s objví volný bodový náboj Q = 0-3 C (prakticky j tato hodnota nadnsna). Otázkou j, jak intnzívně, nboli jako silou, působí lktrostatické pol lktrod na náboj. Síla j jistě úměrná vlikosti náboj, al i další vličině, kvantifikující účinky pol. Tuto vličinu nazývám intnzita lktrického pol a v tomto případě = /d = 0 dq ds j = 0 V F = Q. d Q j = 000V

3 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol 000V/m a síla působící na náboj F = Q. v našm případě N. Směr intnzity mzi dskami j kolmý na tyto dsky intnzita j vždy tčnou k siločárám, obcně al jsou jak intnzita, tak i z ní vypočtná síla vktory. Intnzitu l.pol můžm tdy dfinovat jako sílu, jíž působí lktrostatické pol v daném bodě na jdnotkový kladný zkušbní náboj. Jjí rozměr j [] = [ F] nwton Ws / m V = = = [ Q] coulomb As m J-li výkon vysílač vysílajícího do volného prostoru v a zisk vysílací antény G v, j v vzdálnosti d měřného místa od vysílač fktivní hodnota intnzity lktrického pol f = 30 G Mapu pol tvoří ortogonální systém křivk kvipotnciál (spojnic míst s stjným potnciálm) a siločar. Siločáry s nsmí nikdy dotýkat, natož křížit. ro anténní dipóly j nutné uvést jště jdn důlžitý vztah Ohmův zákon v difrnciálním tvaru d J = s. Vzhldm k tomu, ž g j skalární konstanta, j jasné, ž intnzita lktrického pol má stjný směr jako proudová hustota v anténě. Intnzita pol j tdy stjně polarizována jako anténní dipól. Intnzita magntického pol Vrátím-li s k anténnímu dipólu jako k vodiči protékanému proudm, lz určit intnzitu magntického pol v okolí této antény stjně jako v okolí vodič. roblém j v nrovnoměrném rozložní proudu podél vodič. Nicméně směr intnzity magntického pol lz určit opět podl pravidla pravé ruky a siločáry v těsné blízkosti tohoto vodič mají tvar kružnic. V případě antény budou tdy siločáry lktrického pol a siločáry magntického pol tvořit opět ortogonální systém. Obě vličiny jsou vázány v prvních dvou Maxwllových rovnicích: rot Hˆ Jˆ = 0 v + j wdˆ = sˆ + jwˆ = ( s + jw )ˆ rot ˆ = - jwb = - jwmhˆ Řkněm, ž v anténě nastan pohyb náboj lktrický proud s hustotou J 0, tnto proud má harmonický průběh a indukuj v blízkosti antény rovněž harmonicky proměnné magntické pol H, časovou změnou magntického pol al vzniká pol, ktré opět indukuj magntické pol a tak dál. Dostávám matmaticky podložnou úvahu schopnosti vln šířit s prostorm i mimo zdroj proudu. V okolí dlouhého přímého vodič, kd můžm přdpokládat siločáry magntického pol v tvaru kružnic kolm vodič j v vzdálnosti r od vodič protékaného proudm I : H = Směr vktoru H určím podl pravidla pravé ruky uchopím vodič do dlaně tak, ž palc ukazuj směr proudu, prsty směr vktoru H. I pr v 3

4 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol oyntingův vktor lktromagntická vlna j schopna přnášt nrgii. ro posouzní množství přnášné nrgi byl zavdn tzv. oyntingův vktor (podl Johna Hnryho oyntinga) N = x H Hodnota oyntingova vktoru udává hustotu přnášné nrgi, jho směr udává směr přnášné nrgi. podrobněji byl rfrován v učbním txtu lktromagntismus. V harmonicky proměnném poli má oyntingův vktor tvar ˆ ˆ ˆ * N = H J zd užitčné dfinovat střdní hodnotu oyntingova vktoru N stř = R ro vlny používám násldující označní: * { ˆ Hˆ } [ W / m ] vlny, ktré mají pouz příčné složky polí (jako v volném prostoru), s označují jako vlny transvrzálně lktromagntické - TM, čský kvivalnt označní j RM - rovinná lktromagntická vlna vlny, ktré mají podélnou složku lktrického pol s označují jako vlny transvrzálně magntické - TM nbo též jako vlny lktrické - vlny s podélnou složkou magntickou s označují jako vlny transvrzálně lktrické - T nbo jako vlny magntické - H Doporučné aplty šířní vln:

5 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol řhld základních polních vličin, jjich jdnotk a přvodních vztahů 5

6 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol Vyjádřní radiotchnických vličin v dciblch Vličiny rádiového přnosu musím nějakým způsobm kvantifikovat a navzájm porovnávat, například v jdné rovnici. Jjich číslné hodnoty s al mohou lišit i o několik řádů, například zisk antén můž být řádově 0 3, zatímco ztráty šířním 0 -. ro tyto účly používám nlinární jdnotky - dcibly. Dochází tdy k dformaci původních linárních přdstav o narůstání, či ubývání vličin. V grafickém vyjádřní nám tyto zásady připadají možná názornější nž v číslné formě. Litratura (Daněk) uvádí příklad přpočtu vzdálnosti Změ od Slunc (50 miliónů km) na dcibly. okud volím vztažnou jdnotku m pak j tato vzdálnost vyjádřna v dciblch pouz log / = db. ři vztažné jdnotc km j to pouz 80 db. oužití dciblů dfinuj doporuční IT-R. ojm dcibl úzc souvisí s pojmm logaritmus. Dkadický (briggický) logaritmus j vlastně xponnt, ktrý vyjadřuj kladné číslo jako číslo dst umocněné právě na tnto xponnt. J tdy logaritmus xponntm mocniny v zkratc log, rsp. log 0. J tdy log = 0, protož = 0 0 log 0 =, protož 0 = 0 log 00 = protož 00 = 0 log b = a protož b = 0 a něktrých prakticky často frkvntovaných čísl (, 3, 4, 5, 6, 7, 8, 9) lz logaritmy spočítat zpaměti rspktiv pomocí jdnoduchých funkcí násobní a dělní na kalkulačc. V tomto případě nalznm k zaokrouhlní vhodná čísla, vyjádřna triviální mocninou čísla, jhož logaritmus hldám: log = (log 0 )/0 = 0,3 z toho protož: 0 = 04 zaokrouhlno 000, log 000 = 3, 3:0 = 0,3 log 4 = log (.) = log + log = 0,6 log 8 = log (.4) = log + log 4 = 0,9 log 3 = (log 3 4 )/4 = 0,48 protož 3 4 = 8-zaokrouhlno 80, log 80 = log (8.0) = log 8+log 0 = 0,9+ =,9,,9/4 = 0,48 log 5 = (log 0/) = log 0 - log = 0,3 = 0,7 log 7 = (log 7 /) = 0,85 protož 7 = 49 zaokrouhlno 50, log 50 = log 5 + log 0 =,7,,7/ = 0,85 Dcibl j dstina blu, ktrý j dfinován jako dkadický logaritmus poměru dvou vličin. V radiotchnic s pomocí dciblů vyjadřuj njčastěji výkon, výkonový nbo napěťový zisk a útlum. Al také lz takto vyjádřit rlativní průběh výkonu (spádovou křivku) vůči zvolné hodnotě výkonu. Vzhldm k tomu, ž s jdná vždy o poměr výkonů, napětí apod., jd o logaritmus bzrozměrné vličiny. J to bzrozměrná jdnotka (podobně jako procnto), ktrá umožňuj používat místo pojmu "změna na X procnt původní hodnoty" (tdy násobní) pojm "změna o Y db" (tdy sčítání). Kladná hodnota v db znamná poměr větší nž jdna, záporná hodnota v db znamná poměr mnší nž jdna. ři vyjadřování 6

7 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol úbytku (útlumu) nbo přírůstku (zisku) znamná 0 db žádný útlum a žádný zisk, tdy poměr :, tj. v obou případch j na výstupu stjná úrovň jako na vstupu. okud jd o úrovň signálu, 0 db signálu nznamná žádný signál, al naopak přsně stjnou úrovň, na ktré jsm s přdm domluvili a k ktré vš vztahujm. Úrovň signálu vyjádřná v db můž být i záporná - j-li signál mnší, nž ta vztažná hodnota. Výkon vztahujm k jdnotkám miliwat, což označím v logaritmických jdnotkách symbolm dbm [dbm] = 0 log 0 [mw] rsp. [mw] = 0 out výkonový zisk nbo útlum G[ db] 0.log = [ dbm] - [ dbm] napěťový zisk [ db] = 0 A = in out = 0log0 0log 0. okud nás zajímají jn rlativní změny např. když zjišťujm závislost přijímané úrovně na vzdálnosti (spádová křivka), nmusím hodnotu znát. Dosadím-li al za zvolnou vztažnou hodnotu, můžm vyjádřit i s jho fyzikálním rozměrm. Má-li zařízní výkon mw, rovná s to výkonu 0 dbm; 7 dbm odpovídá výkonu 50 mw a 0 dbm pak výkonu 00 mw nboli maximální hodnotě povolné ČT pro WiFi. Volím-li vztažnou hodnotu V, označím jdnotku [dbv] dciblvolt. V případě vyjádřní poměru napětí nbo intnzit lktrického pol jsm musli vličiny umocnit, abychom dostali poměr úměrný výkonu. J tdy napěťový zisk dán dvactinásobkm logaritmu poměru výstupního a vstupního napětí, zatím co zisk výkonový dstinásobkm, protož = /R. Ať vycházím z napětí nbo výkonu j rlativní výsldk v db vždy úměrný výkonu, ovšm za přdpokladu, ž jsou obě porovnávána napětí na stjné impdanci. otom například platí na 50 Ω odporu: in [ dbm] 0 napěťová úrovň [dbv] = naměřná výkonová úrovň [dbm] 3 db Vlikost impdanc 50 Ω běžně očkávám při kontrol výkonové úrovně v [dbm] v jdnotlivých radiolktronických obvodch. oužijm-li u měřič výkonových úrovní sondu s vysokou vstupní impdancí mohou být výsldky zkrslné. Jako příklad lz uvést měřní na širokopásmovém transformátoru s impdančním přvodm :4. V tomto případě naměřím, i když to provádím na měřiči výkonové úrovně, napětí, ktré j ovšm na čtyřikrát vyšší rsp. nižší (podl směru postupu) impdanci dvakrát vyšší rsp. nižší (tdy mnší o 6dB). 00 W = 50 dbm protož ro rychlý odhad j dobré procvičit si výpočt úrovní v db: 00W = 0 W = 0 5 mw log = 5 0. log = 50dBm 6 W = 37,8 dbm protož 6 W = mw log = log 0 ( ) = log 0 + log log = 0,3 + 0, = 3,78 dbm 7

8 Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol mw = 0 dbm protož log 0 = log = 0 pw = - 90 dbm protož pw = 0 - W = 0-9 mw log = log = ,5 µw = -36 dbm protož µw = 0-3 mw log = - 3 log 0 4 = - 0,6 0,5 µw = /4 µw log 0 ¼ µw = log 0 µw - log 0 4 µw = - 3 0,6 = - 3,6 Zmnšní (zvětšní) výkonu o 3 db přdstavuj zmnšní (zvětšní) výkonu x 5 db 3x 9 db 8x Další používané symboly pro poměrné vličiny označují: dbi zisk antény k vztažnému izotropickému zářiči, dbd zisk antény vzhldm k půlvlnnému dipólu, dbr výkon vůči rlativní hodnotě výkonu dbc poměr úrovní k nosné (carrir) Označní vzhldm k volbě vztažné hodnoty: Vličina Rfrnční vličina Zápis jdnotky řvod z základních jdnotk Výkon mw db( mw), dbm Výkon W db( W), dbw Napětí V db( V), dbv Intnzita l. pol µv/m db(µv/m), dbµ,dbu 0log log 0log 3 0log

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně

Více

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty:

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty: Radiomtri a fotomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá fotomtri. V odstavci Přnos nrgi

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

Trivium z optiky 37. 6. Fotometrie

Trivium z optiky 37. 6. Fotometrie Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

Měrný náboj elektronu

Měrný náboj elektronu Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ Doc. Ing. Dalibor Biolk, CSc. K 30 VA Brno, Kounicova 65, PS 3, 6 00 Brno tl.: 48 487, fax: 48 888, mail: biolk@ant.f.vutbr.cz Abstract: Basic idas concrning immitanc dscription

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn

Více

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova)

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova) Punčochář, J: AEO; 5. kapitola 1 5. kapitola: Vysokofrkvnční zsilovač (rozšířná osnova) Čas k studiu: 6 hodin íl: Po prostudování této kapitoly budt umět dfinovat pracovní bod BJT a FET určit funkci VF

Více

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule.

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule. Lokální xtrémy - řšné příklady 1 Lokální xtrémy Vyštřt lokální xtrémy násldujících funkcí víc proměnných: 1 Příklad fx, y = x + xy + 3y + 5x + y Spočtm parciální drivac a položím j rovny nul Vznikn soustava

Více

Jednokapalinové přiblížení (MHD-magnetohydrodynamika)

Jednokapalinové přiblížení (MHD-magnetohydrodynamika) Jdnokapalinové přiblížní (MHD-magntohydrodynamika) Zákon zachování hmoty zákony zachování počtu lktronů a iontů násobny hmotnostmi a sčtny n t div nu ni divnu i i t div u M M (1) t i m n M n u u M i i

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ Jihočská univrzita v Čských Budějovicích Katdra fyziky Modly atomu Vypracovala: Brounová Zuzana M-F/SŠ Datum: 3. 5. 3 Modly atomu První kvalitativně správnou přdstavu o struktuř hmoty si vytvořili již

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praz Úloha 3: Měrný náboj lktronu Datum měřní: 18. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátk 7:30 Vypracoval: Tadáš Kmnta Klasifikac: 1 Zadání 1. DÚ: Odvoďt

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

, je vhodná veličina i pro studium vyzařování energie z libovolného zdroje a také i pro popis dopadu energie na hmotné objekty:

, je vhodná veličina i pro studium vyzařování energie z libovolného zdroje a také i pro popis dopadu energie na hmotné objekty: Radiomtri a otomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá otomtri. V odstavci Přnos nrgi

Více

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

Elektrické a magnetické pole zdroje polí

Elektrické a magnetické pole zdroje polí Elektrické a magnetické pole zdroje polí Podstata elektromagnetických jevů Elementární částice s ohledem na elektromagnetické působení Elektrické a magnetické síly a jejich povaha Elektrický náboj a jeho

Více

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:

Více

Fyzikální podstata fotovoltaické přeměny solární energie

Fyzikální podstata fotovoltaické přeměny solární energie účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu 1 Dfinic plazmatu (S. Ichimaru, Statistical Plasma Physics, Vol I) Plazma j jakýkoliv statistický systém, ktrý obsahuj pohyblivé nabité částic. Pozn. Statistický znamná makroskopický,

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z 7. Polarizované světlo 7.. Polarizac 7.. Linárně polarizované světlo 7.3. Kruhově polarizované světlo 7.4. liptick polarizované světlo (spc.případ) 7.5. liptick polarizované světlo (obcně) 7.6. Npolarizované

Více

pravou absorpcí - pohlcené záření zvýší vnitřní energii molekul systému a přemění se v teplo Lambertův-Beerův zákon: I = I

pravou absorpcí - pohlcené záření zvýší vnitřní energii molekul systému a přemění se v teplo Lambertův-Beerův zákon: I = I Zmnšní intnzita světla při prostupu hmotou: pravou absorpcí - pohlcné zářní zvýší vnitřní nrgii molkul systému a přmění s v tplo Lambrtův-Brův zákon: I = I c x o ( - xtinční koficint) rozptylm na částicích

Více

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD 40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc

Více

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa.

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa. 26 Zářní těls Ověřní Stfanova-Boltzmannova zákona ÚKOL Ověřt platnost Stfanova-Boltzmannova zákona a určt pohltivost α zářícího tělsa. TEORIE Tplo j druh nrgi. Vyjadřuj, jak s změní vnitřní nrgi systému

Více

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matmatiky Miroslav Brdička Užití tnsorové symboliky v lasticitě Časopis pro pěstování matmatiky, Vol. 77 (1952), No. 3, 311--314 Prsistnt URL: http://dml.cz/dmlcz/117036 Trms of us:

Více

41 Absorpce světla ÚKOL TEORIE

41 Absorpce světla ÚKOL TEORIE 41 Absorpc světla ÚKOL Stanovt závislost absorpčního koficintu dvou průhldných látk různé barvy na vlnové délc dopadajícího světla. Proměřt pro zadané vlnové délky absorpci světla při jho průchodu dvěma

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ A JEHO VLASTNOSTI Pokud budm třít sklněnou tyč o vlněnou látku a poté ji přiblížím k malým tělískům bud j přitahovat. Co j příčinou tohoto jvu Obdobně

Více

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A, Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou

Více

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA Martin Radina a, Ivo Schindlr a, Tomáš Kubina a, Ptr Bílovský a Karl Čmil b Eugniusz Hadasik c a) VŠB Tchnická univrzita Ostrava,

Více

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

Měření vlastností vedení

Měření vlastností vedení LBR 7. Měřní vastností vdní Měřní vastností vdní (úko měřní) Úkom tohoto měřní j sznámit s s mtodikou měřní vastností vdní onanční mtodou a dá změřit vastnosti různých typů běžně používaných vdní a určit

Více

Výkonová elektronika Výkonové polovodičové spínací součástky BVEL

Výkonová elektronika Výkonové polovodičové spínací součástky BVEL FAKULTA ELEKTROTECHIKY A KOMUIKAČÍCH TECHOLOGIÍ VYSOKÉ UČEÍ TECHICKÉ V RĚ Výkonová lktronika Výkonové polovodičové spínací součástky VEL Autor ttu: doc. Dr. Ing. Miroslav Patočka črvn 13 Powr Inovac výuky

Více

3.10. Magnetické vlastnosti látek

3.10. Magnetické vlastnosti látek 3.10. Magntické vlastnosti látk 1. Sznáit s s klasifikací látk podl charaktru intrakc s agntický pol. 2. Nastudovat zdroj agntického pol atou, ktré souvisí s pohyb lktronu v lktronové obalu atou. 3. Vysvětlit

Více

SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM

SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM Josf KONVIČNÝ Ing. Josf KONVIČNÝ, Čské dráhy, a. s., Tchnická ústřdna dopravní csty, skc lktrotchniky a nrgtiky, oddělní diagnostiky a provozních měřní, nám. Mickiwicz

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého v čas i prostoru pomalu proměnného stavu Linární rozvoj vličin a = a + a ( r, t) b= b + b ( r, t) a, b mohou obcně být funkcmi r, t

Více

1. Limita funkce - výpočty, užití

1. Limita funkce - výpočty, užití Difrnciální a intgrální počt. Limita funkc - výpočt, užití Vpočtět násldující it: +.8..cos +. + 5+. 5..5.. 8 sin sin.7 ( cos.9 + sin cos. + 5cos. + log( +... + + + 5 +.5..7.8.9.. 5+ + 9 + + + + 8 sin sin5

Více

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit

Více

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU Hodnocní tlné bilanc a vaotransirac travního orostu mtodou Bownova oměru návod do raktika z rodukční kologi PřF JU Na základě starších i novějších matriálů uravil a řiravil Jakub Brom V Čských Budějovicích,

Více

02 Systémy a jejich popis v časové a frekvenční oblasti

02 Systémy a jejich popis v časové a frekvenční oblasti Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA 1.1. GEOMETRICKÉ VLASTNOSTI BUDOVY 1.2. CHARAKTERISTIKA STAVEBNÍCH KONSTRUKCÍ

PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA 1.1. GEOMETRICKÉ VLASTNOSTI BUDOVY 1.2. CHARAKTERISTIKA STAVEBNÍCH KONSTRUKCÍ PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA pro clkové zatplní panlového domu Běhounkova 2457-2462, Praha 5 Objkt má dvět nadzmní podlaží a jdno podlaží podzmní, částčně pod trénm. Objkt

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého stacionárního konstantního nbo v čas a/nbo v prostoru pomalu proměnného stavu Linární rozvoj vličin a a+ a(,) rt b b+ b(,) rt a, b

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unvrzta Tomáš Bat v Zlíně LABORATORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Vntřní odpor zdroj a voltmtru Jméno: Ptr Luzar Skupna: IT II/ Datum měřní: 0.října 2007 Obor: Informační tchnolog Hodnocní: Přílohy:

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna

Více

Stanovení koncentrace složky v roztoku potenciometrickým měřením

Stanovení koncentrace složky v roztoku potenciometrickým měřením Laboratorní úloha B/1 Stanovní koncntrac složky v roztoku potnciomtrickým měřním Úkol: A. Stanovt potnciomtrickým měřním koncntraci H 2 SO 4 v dodaném vzorku roztoku. Zjistět potnciomtrickým měřním body

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

Klasický a kvantový chaos

Klasický a kvantový chaos Klasický a kvantový chaos Pavl Cjnar Ústav částicové a jadrné fyziky MFF UK Praha cjnar @ ipnp.troja.mff.cuni.cz 7.4. 20, fi/fy sminář MFF UK Fyzika. druhu ( kódování ) složité chování jdnoduché rovnic

Více

6 Elektronový spin. 6.1 Pojem spinu

6 Elektronový spin. 6.1 Pojem spinu 6 Elktronový spin Elktronový spin j vličina poněkud záhadná, vličina, ktrá nmá obdoby v klasickém svět. Do kvantové mchaniky s spin dostal jako xprimntální fakt: z řady xprimntů totiž vyplývalo, ž kromě

Více

Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry

Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole iločáry elektrického pole Intenzita elektrického pole buzená bodovým elektrickým

Více

Příklady z kvantové mechaniky k domácímu počítání

Příklady z kvantové mechaniky k domácímu počítání Příklady z kvantové mchaniky k domácímu počítání (http://www.physics.muni.cz/~tomtyc/kvant-priklady.pdf (nbo.ps). Počt kvant: Ionizační nrgi atomu vodíku v základním stavu j E = 3, 6 V. Najdět frkvnci,

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE 8 Bc. Pavl Hájk ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavbní, Katdra spciální godézi Názv diplomové prác: Vbudování, zaměřní a výpočt bodového

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat

Více

Zadání témat. Řešení témat. Zadání úloh. Úloha 3.3 Baterie na β-radioaktivitu (5b) Téma5 Fontány. Téma 1 Pravidelné mnohostěny

Zadání témat. Řešení témat. Zadání úloh. Úloha 3.3 Baterie na β-radioaktivitu (5b) Téma5 Fontány. Téma 1 Pravidelné mnohostěny 2 Studntský matmaticko-fyzikální časopis ročník VIII číslo 3 Trmín odslání: 14. 1. 2002 Zadání témat Téma5 Fontány Podívjt s na obrázk, na ktrém j namalovaná fontána a vysvětlt, jak funguj. Odhadnět, do

Více

Vyvážené nastavení PI regulátorù

Vyvážené nastavení PI regulátorù Vyvážné nastavní PI rgulátorù doc. Ptr Klán, Ústav informatiky AV ÈR Praha a Univrzita Pardubic, Prof. Raymond Gorz, Cntr for Systms Enginring and Applid Mchanics, Univrsity d Louvain PI nbo PID rgulátory

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Doc. RNDr. Libor Čermák, CSc. Algoritmy

Doc. RNDr. Libor Čermák, CSc. Algoritmy UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké uční tchnické v Brně Fakulta strojního inžnýrství Doc. RNDr. Libor Črmák, CSc. Algoritmy mtody končných prvků Přdmluva k rvidovanému lktronickému vydání Tato skripta jsou

Více

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity Dfúz Fckův zákon dfúz v plynu Přdpokládjm dální plyn s konstantní tplotou T a konstantním tlakm p v kldu, v ktrém j nízká nhomognní hmotnostní koncntrac příměs Pak v staconárním stavu musí být clková síla

Více

Vyhláška děkana č. 2D/2014 o organizaci akademického roku 2014/15 na FEL ZČU v Plzni

Vyhláška děkana č. 2D/2014 o organizaci akademického roku 2014/15 na FEL ZČU v Plzni Vyhláška děkana č. 2D/2014 o organizaci akadmického roku 2014/15 na FEL ZČU v Plzni 1/8 Plzň 12. 3. 2014 I. V souladu s harmonogramm akadmického roku na ZČU pro 2014/15 upřsňuji organizaci základních studijních

Více

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice 1 ěřní barvnosti studijní matriál Ing. Ondrj Panák, ondrj.panak@upc.cz Katdra polygrafi a fotofyziky, Fakulta chmicko-tchnologická, Univrzita Pardubic Úvod Abychom mohli či už subjktivně nbo objktivně

Více

Aplikace VAR ocenění tržních rizik

Aplikace VAR ocenění tržních rizik Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Komentovaný vzorový příklad výpočtu suterénní zděné stěny zatížené kombinací normálové síly a ohybového momentu

Komentovaný vzorový příklad výpočtu suterénní zděné stěny zatížené kombinací normálové síly a ohybového momentu Fakulta stavbní ČVUT v Praz Komntovaný vzorový příklad výpočtu sutrénní zděné stěny zatížné kombinací normálové síly a ohybového momntu Výuková pomůcka Ing. Ptr Bílý, 2012 Tnto dokumnt vznikl za finanční

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

{ } ( ) ( ) ( ) ( ) r 6.42 Urč ete mohutnost a energii impulsu

{ } ( ) ( ) ( ) ( ) r 6.42 Urč ete mohutnost a energii impulsu Systé my, procsy a signály I - sbírka příkladů Ř EŠENÉPŘ ÍKLADY r 64 Urč t mohutnost a nrgii impulsu s(k 8 k ( ( s k Ab k, A, b, 6 4 4 6 8 k Obr6 Analyzovaný diskrétní signál Mohutnost impulsu k A M s(

Více

Kvaterniony P ipome me, ºe kvaterniony jsou ty dimenzionální algebra K nad reálnými ísly generovaná prvky {1, l, j, k}, které spl ují

Kvaterniony P ipome me, ºe kvaterniony jsou ty dimenzionální algebra K nad reálnými ísly generovaná prvky {1, l, j, k}, které spl ují Kvatrniony P ipom m, º kvatrniony jsou ty dimnzionální algbra K nad rálnými ísly gnrovaná prvky {1, l, j, k}, ktré spl ují l 2 = j 2 = k 2 = ljk = 1. První z gnrátor bývá ozna ován i, al abychom s vyhnuli

Více

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

VYSOKÉ UČE Í TECH ICKÉ V BR Ě BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČE Í TECH ICKÉ V BR Ě BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČE Í EH IKÉ V BR Ě BRNO UNIVERSIY OF EHNOLOGY FAKULA ELEKROEH IKY A KOU IKAČ ÍH EH OLOGIÍ ÚSAV IKROELEKRO IKY ÚSAV ELEKROEH OLOGIE FAULY OF ELERIAL ENGINEERING AND OUNIAION DEPAREN OF IROELERONIS

Více

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaisr, Emil Košťál xkaisrj@fld.cvut.cz ČVUT, Fakulta lktrotchnická, katdra Radiolktroniky Tchnická 2, 166 27 Praha 6 1. Úvod Článk s

Více

1 Pracovní úkoly. 2 Vypracování. Datum m ení: Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace:

1 Pracovní úkoly. 2 Vypracování. Datum m ení: Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praz Úloha #12 M ní m rného náboj lktronu Datum m ní: 31.3.2014 Skupina: 7 Jméno: David Rosl Krouºk: ZS 7 Spolupracovala: Trza Schönfldová Klasikac: 1 Pracovní úkoly

Více