3.3. Derivace základních elementárních a elementárních funkcí
|
|
- Magdalena Martina Zemanová
- před 8 lety
- Počet zobrazení:
Transkript
1 Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců budm užívat násldující známé vztahy: + ln a 0 = R lim = a = pro R a a (0 ) \{} Dostanm: + h h h ( ) = lim = lim = lim = R h 0 h h 0 h h 0 h ln a ln a ( ) ( ) ( ln a = = = a lna R Logaritmické funkc Výklad Užitím vztahu pro drivaci invrzní funkc pro funkci ln tj = a funkci y y log a tj = a a (0 ) \{} dostanm: ( ln ) = = = pro (0 ) y y ( ) ( log a ) = = = pro (0 ) y y ( a ) a lna lna 60
2 Mocninné funkc Výklad Užijm vztahu r rln = (0 ) r R rln rln r Pak dostanm: ( r ) = ( ) = ( rln ) = r = r r- pro (0 ) r r Jstliž j r N rsp r N rsp r = kd n N pak vzorc ( ) = r platí n pro R rsp R\{0} rsp pro n liché pro R a pro n sudé pro < 0 ) Goniomtrické funkc Výklad Připomnm vztahy: sin + cos = R sin( + ) = sin cos + cos sin cos( + ) = cos cos sin sin sin cos R lim = sin = 0 h h sin sin cosh lim lim h = = lim sin lim = 0 h 0 h h 0 h h 0 h 0 h Nyní odvodím vzorc: R Njprv dokážm ž platí sin( + h) sin sin cos h+ cos sin h sin (sin ) = lim = lim = h 0 h h 0 h cos h sinh = sin lim + cos lim =cos R h 0 h h 0 h cos( + h) cos cos cos h sin sin h cos (cos ) = lim = lim = h 0 h h 0 h cos h sin h = cos lim sin lim = sin R h 0 h h 0 h sin cos cos sin ( sin ) cos + sin (tg ) = = = = cos cos cos cos 6
3 π pro R \ (k+ ) : k Z cos sin sin cos cos sin + cos (cotg ) = = = = sin sin sin sin { π } pro R \ ( k : k Z 5 Cyklomtrické funkc Výklad Užitím vztahu pro drivaci invrzní funkc pro funkc y= arcsin tj = sin y arccos tj = cos y y= arctg tj = tg ya y= arccotg tj = cotg y dostanm: (arcsin ) = = = = (sin y) cos y sin y - (arccos ) = = = = (cos y) sin y cos y - pro ( ) pro ( ) (arctg ) = = = = = pro R (tg y) sin y+ cos y tg y+ + cos y cos y (arccotg ) = = = = = (cotg y) cos y+ sin y cotg y+ + sin y sin y pro R Přhld vzorců () c = 0 c R ( u+ v) = u + v ( cu) = c u () uv uv uv u uv uv = + 5 = 6 ( f ( g ( ))) = f ( g ( )) g ( ) v v 7 ( ( )) f 8 ( ) = 9 ( a ) = a lna f ( ) 0 (ln ) = (log a ) r r = = r ln a (sin ) = cos (cos ) = sin 5 (tg ) = cos 6
4 6 9 (cotg ) = 7 sin (arctg ) = 0 + (arcsin ) = (arccotg ) = + 8 (arccos ) = Poznámka Intrvaly v nichž drivac istují jsou uvdny v přdchozím ttu 6 Elmntární funkc Výklad Užitím uvdných vzorců můžm drivovat lmntární funkc Nsmím zapomnout ž D D y y Řšné úlohy Příklad: Určt drivaci funkc ln( ) Řšní: Určím D = ( ) ( ) Označím y g = Podl vzorc 6 pro drivaci složné funkc dostanm y = g = = g Musím si uvědomit ž funkc funkc y = f( ) = j však D y = ( ) ( ) D y má sic D = R \{ } f Dfiniční obor 6
5 Poznámka Při drivování budm skutčnost ž Dy D y nadál přdpokládat Řšné úlohy Příklad: Drivujt funkci tg(ln ) Řšní: Označm u = v= ln u w= tg v z = w Užitím vzorc 6 dostanm w w tg(ln ) y = ( )(tg v)(ln u)( ) = = cos v u cos (ln ) Poznámka V dalším ttu již nbudm jdnotlivé složky složné funkc označovat Výklad Dfinic Výraz g( ) f ( ) kd f( ) > 0 pro D f dfinujm vztahm g( ) g() ln f() f( ) = Řšné úlohy Příklad: Drivujt funkci cos ( + ) Řšní: Položím cos ln( + ) a budm drivovat jako složnou funkci: cos ln( ) cos + ( sin ln( + ) + cos ) = ( + ) ( cos sin ln( + )) + + 6
6 Výklad Dfinic Nchť n N Dfinujm n-tou drivaci funkc f ( ) v bodě 0 Df D f indukcí kd (0) f ( ) = f( ) 0 0 ( n) ( n ) ( ) = 0 f ( ) = f 0 ( ) Řšné úlohy Příklad: Vypočtět třtí drivaci funkc y= arcsin Řšní: Dostanm y y ( ) ( ) ( ) ( ) = = = = 5 y = ( ) + ( ) ( ) = + 5 ( ) ( ) Poznámka Bz důkazu uvdm násldující vztahy pro n N : n ( n) ( n ) ( ) = n! ( ) = ( n) (sin ) = ( ) sin n ( n) ( n) (cos ) = ( ) cos (n+ ) n+ (sin ) = ( ) cos (n+ ) ( n) (cos ) = ( ) sin ( n) n+ n (ln ) = ( ) ( n )! 65
7 Kontrolní otázky Drivac funkc f ( ) v bodě ( 0 0) lim 0 f ( ) f ( 0 ) f = f = f ( ) ( 0) lim 0 f ( 0 ) 0 Drivac funkc f ( ) v bodě 0 0 j dfinována f ( ) = lim 0 0 gomtricky znamná f ( ) f( 0) 0 směrnici tčny k grafu funkc f ( ) v bodě 0 směrnici sčny k grafu funkc f ( ) v bodě 0 rovnici tčny k grafu funkc f ( ) v bodě 0 Rovnic tčny k grafu funkc f ( ) v bodě 0 j y y 0 = 0 f ( 0) ( ) y y 0 = f ( 0)( 0 ) y f ( )( 0 ) 0 0 Eistuj-li f ( 0) pak funkc f ( ) v bodě 0 j spojitá nmusí být spojitá nní spojitá 5 Nchť istuj drivac složné funkc f ( g ( )) v bodě 0 Pak platí: f ( g ( 0)) = f ( g ( 0)) g ( 0) [ ] f ( g ( 0)) = f ( g ( 0)) g ( 0) [ ] f ( g ( 0)) = f ( g ( 0)) [ ] 6 Nchť f ( ) < 0 pro všchna ( a b ) Pak j funkc f ( ) v ( ab ) rostoucí nklsající klsající 7 Pro drivaci funkc ln platí vzorc 66
8 y = log a = y y = aln 8 Pro drivaci funkc arccos platí vzorc y = y = y = + 9 Pro drivaci funkc y= a rctg platí vzorc y = + y = + y = 0 Funkci f()g() můžm přpsat g ( ) f ( )ln g ( ) f( ) = g ( ) g ( )ln f ( ) f( ) = g ( ) g ( )log f ( ) f( ) = Odpovědi na kontrolní otázky
9 Úlohy k samostatnému řšní J dána funkc y= f( ) Vypočtět f (0) a f ( ) j-li: 8 y = 5 ) 5 f) J dána funkc y= f( ) Vypočtět f ( j-li: a a f ( ) = a + a + a f( ) = t 5t J dána funkc f() t = Vypočtět: t f ( ) f ( ) f () f () ) f (0) f) f ( ) a Vypočtět drivac funkcí: ) ( + ) 5 f) Vypočtět drivac součinu funkcí: ( + ) arctg sin y= cotg ( + ) ) ( ) f) sin t t ( t )cost h) 6 Vypočtět drivac podílu funkcí: + + ) tg h) = i) sin arctg y ln + sin cos f) ln + ln i) t + t sin + cos cos 68
10 7 Vypočtět drivac složných funkcí: ( 5 ) 5 ( ) sin ) cos f) sin sin + cos h) ln( ) i) y= ln sin j) + k) 8 Vypočtět drivac funkcí: ( + ) (+ ) ) 6 t t h) arcsin + + l) sin( ) f) a + b+ c + ( )( + ) i) 5 ( + ) Vypočtět drivac funkcí: sin cos + (+ sin ) ) + tg f) tg cotg + cotg h) cos + i) tg cos sin + 0 Vypočtět drivac funkcí: 5+ ln y= ln sin log + 7 ln( + + ) ) ln Vypočtět drivac funkcí: ( + ) ) y ln ln f) ln cos + h) y ln arccos = h) Vypočtět drivac funkcí: arcsin + = i) y arctg[ ln( a )] = +b cos cos + f) cos ( ) i) cos cos + arctg arccos 5 69
11 arccotg ) arcsin f) + arctg( + ) h) arcsin i) Vypočtět drivac funkcí: arctg + ln + + arctg arccos( ) ln + ) arcsin f) ln tg sin ln h) (tg ) Vypočtět drivac funkcí (užijt dfinic ): y sin = ) ln h) cos arctg + sin a f) arctg ( + ) i) (ln ) 5 Vypočtět drivac vyššího řádu: + y ( ) =? y ( ) =? 5 f( ) = ( ) f () =? f( ) = f (0) =? (5) ) f( ) = f ( ) =? f) f( ) = arctg f () =? () ln y ( ) =? h) cos y ( ) =? 6 Vypočtět druhé drivac funkcí: a ) arcsin h) 7 Vypočtět drivac vyššího řádu: y =? 6( + ) (5) a? ) y= arctg y =? f) y = ( + ) arctg + ln( + + ) f) i) + ln y =? (5) ln? (6)? 8 Dokažt ž funkc sin vyhovuj rovnici y + y + y=0 70
12 9 Dokažt ž funkc + vyhovuj rovnici y y y= 0 0 Dokažt ž funkc y= + sin vyhovuj rovnici y + y= Ktré z násldujících funkcí vyhovují rovnici y y + y= 0 : ) h) y Jaký úhl s osou svírá tčna k parabol Napišt rovnici této tčny = + f) cos ( + ) i) y 5 ( a+ b ) = + vdná jjím bodm [ ] T =? Na křivc ( ) nalznět body v nichž jsou jjí tčny rovnoběžné s osou V ktrých bodch křivky + jsou tčny k této křivc rovnoběžné s přímkou y=? 5 Napišt rovnici tčny k křivc arctg v jjím bodě [ ] 6 Pod jakým úhlm protíná křivka y= log osu? 7 Napišt rovnic tčn k křivc 8 Napišt rovnici tčny k křivc 9 Napišt rovnici tčny a normály k parabol 0 Napišt rovnici normály k křivc? v průsčících křivky s osou + 5 kolmou k přímc 6y+ y + = ay v jjím bodě [ y ] 6 = v jjím bodě [ ]? Napišt rovnici tčny a normály k křivc + v průsčíku této křivky s osou kvadrantu Pod jakými úhly s protínají křivky a y= 5 a y= sin a cos (0 < < π ) + 8 a 0 0 7
13 Výsldky úloh k samostatnému řšní 0-8 nistuj nistuj - 0 nistuj ) nistuj 5 f) nistuj 6a a a ) nistuj f) a 0a + a ( ) ) 6 + f) (sin + cos ) h) (cotg ) arctg ) f) t sin t sin ln i) sin sin arctg + cos arctg ( ) ( + ) t 6t 6 ) ( t ) ( + ) f) cos sin + cos (cos sin ) + sin sin cos h) cos i) (+ ln ) sin + cos 7 0( 5 ) 0 6 ( ) sin ) cos sin f) cos sin h) i) cotg j) + arcsin + k) l) cos( ) (+ ) 8 + ( ) ( + ) ( ) ( + ) + + ) (+ + ) f) a + b a + b + c t t t (6 ) h) 5 5 ( + ) i) 6 (7 0) 6 ( 8) 9 cos cos sin cos + + ( + sin ) sin ) cos + tg f) + h) cos sin sin + ( + ) i) sin cos 0 (5 + )(+ 7 ) 7
14 cotg (log + ) ln + ) ln f) tg h) ( ) arccos i) a ( a + + ln ( a + ln (sin + cos ) cos sin ln cos ( + ) ) ( + ) cos sin f) ln cos arcsin + ln ln h) cos cos i) sin ln 5arccos ) + 8 f) arctg ( + ) h) ( + ) i) ( ) 8 ( ) 5 + ( + )( + ) arctg ) f) cos sin ( ln + ln + ) h) tg (ln + ) + (ln + ) (ln + ) sin sin (cos ln + ) ) a a (ln + ln + ) f) ln ln ln arctg h) ( + ) (ln( + ) + arct i) (ln ) (ln ln(ln ) + ) 5 0 ) 0 6 ( ) f) 6 h) s 6 in ( + ) 6 ( ) ( + ) arctg + + a ( a ) ) ( + ) f) ( ) arcsin + ( ) h) ( + ) i) ( ln + ln+ + ) 7 ( + ) ln 6 5 a ln a ) 6 f) ( + 6) ano n ano ( + ) π ano ) n f) n n h) ano i) ano y 7 α = = + [ 00 ] [ ] [ ] 0
15 [ 0 ] [ ] y+ 6= 0 9 π y 0 0 ( 0) a = a 0 a y ( 0 ) a = 0 y 7+ 79= 0 y+ = 0 y = π Kontrolní tst Funkc 5 f ( ) = Vypočtět f () Funkc f( ) = 7 Vypočtět drivaci funkc 0 Vypočtět f () Vypočtět drivaci součinu funkcí 6 cos 5 Vypočtět drivaci součinu funkcí arcsin + cos tg ln t g 6ln tg+ 6ln cos ( + )sin arcsin + ( + ) cos arcsin + + cos ( + )sin sin 6 Vypočtět drivaci podílu funkcí sin cos cos cos (sin cos ) sin + cos (sin cos ) ln 7 Vypočtět drivaci podílu funkcí + ln (ln + ) ln + ln + ( + ln ) ln + ( + ln ) 7
16 8 Vypočtět drivaci složné funkc sin + ln(sin ) cos cos + ln(cos ) cos + sin cos + cotg sin 9 Vypočtět drivaci složné funkc cos + cos cos cos sinln sin + ln cos 0 Vypočtět drivaci funkc arctg + + sin sin sin + cos + + ( + ) ( + ) + Vypočtět drivaci funkc cos ( sin ) sin (cos ) sin sin (cos ) (cos ln(cos ) ) cos ) Vypočtět drivaci funkc ( ) ( ) (ln( ) ) ( ) ln( ) Vypočtět druhou drivaci funkc 0 0 ln Zjistět v ktrém bodě má funkc 0 5 Napišt rovnici tčny k funkci = ln + y + = 0 = 0 v bodě = y v bodě = y + y+ = 0 6 Napišt rovnici tčny k funkci + tg v bodě = 0 y + = 0 = sin (cos ) ln(cos ) ( ) tčnu rovnoběžnou s osou Výsldky tstu Průvodc studim Pokud jst správně odpověděli njméně v případch pokračujt další kapitolou V opačném případě j třba prostudovat kapitolu až znovu 75
4. PRŮBĚH FUNKCE. = f(x) načrtnout.
Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.
ε, budeme nazývat okolím bodu (čísla) x
Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních
f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1
DOMÁCÍ ÚLOHY z MATEMATIKY VT) Opakování SŠ matmatiky Pomocí intrvalů zapišt nrovnosti: a), b) + >, c), d) > a),, b), 5), + ), c),, d), + ) Zjdnodušt výraz: a) 5 a a a ), b) a 5 6 b b 5 ) a b a a) a, a
1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.
Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností
Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že
.5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování
INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)
INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy
Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna
2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
1. Limita funkce - výpočty, užití
Difrnciální a intgrální počt. Limita funkc - výpočt, užití Vpočtět násldující it: +.8..cos +. + 5+. 5..5.. 8 sin sin.7 ( cos.9 + sin cos. + 5cos. + log( +... + + + 5 +.5..7.8.9.. 5+ + 9 + + + + 8 sin sin5
h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R
.4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..
Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
Matematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
dx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem
1. Písemka skupina A1..
1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
Derivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,
Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou
MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity
MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit
Management rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
Katedra aplikované matematiky, VŠB TU Ostrava.
SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné
Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017
Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................
Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
Základní elementární funkce
Základní elementární funkce Základní elementární funkce Za základní elementární funkce považujeme funkce: a) eponenciální a logaritmické; b) obecné mocninné; c) goniometrické a cklometrické; d) hperbolické
L HOSPITALOVO PRAVIDLO
Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.
Funkce. Vlastnosti funkcí
FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina
Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení
Cvičení 1 Elementární funkce
Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte
arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme
DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě
Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru
Cvičení 1 Elementární funkce
Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte
FUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
Cyklometrické funkce
4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli
Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
FUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x
Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
x 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.
Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt
F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
FUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}.
E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (206 II. Diferenciální počet funkcí více proměnných II.. Definiční obor funkce z = f(, Určete definiční obor funkcí a zakreslete jej
P ˇ REDNÁŠKA 3 FUNKCE
PŘEDNÁŠKA 3 FUNKCE 3.1 Pojem zobrazení a funkce 2 3 Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic (x, y) A B,
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
Proseminář z matematiky pro fyziky
Proseminář z matematiky pro fyziky Mgr. Jan Říha, Ph.D. e-mail: riha@prfnw.upol.cz http://www.ictphysics.upol.cz/proseminar/inde.html Katedra eperimentální fyziky Přírodovědecká fakulta UP Olomouc Podmínky
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Elementární funkce. Polynomy
Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.
8 Limita. Derivace. 8.1 Okolí bodu. 8.2 Limita funkce
8 Limita Derivace 81 Okolí bodu Okolím bodu a nazveme otevřený interval (a r, a + r), kde a, r jsou reálná čísla Číslo r je poloměr okolí, a jeho střed Okolí bodu a lze zapsat a
Funkce. b) D =N a H je množina všech kladných celých čísel,
Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (
DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně LDF)
4.2. CYKLOMETRICKÉ FUNKCE
4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější
7.1 Úvod. Definice: [MA1-18:P7.1a]
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
5.2. Určitý integrál Definice a vlastnosti
Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)
Integrální počet - I. část (neurčitý integrál a základní integrační metody)
Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah
Příklady k přednášce 3
Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,
11. KŘIVKOVÝ INTEGRÁL Křivkový integrál I. druhu Úlohy k samostatnému řešení
Sbíra úloh z matematia 11 Křivový integrál 11 KŘIVKOVÝ INTEGRÁL 115 111 Křivový integrál I druhu 115 Úloh samostatnému řešení 115 11 Křivový integrál II druhu 116 Úloh samostatnému řešení 116 11 Greenova
1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
MATEMATIKA 1B ÚSTAV MATEMATIKY
MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její
y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
Matematika 1. Matematika 1
5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)
5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.
5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí
Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
7. Funkce jedné reálné proměnné, základní pojmy
, základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
Matematická analýza I
Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,
Příklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I.
Příklady ke cvičením z matematické analýzy- ZS 008/009- Série I. Jako slunce zastiňuje hvězdy svým jasem, tak i vzdělaný člověk může zastínit slávu druhých lidí ze společnosti, bude-li předkládat matematické
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
Z MATEMATIKY. Tomáš Mikulenka. březen 2012
VYBRANÉ PARTIE Z MATEMATIKY Tomáš Mikulenka březen 0 Tento výukový materiál vznikl jako součást grantového projektu Gymnázia Kroměříž s názvem Beznákladové ICT pro učitele realizovaného v letech 009 0.
Implicitní funkce. 2 + arcsin(x + y2 ) = arccos(y + x 2 ), [0, 0] , 5] stacionární bod?
Implicitní funkce V následujících úlohách ukažte, že uvedená rovnice určuje v jistém okolí daného bodu [ 0, y 0 ] implicitně zadanou funkci proměnné. Spočtěte první a druhou derivaci této funkce v bodě
( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2
I Drivac jdnoduchých funkcí pomocí pravidl a vzorců Užitím P U druhého a třtího člnu použijm P Nní podl V a posldní čln podl V Použijm P Dál V a na drivaci trojčlnu v poldní závorc V a V Výsldk upravím