Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/

Rozměr: px
Začít zobrazení ze stránky:

Download "Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/"

Transkript

1 Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/

2 ČÁSTICOVÁ STRUKTURA LÁTEK Aleš Lacina Přírodovědecká fakulta MU v Brně

3 Kdyby při nějaké katastrofě došlo ke zničení všech vědeckých poznatků a pro následující generace mohla zůstat zachována jen jediná věta, jaké tvrzení sestavené z nejmenšího počtu slov by obsahovalo nejbohatší informaci? Jsem přesvědčen, že je to tvrzení, že všechny věci jsou složeny z atomů malých neustále se pohybujících částic, které se přitahují, pokud od sebe nejsou příliš vzdáleny, a odpuzují se, jsou-li těsně u sebe. Tato jediná věta obsahuje nesmírné množství informací o světě a získat je z ní vyžaduje jen trochu představivosti a uvažování. Richard Phillips Feynman ( ) [Feynmanovy přednášky z fyziky, 1.díl]

4 Kdyby při nějaké katastrofě došlo ke zničení všech vědeckých poznatků a pro následující generace mohla zůstat zachována jen jediná věta, jaké tvrzení sestavené z nejmenšího počtu slov by obsahovalo nejbohatší informaci? Jsem přesvědčen, že je to tvrzení, že všechny věci jsou složeny z atomů malých neustále se pohybujících částic, které se přitahují, pokud od sebe nejsou příliš vzdáleny, a odpuzují se, jsou-li těsně u sebe. Tato jediná věta obsahuje nesmírné množství informací o světě a získat je z ní vyžaduje jen trochu představivosti a uvažování. Richard Phillips Feynman ( ) [Feynmanovy přednášky z fyziky, 1.díl]

5 ODKUD TO VÍME? Již staří Řekové... Moderní experimentální techniky...

6 CHEMICKÝ ATOMISMUS John Dalton Amedeo Avogadro Makroskopické množství látky (1mol) m = N A m klíč k mikrosvětu Za několik let bude možné atom najít jen v prachu knihoven. Wilhelm Ostwald

7 MOLEKULÁRNĚ KINETICKÁ TEORIE LÁTEK Rudolf Clausius James C. Maxwell Ludwig Boltzmann Nemá smysl uvažovat o světě jako o mozaice složené z kamenů, o jejichž existenci se nemůžeme přesvědčit. Ernst Mach

8 NA PŘELOMU 19. A 20. STOLETÍ ATOMISTICKÁ KONCEPCE III (POUHÁ) HYPOTÉZA

9 BROWNŮV POHYB 1828 Stručná zpráva o mikroskopickém pozorování prováděném v měsících červnu, červenci a srpnu 1827 na částicích pylu a o všeobecné existenci aktivních molekul v organických i anorganických tělesech Robert Brown ( )

10 JAKO MOŽNÁ PŘÍČINA BYLY POSTUPNĚ VYLOUČENY: ŽIVÁ SÍLA KAPILÁRNÍ JEVY TEPLOTNÍ NEHOMOGENITY TOKY V KAPALINĚ ELEKTROSTATICKÉ SÍLY MECHANICKÁ NESTABILITA (OTŘESY) OSVĚTLENÍ VYPAŘOVÁNÍ

11 EXPERIMENTÁLNĚ BYLO PROKÁZÁNO: [WEINER, CANTONI, EXNER, DANCER, DELSAUX, CARBONELLE,...; GOUY] POHYB JE VELMI NEPRAVIDELNÝ (TRANSLACE I ROTACE) TRAJEKTORIE ČÁSTIC SE JEVÍ JAKO KŘIVKY NEMAJÍCÍ TEČNU JEDNOTLIVÉ ČÁSTICE SE POHYBUJÍ ZCELA NEZÁVISLE CHARAKTER POHYBU NEZÁVISÍ NA SLOŽENÍ A HUSTOTĚ ČÁSTIC AKTIVITA POHYBU SE ZVĚTŠUJE S KLESAJÍCÍ VELIKOSTÍ ČÁSTIC S ROSTOUCÍ TEPLOTOU S KLESAJÍCÍ VISKOZITOU KAPALINY POHYB NIKDY NEUSTÁVÁ!!

12 FYZIKÁLNÍ VÝKLAD: POHYB BROWNOWSKÝCH ČÁSTIC JE DŮSLEDKEM JEJICH BOMBARDOVÁNÍ MOLEKULAMI KAPALINY. [DELSAUX & CARBONELLE 1877] PŘI BROWNOVĚ POHYBU DOCHÁZÍ K PŘEMĚNĚ JISTÉ ČÁSTI TEPELNÉ ENERGIE MOLEKUL KAPALINY NA MECHANICKOU ENERGII BROWNOVSKÉ ČÁSTICE. [GOUY 1888] ( STATISTICKÁ INTERPRETACE ZÁKONA RŮSTU ENTROPIE ~ FLUKTUACE) (STŘEDNÍ) KINETICKÁ ENERGIE BROWNOVSKÉ ČÁSTICE MUSÍ BÝT ROVNA (STŘEDNÍ) KINETICKÉ ENERGII MOLEKULY TEKUTINY. [EXNER 1900] (EKVIPARTIČNÍ TEORÉM)

13

14 Albert Einstein ( ) 1905 O pohybu malých částic suspendovaných ve stacionární kapalině, který vyplývá z molekulárně kinetické teorie tepla

15 V tomto článku bude ukázáno, že podle molekulárně-kinetické teorie tepla musí mikroskopická tělíska, suspendovaná v tekutinách, v důsledku tepelného pohybu jejich molekul konat pohyby takových rozměrů, jež lze snadno pozorovat mikroskopem. Je možné, že tyto pohyby, které se zde chystám diskutovat, jsou totožné s tzv. Brownovým pohybem. Nicméně informace, které o Brownově pohybu mám, jsou tak nespolehlivé, že se nemohu k této otázce jakkoliv vyjádřit. Bude-li takový pohyb skutečně pozorován (včetně jeho zákonitostí, které jsem, věřím, nalezl), nebude nadále možné považovat klasickou termodynamiku za přesně použitelnou na tělesa rozměrů rozlišitelných v mikroskopu; a můj rozbor umožní přesně určit skutečné rozměry atomů. Pokud se naopak existence tohoto pohybu nepotvrdí, bude to pádný argument proti molekulárně-kinetické představě o teple.

16 ALBERT EINSTEIN (1902-4), 1905, (1906-8) UVAŽUJE O POHYBU SUSPENDOVANÝCH ČÁSTIC PŘEDPOKLADY: KINETICKÝ PŘÍSTUP ČÁSTICE SUSPENDOVANÉ V KAPALINĚ NEBO PLYNU (=BROWNOVY ČÁSTICE) SE ÚČASTNÍ TEPELNÉHO POHYBU MEDIA/PROSTŘEDÍ STŘEDNÍ KINETICKÁ ENERGIE KAŽDÉ ČÁSTICE KONAJÍCÍ TEPELNÝ POHYB JE TÁŽ (EKVIPARTIČNÍ TEORÉM) 3 E = kt 2

17 STŘEDNÍ KINETICKÁ ENERGIE MOLEKULY KAPALINY 1 m v 2 k 2 = 3 2 = kt STŘEDNÍ KINETICKÁ ENERGIE SUSPENDOVANÉ ČÁSTICE = MV k STŘEDNÍ KVADRATICKÁ RYCHLOST (SUSPENDOVANÉ ČÁSTICE) V k = 3 k T M ABY BYL POHYB SUSPENDOVANÝCH ČÁSTIC (VIZUÁLNĚ) POZOROVATELNÝ, MUSÍ MÍT V k ROZUMNOU HODNOTU. PŘI VOLBĚ: T 300 K R k = = N A = J K -1 (dnešní hodnota!) V» k M -10 [ kg] m s -1

18 SUSPENDOVANÉ ČÁSTICE MAKROSKOPICKÉ M 10 3 kg PYLOVÁ ZRNKA M kg VELIKOSTI MOLEKUL M kg V k m s -1 V k m s -1 V k m s -1

19 INFORMACE O (HYPOTETICKÝCH) MOLEKULÁCH TEKUTINY m = m N A POHYB V NÍ SUSPENDOVANÝCH ČÁSTIC 3 k T V k = = M 3 R T M 1 N A N A velké m malé ( N A m 0 ~ spojitá struktura látky ) MÁLO AKTIVNÍ (ŽÁDNÝ) CHAOTICKÝ POHYB SUSPENDOVANÝCH ČÁSTIC N A malé m velké AKTIVNÍ CHAOTICKÝ POHYB SUSPENDOVANÝCH ČÁSTIC v POKUD SE TENTO POHYB POZORUJE, TEKUTINA MÁ ČÁSTICOVOU (MOLEKULOVOU) STRUKTURU v NA VELIKOST JEJÍCH MOLEKUL LZE USUZOVAT Z AKTIVITY TOHOTO POHYBU

20

21

22 STŘEDNÍ HODNOTA KVADRÁTU PRŮMĚTU POSUNUTÍ DO VYBRANÉHO SMĚRU RT t ( D x) = ; kde Dt je časový interval odečítání poloh N 3pha 2 D A suspendované částice, h je dynamická viskozita tekutiny, a je poloměr suspendované částice POČET MOLEKUL V JEDNOM MOLU N A = RT ( Dx) 2 Dt 3pha HMOTNOST MOLEKULY m = m N A

23 NAVAZUJÍCÍ EXPERIMENTY Victor Henri NESOUHLAS Theodor Svedberg SPORNÉ VÝSLEDKY

24

25 Jean Baptiste Perrin ( ) 1909 Brownův pohyb a molekulární realita

26 ... Skutečně překvapivé a nové je na Brownově pohybu to, že nikdy neustává. Na první pohled se zdá, že jeho existence odporuje naší každodenní zkušenosti s třením. Nalejeme-li například kbelík vody do vany, považujeme za přirozené, že zanedlouho pohyb kapaliny ustane. Rozeberme si však, jakým způsobem se ustaví tento zdánlivý klid. Zpočátku mají všechny části vody přibližně stejně velké a stejně orientované rychlosti. Tento řád se naruší v okamžiku, kdy některé z nich narazí na dno vany a odrazí se od něj do různých směrů s různými rychlostmi, aby se srazily s další kapalinou, která je odrazí zas do jiných směrů. Tak se brzo po dopadu všechny části vody ještě pohybují, ale teď už musíme sledovat dosti malý objem kapaliny, chceme-li, aby rychlost ve všech jeho bodech měla stejný směr a velikost. O tom se snadno přesvědčíme, vhodíme-li do kapaliny několik drobných tělísek: uvidíme, že se vzájemně pohybují stále neuspořádaněji a neuspořádaněji. To, co nyní vidíme, pokud můžeme vůbec ještě něco rozlišit, není vymizení pohybu, ale jeho čím dál chaotičtější rozdělení do menších a menších částí kapaliny.

27 Pokračuje tato chaotizace donekonečna? Abychom mohli odpovědět na tuto otázku, nebo abychom alespoň mohli studovat proces chaotizace co nejdéle, musíme namísto pouhého oka použít k pozorování mikroskop a jako detekčních zrníček užít mikroskopických částic. Tím dospějeme k podmínkám, za nichž se pozoruje Brownův pohyb, při čemž zjišťujeme, že chaotizace pohybu, tak zřejmá v běžných měřítcích našeho pozorování, nepokračuje bez omezení a že na mikroskopické úrovni se ustaví rovnováha mezi korelací a chaotizací.... Zřejmě se nelze vyhnout následujícímu závěru: Poněvadž chaotizace pohybu v kapalině nepokračuje donekonečna, ale od určité úrovně již neroste, musí se kapalina skládat ze zrníček či molekul, které se mohou vůči sobě navzájem pohybovat, do jejichž vnitřku však již pohyb být přenesen nemůže. Pokud by takové molekuly neexistovaly, pak by chaotizace pohybu musela pokračovat bez omezení....

28 JEAN PERRIN , (1909) UVAŽUJE O ROZLOŽENÍ SUSPENDOVANÝCH ČÁSTIC SEDIMENTAČNÍ PŘÍSTUP PŘEDPOKLADY: PROSTOROVÉ ROZLOŽENÍ BROWNOVSKÝCH ČÁSTIC V TEKUTINĚ JE VÝSLEDKEM SOUPEŘENÍ DVOU VLIVŮ USPOŘÁDÁVAJÍCÍ SÍLA (TÍHA VZTLAK) x TEPELNÝ POHYB BROWNOVSKÉ ČÁSTICE - SE ÚČASTNÍ TEPELNÉHO POHYBU, - NAVZÁJEM NA SEBE NEPŮSOBÍ CHOVAJÍ SE JAKO MOLEKULY IDEÁLNÍHO PLYNU

29 KONCENTRACE BROWNOVSKÝCH ČÁSTIC V MÍSTĚ n r U r - kt ( r) µ e ( r ) r r U r r r ( ) = F( r ) dr - ò r = Fz n r ( r) = r U kt ( r ) konst. e = konst. e FN - RT - A z = n ( z) Pro F t > F v : F z = F POMĚR KONCENTRACÍ BROWNOVSKÝCH ČÁSTIC VE VÝŠKÁCH z, z 0 (ROZVRSTVENÍ BROWNOVSKÝCH ČÁSTIC V TEKUTINĚ) ( z) ( z ) A n - - n 0 = e FN RT ( z z ) 0

30 INFORMACE O (HYPOTETICKÝCH) MOLEKULÁCH TEKUTINY m = m N A ROZVRSTVENÍ BROWNOVSKÝCH ČÁSTIC ( z) ( z ) A n - - n 0 = e FN RT ( z z ) 0 N A velké m malé VELMI RYCHLÝ POKLES KONCENTRACE BROWNOVSKÝCH ČÁSTIC S VÝŠKOU z ( N A m 0 ~ spojitá struktura látky VŠECHNY ČÁSTICE KLESNOU NA DNO ) N A malé m velké POMALÝ POKLES KONCENTRACE BROWNOVSKÝCH ČÁSTIC S VÝŠKOU z ( ROVNOMĚRNÉ ROZLOŽENÍ ) v POKUD SE ROZVRSTVENÍ BROWNOVSKÝCH ČÁSTIC POZORUJE, TEKUTINA MÁ ČÁSTICOVOU (MOLEKULOVOU) STRUKTURU v NA VELIKOST JEJÍCH MOLEKUL LZE USUZOVAT Z NEROVNOMĚRNOSTI TOHOTO ROZVRSTVENÍ

31

32 N A = RT F n( z0) ln n( z) ( z - z ) 0 VELIKOST VÝSLEDNICE SIL PŮSOBÍCÍCH NA BROWNOVSKOU ČÁSTICI F = Ftíhová - Fvztlaková = nrbg -nr g = n ( rb - r )g N A = n n( z ) 0 RT ln n( z) ( r - r ) g( z - z ) B 0

33 NAVAZUJÍCÍ EXPERIMENTY B, r ;, ( z), n( z ) 0 Dz = z 0 n, r n - z SUSPENZE příprava r n, r B

34 SUSPENZE příprava výběr vhodné látky gumiguta (později i jiné pryskyřice) homogenita třídění částic podle velikosti opakovaným odstřeďováním r standardně r B po vypaření vody standardně 4 n = p a 3 pomocí stejného objemu vody 3 z padání v dlouhé kapiláře (Stokesův zákon) po usazení zrníček na stěnách nádoby mikroskopem ( homogenní suspenze o různé velikosti částic: a min 0.15 mm, a max 0.5 mm )

35 ( z ), n ( z 0 ), Dz = z z 0 n - MIKROSKOPEM velké zvětšení malá hloubka ostrosti 1mm Dz na mikrometrickém šroubu mikroskopu n (z), n (z 0 ) dostatečně velká a fotografováním (opakovaným) malá a vizuálním pozorováním (opakovaným) při zmenšeném zorném poli osvětlení na krátký časový interval ( 15s)

36 N A = ( 7.1 ± 1.5 ) mol -1 (Perrin 1908) OPĚTOVNÉ EXPERIMENTÁLNÍ VYŠETŘENÍ KINETIKY SUSPENDOVANÝCH ČÁSTIC N A = mol -1 (Perrin, Chaudesaigues 1908) DNEŠNÍ HODNOTA N A = ( ± ) mol -1

37

38 Jsem přesvědčen, že rozum oproštěný od předsudků nemůže popírat jevy, které přes svoji značnou odlišnost vedou k témuž výsledku... Mám za to, že teď bude jen velmi těžko možné zdůvodňovat nepřátelský postoj k molekulární hypotéze nicotnými argumenty, neboť se tato hypotéza dokázala vypořádat se všemi námitkami, které proti ní byly vzneseny. Jean Perrin, 1909

39 Přesvědčil jsem se, že od nedávna máme experimentální důkaz diskrétní či zrnité struktury látky, který atomová hypotéza marně hledala stovky let... Souhlas Brownova pohybu s požadavky kinetické hypotézy... opravňuje i toho nejobezřetnějšího vědce mluvit o experimentálním důkazu atomové teorie hmoty. Atomová hypotéza jím byla povýšena na vědecky dobře podloženou teorii. Wilhelm Ostwald, 1909

40 Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/

41 PŘÍLOHA (K DISKUSI)

42 DOPLŇUJÍCÍ ČTENÍ: Brown R.: A Brief Account of Microscopical Observations Made in the Months of June, July and August 1827 on the Particles Contained in Pollen of Plants; and on the General Existence of Active Molecules in Organic and Anorganic Bodies. Edinburgh New Philosophical Journal 5 (1828) 358. Einstein A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17, (1905) 549. Fürth R. (Ed.): Investigations on the Theory of the Brownian Movement by Albert Einstein, PhD. Dover Publications, New York Perrin J.: Mouvement Brownien et réalité moleculaire. Annales de chimie et physique XVIII (1909) 5. Perrin J.: Atoms. Ox Bow Press, Woodbridge, Connecticut (přetisk 1990) Lavenda B. H.: Brownian Motion. Scientific American (February 1985) 56. Fowler M.: Brownian motion Trigg G.: Crucial Experiments in Modern Physics. Van Nostrand, New York Planken K. L.: Brownian Motion and Molecular Size. otion%20and%20molecular%20size.pdf

43 Chvosta P.: Průvodce publikací Alberta Einsteina o Brownově pohybu z roku Československý časopis pro fyziku 55, č. 6 (2005) 625. Rojko M. Uhrová L.: Brownův pohyb. Mediasys, s. r. o., Praha Czudková L.: Perrinova analýza Brownova pohybu jako první důkaz částicové struktury látek. Školská fyzika V, č. 1 (1998) 9. Brož J., Roskovec V.: Základní fyzikální konstanty. SPN, Praha Lacina A.: Atom od hypotézy k jistotě. Československý časopis pro fyziku 48, č. 5 (1998) Zajac R., Šebesta J.: Historické pramene súčasnej fyziky 1. Alfa, Bratislava Zemánek L.: Vývoj představ o struktuře látek a jeho učebnicové zpracování. Diplomová práce. Přírodovědecká fakulta Masarykovy univerzity, Brno Gregorová D.: Změřeno navzdory Einsteinovým předpokladům.

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

Brownův pohyb jako důkaz částicové struktury látek

Brownův pohyb jako důkaz částicové struktury látek Brownův pohyb jako důkaz částicové struktury látek leš Lacina Ústav fyzikální elektroniky, Přírodovědecká fakulta Masarykovy univerzity, Kotlářská 2, 611 37 Brno Dnešní výklad Brownova pohybu vychází z

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

3.3 Částicová stavba látky

3.3 Částicová stavba látky 3.3 Částicová stavba látky Malé (nejmenší) částice látky očekávali nejprve filozofové (atomisté) a nazvali je atomy (z řeckého atomos = nedělitelný) starověké Řecko a Řím. Mnohem později chemici zjistili,

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky

Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVI Název: Studium Brownova pohybu Pracoval: Pavel Brožek stud. skup. 1 dne 4.4.008

Více

Fyzikální chemie Úvod do studia, základní pojmy

Fyzikální chemie Úvod do studia, základní pojmy Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty

Více

KINETICKÁ TEORIE LÁTEK

KINETICKÁ TEORIE LÁTEK ZÁKLADNÍ POZNATKY V mechanice je pohled na tělesa makroskopický makros = veliký, na zákon zachování energie pohlížíme tak, že nás nezajímá částicová struktura, v molekulové fyzice se zajímáme o tom, co

Více

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Atom od hypotézy k jistot (ke 170. výro í objevu Brownova pohybu) Již sta ekové... spekulativn

Atom od hypotézy k jistot (ke 170. výro í objevu Brownova pohybu) Již sta ekové... spekulativn Atom od hypotézy k jistotě (ke 170. výročí objevu Brownova pohybu) Aleš Lacina, Přírodovědecká fakulta MU v Brně I když každý řadový občan "ví", že látky mají nespojitou strukturu, jen málokdo je schopen

Více

Molekulová fyzika a termodynamika

Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

LOGO. Struktura a vlastnosti plynů Ideální plyn

LOGO. Struktura a vlastnosti plynů Ideální plyn Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

ÚVOD DO TERMODYNAMIKY

ÚVOD DO TERMODYNAMIKY ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

První představy o struktuře hmoty, objev atomu

První představy o struktuře hmoty, objev atomu První představy o struktuře hmoty, objev atomu Karel Smolek Ústav technické a experimentální fyziky, ČVUT Nejstarší spekulativní představy o stavbě hmoty Thales z Milétu (642-548 př. n. l., Řecko) - Všechna

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

KINETICKÁ TEORIE STAVBY LÁTEK

KINETICKÁ TEORIE STAVBY LÁTEK KINETICKÁ TEORIE STAVBY LÁTEK Látky kteréhokoliv skupenství se skládají z částic. Prostor, který těleso zaujímá, není částicemi beze zbytku vyplněn (diskrétní struktura látek). Rozměry částic jsou řádově

Více

Mechanika tekutin. Hydrostatika Hydrodynamika

Mechanika tekutin. Hydrostatika Hydrodynamika Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Atomová fyzika - literatura

Atomová fyzika - literatura Atomová fyzika - literatura Literatura: D.Halliday, R. Resnick, J. Walker: Fyzika (Část 5: Moderní fyzika), I. Úlehla, M. Suk, Z. Trnka: Atomy, jádra, částice, Akademia, Praha, 1990. A. Beiser: Úvod do

Více

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme. Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

FYZIKÁLNÍ PRAKTIKUM. Polarizace světla. Fyzikální sekce přirodovědecké fakulty Masarykovy univerzity v Brně. T = p =

FYZIKÁLNÍ PRAKTIKUM. Polarizace světla. Fyzikální sekce přirodovědecké fakulty Masarykovy univerzity v Brně. T = p = Fyzikální sekce přirodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁNÍ PRAKTIKUM Polarizace světla Jméno Zdeněk Janák Datum 0. 11. 006 Obor Astrofyzika Ročník Semestr 3 Test.............. ÚOHA č.

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

LOGO. Molekulová fyzika

LOGO. Molekulová fyzika Molekulová fyzika Molekulová fyzika Molekulová fyzika vysvětluje fyzikální jevy na základě znalosti jejich částicové struktury. Jejím základem je kinetická teorie látek (KTL). KTL obsahuje tři tvrzení:

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium Brownova pohybu. stud. skup.

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium Brownova pohybu. stud. skup. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. XVI Název: Studium Brownova pohybu Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 20.3.2013 Odevzdal dne:

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Základy molekulové fyziky a termodynamiky

Základy molekulové fyziky a termodynamiky Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou

Více

Základy chemických technologií

Základy chemických technologií 4. Přednáška Mísení a míchání MÍCHÁNÍ patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) hlavní cíle: odstranění

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

Molekulová fyzika. (test version, not revised)

Molekulová fyzika. (test version, not revised) Molekulová fyzika (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 1. října 2010 Obsah Úvod Kinetická teorie látek Modely skupenství Konstanty a veličiny Úvod Co jsme doposud zkoumali?

Více

Inspirace pro badatelsky orientovanou výuku

Inspirace pro badatelsky orientovanou výuku Inspirace pro badatelsky orientovanou výuku Eva Hejnová Přírodovědecká fakulta UJEP Ústí nad Labem, ČR Květa Kolářová ZŠ Buzulucká, Teplice Ivana Hotová Podkrušnohorské gymnázium, Most O čem budeme povídat

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

9. Struktura a vlastnosti plynů

9. Struktura a vlastnosti plynů 9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika

ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika Částicová struktura látek Látky jakéhokoli skupenství se skládají z částic Částicemi jsou

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

Vnitřní energie tělesa

Vnitřní energie tělesa Vnitřní energie tělesa vnitřní energie tělesa je energie všech částic, z nichž se těleso skládá. Jde především o kinetickou a potenciální energii, ale může jít také o elektrickou či chemickou energii,

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

TEMATICKÝ PLÁN 6. ročník

TEMATICKÝ PLÁN 6. ročník TEMATICKÝ PLÁN 6. ročník Týdenní dotace: 1,5h/týden Vyučující: Mgr. Tomáš Mlejnek Ročník: 6. (6. A, 6. B) Školní rok 2018/2019 FYZIKA pro 6. ročník ZŠ PROMETHEUS, doc. RNDr. Růžena Kolářová, CSc., PaeDr.

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika

Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

Některé základní pojmy

Některé základní pojmy Klasifikace látek Některé základní pojmy látka látka čistá chemické individuum fáze směs prvek sloučenina homogenní směs heterogenní směs plynná směs kapalný roztok tuhý roztok Homogenní a heterogenní

Více

STAVBA ATOMU. Aleš Lacina Přírodovědecká fakulta MU, Brno

STAVBA ATOMU. Aleš Lacina Přírodovědecká fakulta MU, Brno STAVBA ATOMU Aleš Lacina Přírodovědecká fakulta MU, Brno Cesty, po nichž lidský rozum dospěl k pravdě, jsou hodny většího obdivu než dosažený cíl. Johannes Kepler LÁTKY SE SKLÁDAJÍ Z ATOMŮ ODKUD TO VÍME?

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

5 Základy termodynamiky

5 Základy termodynamiky 5 Základy termodynamiky Teplo, teplota, tepelná kapacita, metody jejich měření. Termodynamická soustava a její rovnováha. Hlavní věty termodynamiky. Ideální plyn. Stavová rovnice, Carnotův cyklus. Reálné

Více

Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools

Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools When explaining the inertial forces to secondary school students, one can expect to be asked

Více

Přírodní vědy - Chemie vymezení zájmu

Přírodní vědy - Chemie vymezení zájmu Přírodní vědy - Chemie vymezení zájmu Hmota Hmota má dualistický, korpuskulárně (částicově) vlnový charakter. Převládající charakter: korpuskulární (částicový) - látku vlnový - pole. Látka se skládá z

Více

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno ATOMOVÉ JÁDRO A JEHO STRUKTURA Aleš Lacina Přírodovědecká fakulta MU, Brno "Poněvadž a-částice... procházejí atomem, pečlivé studium odchylek "těchto střel" od původního směru může poskytnout představu

Více

MENSA GYMNÁZIUM, o.p.s. TEMATICKÉ PLÁNY TEMATICKÝ PLÁN (ŠR 2017/18)

MENSA GYMNÁZIUM, o.p.s. TEMATICKÉ PLÁNY TEMATICKÝ PLÁN (ŠR 2017/18) TEMATICKÝ PLÁN (ŠR 017/18) PŘEDMĚT TŘÍDA/SKUPINA VYUČUJÍCÍ ČASOVÁ DOTACE UČEBNICE (UČEB. MATERIÁLY) - ZÁKLADNÍ POZN. (UČEBNÍ MATERIÁLY DOPLŇKOVÉ aj.) FYZIKA SEKUNDA Mgr. et Mgr. Martin KONEČNÝ hodiny týdně

Více