KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3

Rozměr: px
Začít zobrazení ze stránky:

Download "KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3"

Transkript

1 KOMPRESORY F 1 F 2 F 3 V 1 p 1 V 2 p 2 V 3 p 3 1

2 KOMPRESORY V kompresorech se mění mechanická nebo kinetická energie v energii tlakovou, při čemž se vyvíjí teplo. Kompresory jsou stroje tepelné, se zřetelem na změnu energie, která v nich probíhá, jsou to stroje konverzní (konverze = změna, přeměna). Základní hodnoty charakterizující kompresor jsou: tlakový poměr, pv p 2 π = = ps p1 tj. poměr výtlačného tlaku p v (p 2 ) k tlaku sacímu p s (p 1 ) výkonnost (nasávaný objem plynu) V(m 3 s -1, m 3 min -1, m 3 h -1 ) příkon na hřídeli kompresoru P ef (popř. spotřeba pracovní páry u kompresorů proudových) 2

3 ROZDĚLENÍ KOMPRESORŮ PODLE PRINCIPU ČINNOSTI: objemový princip, stlačení se dosahuje nasátím vzduchu do prostoru, který je pak uzavřen a zmenšován. např. Pístové kompresory. rychlostní princip, nasátý vzduch je urychlován a jeho kinetická energie je v difuzoru transformována na tlakovou energii. Např. turbokompresory. PODLE STLAČOVANÉHO MÉDIA: Chemické a fyzikální vlastnosti stlačovaného média mají prvořadý vliv při volbě konstrukce kompresoru, druhu maziva, způsobu chlazení i při jiných rozhodováních. velký důraz na těsnost u kompresorů plynových (určeny ke stlačování běžných technických plynů) oproti vzdušným u kompresorů speciálních, stlačujících jedovaté nebo výbušné či jinak nebezpečné plyny (např. čpavek, vodík, kyslík ). 3

4 ROZDĚLENÍ KOMPRESORŮ PODLE TLAKU: vývěva nasává vzduch při tlaku nižším než atmosférickém a stlačuje jej na tlak atmosférický dmychadlo stlačuje atmosférický vzduch na přetlak do 200 kpa kompresor stlačuje plyn na přetlak vyšší než 200 kpa booster pomocný kompresor, zařazovaný do sání např. chladivových kompresorů při příliš vysokém tlakovém poměru. Někdy je tak také nazýván i dotlačovací kompresor. cirkulační kompresor (cirkulátor) nasává plyn o vysokém tlaku, stlačuje ho s malým tlakovým poměrem. Je určen pro udržování tlaku v chemických provozech nebo plynovodech. 4

5 ROZDĚLENÍ KOMPRESORŮ PODLE PRACOVNÍHO ZPŮSOBU: objemové rychlostní (dynamické, proudové, turbínové) objemové pro dodávku malých a středních množství plynu (do 6000 m 3 h -1, někdy až m 3 h -1 ), u nichž se dosahuje stlačování periodickým zmenšováním objemu plynu v uzavřeném prostoru pohybem pístu nebo pružné stěny. pístový kompresor má písty konající přímočarývratnýpohyb rotační kompresor má jeden či dva rotory otáčející se kolem osy rovnoběžné s osou válce membránový kompresor je vhodný jen pro malá množství plynu, nasává a stlačuje jej hydraulickým nebo mechanickým prohýbáním membrány, buď kovové, nebo z jiného pružného materiálu 5

6 ROZDĚLENÍ KOMPRESORŮ rychlostní (dynamické) pro stlačování plynu v množství od 6000 m 3 /h (pro husté plyny i od menších množství), udělení vysoké rychlosti plynu následná přeměna kinetické energie plynu na tlakovou. Tyto stroje pracují s téměř ustáleným tokem. turbokompresory (kompresory lopatkové) plynu se v nich uděluje oběžnými lopatkami šroubového tvaru pohyb do difuzoru, kde se jeho kinetická energie přemění v energii tlakovou radiální (odstředivé) axiální (osové). proudové kompresory (ejektory) využívá se tlakové energie páry (nejčastěji vodní) nebo vzduchu k udělení vysoce nadkritické rychlosti (řádově 1000m/s) v Lavalově hubici. Z ní vystupuje pracovní médium do směšovací komory, kdy se mísí se stlačovaným plynem a pak vstupuje do difuzoru, kde se kinetická energie směsi mění v energii tlakovou. Z difuzoru vystupuje směs s poměrně nízkou rychlostí do kondenzátoru, kde se zkapalněná pára odloučí od stlačeného plynu. V proudových vývěvách se při malých stlačovaných množstvích plynu 6 používá místo pracovní páry voda a pak přístroj nemá Lavalovu hubici.

7 ROZDĚLENÍ KOMPRESORŮ pístové s vratným pohybem pracovního elementu membránové s volným pístem křídlové kapalino-kružné objemové (aerostatické) ostatní s jedním rotorem s valivým pístem spirálové rotační ostatní KOMPRESORY rychlostní (aerodynamické) lopatkové (turbo kompresory) proudové (ejektory) odstředivé (radiální) osové (axiální) sdvěma a více rotory šroubové zubové ostatní 7

8 ROZDĚLENÍ KOMPRESORŮ PODLE POČTU STLAČOVACÍCH STUPŇŮ: jednostupňové dvoustupňové třístupňové atd. - při jediné operaci uskuteční stlačení plynu z tlaku sacího na tlak konečný - při vysokém tlakovém poměru, stlačení několikrát, postupně, pravidelně s jeho ochlazením před vstupem do dalšího stupně U turbokompresorů, zejména osových, může být velký počet stupňů - 20 i více. 8

9 ROZDĚLENÍ KOMPRESORŮ PODLE KONEČNÉHO TLAKU (TLAKOVÉHO POMĚRU): nízkotlaký, není-li výtlačný tlak vyšší než 2,5 MPa, středotlaký pro výtlačný tlak mezi 2,5 a 10 MPa, vysokotlaký pro výtlačný tlak 10 až 250 MPa. Pístové kompresory tlakový poměr 3 až 5 (u malých i 10) v jednom stupni, Turbokompresory radiální 1,2 až 2,5, Turbokompresory axiální do 1,3. Vývěvy a turboexhaustory často pracují s vysokým tlakovým poměrem, např. 40 v jednom stupni. Má-li kompresor přibližně atmosférický sací tlak a tlakový poměr 3, označení dmýchadlo nebo turbodmýchadlo. Kompresory - tlaky od 0,2 do 250 Mpa. Kompresory s vysokým sacím tlakem (např. 250 MPa) a s nízkým tlakovým poměrem (např. 1,2 MPa) oběhové kompresory. (v chem. prům.) Vurčitých případech, jako např. u turbokompresorů, pojmům nízkotlaký, středotlaký a vysokotlaký kompresor odpovídají jiné tlaky než je uvedeno. Stejně tak pojmům malý, stření a velký kompresor odpovídají nasáté objemy lišící se podle typu kompresoru. 9

10 ROZDĚLENÍ KOMPRESORŮ PODLE JINÝCH CHARAKTERISTIK: stacionární přenosné pojízdné chlazené vodou nebo vzduchem poháněné přímo nebo s použitím řemenového, ozubeného nebo hydraulického převodu poháněné motorem elektrickým, spalovacím nebo parním (spalovací turbína) Při výběru nejvhodnějšího typu kompresoru je nutno uvažovat řadu dalších okolností, jako druh stlačovaného plynu, způsob pohonu, nasávané množství plynu, požadovaný tlak, rozsah a způsob regulace, čistotu nasávaného a vytlačovaného plynu a jeho přípustnou nejvyšší teplotu, a další hlediska. 10

11 IDEÁLNÍ KOMPRESOR Ideální kompresor: a) pracuje s ideálním plynem b) nemá žádné tlakové ani mechanické ztráty c) je naprosto těsný a všechen plyn se z válce vytlačí d) pracuje bez sdílení tepla s okolím a exponent křivky komprese je stálý 11

12 IDEÁLNÍ DIAGRAM JEDNOSTUPŇOVÉHO OBJEMOVÉHO KOMPRESORU p 3 2 n n χ χ p = V p V p V = p 1V 1 p2v2 p1 1 = V2 p 2 is 2 pol 2 ad n 2 p 1 4 V z 1 V a c b 1 V Obr. 1: Činnost ideálního kompresoru poloha 1 sací tlak p 1 ; sání Obr. 2: Průběh komprese v p-v diagramu křivka 1-2 stlačování plynu až na tlak p 2 úsečka 2-3 vytlačování plynu z válce Ideální kompresor vytlačí všechen plyn pokles tlaku v jednom okamžiku z p 2 na sací tlak p 1 12 opakování oběhu.

13 MĚŘENÍ TLAKU 13

14 ROZDĚLENÍ TLAKU p = ROZDĚLENÍ PODLE VELIKOSTI : Podtlak Přetlak tlak určitého prostředí proti normálnímu atmosférickému okolí ROZDĚLENÍ PODLE CHARAKTERU : Atmosférický tlak = Tlak barometrický Hydrostatický tlak Měrný tlak OSTATNÍ: Absolutní tlak - tlak měřený od absolutní nuly tlaku, tj. vakua Dynamický tlak Kapilární tlak Parciální tlak tlak sytých par F S Rozdíl tlaků = tlaková diference tlaků dvou různých prostředí 14

15 zdroj: 15

16 PODTLAK Je to tlak menší nežli barometrický. Velký podtlak se někdy nazývá nesprávně vakuem, ale slovo vakuum znamená dokonale prázdný prostor neboli vzduchoprázdno, v němž je tlak roven 0. Proto je zaveden pojem redukované vakuum. PŘETLAK Je to tlak který je větší jak barometrický. Přetlakem tedy rozumíme kladný rozdíl zjištěného tlaku a tlaku barometrického 16

17 ATMOSFÉRICKÝ (BAROMETRICKÝ) TLAK Země je obklopena vzduchovým obalem, který se nazývá atmosféra. Atmosféra je v gravitačním poli Země. V tomto poli působí gravitační síla Země na jednotlivé molekuly plynů z nichž je vzduch složen. Tím vzniká ve vzduchu atmosférický nebo-li barometrický tlak. HYDROSTATICKÝ TLAK Je to tlak, který je v kapalinách. Pokud je kapalina v klidu a nepůsobí na ni žádná síla, kromě gravitační, potom se tlak mění s hloubkou kapaliny. Pokud bude působit na volný povrch kapalného tělesa tlaková síla, vznikne ve všech místech kapalného tělesa stejný tlak. MĚRNÝ TLAK O měrném tlaku se nejčastěji mluví při styku dvou pevných těles. Vzhledem k nedokonalosti styku není tlaková síla obyčejně rozložena spojitě a měrný tlak pak představuje průměrný tlak ve stykové ploše. 17

18 ABSOLUTNÍ TLAK Je to tlak jehož počátek je vztažen k nulovému tlaku, tedy k vakuu. Má vždy kladnou hodnotu, jelikož tlak nemůže být záporný DYNAMICKÝ TLAK Je to tlak, který vzniká při pohybu tekutiny. Měří se z rozdílu statického tlaku a z tlaku proudu kapaliny KAPILÁRNÍ TLAK Je to přídavný tlak v kapalině, který způsobuje zakřivení povrchu kapaliny při stěnách nádoby, v kapilárách, u kapek a bublin. Pod vypuklým povrchem je tlak větší o kapilární tlak než tlak uvnitř kapaliny; pod dutým je o tento tlak menší. Kapilární tlak, vyvolaný povrchovým napětím, je tím větší, čím menší plochu má hladina kapaliny. 18

19 PARCIÁLNÍ TLAK Je to tlak, který je přímo úměrný objemovému procentu, v jakém je plyn obsažen ve vzduchu (zlomek vyjadřující poměrné objemové zastoupení složky ve směsi) Celkový tlak plynné směsi P je roven součtu parciálních tlaků jednotlivých složek P i. Parciální tlak jedné složky P i je roven tlaku, který by tato složka měla za teploty T a celkového objemu V plynné směsi. 19

20 JEDNOTKY TLAKU Blaise Pascal (1623 až 1662) - jeden ze základních zákonů hydrostatiky - Pascalův zákon. Působíme-li vnější silou na povrch kapaliny, v kapalině je ve všech místech stejný tlak Pascal Bar Torr 1 torr = 1 mm Hg = 1 mm rtuťového sloupce Atmosféra Barye jednotka tlaku akustické vlny. Značí se ba. Psi (pound per square inch) anglosaská jednotka tlaku, definovaná jako libra síly na čtverečný palec 1 psi = 1 lb f /in² 6 894,757 Pa Evangelista Torricelli (1608 až 1647) - zavedl označení atmosférický tlak vzduchu 20

21 ATMOSFÉRA Fyzikální atmosféra (atm) absolutní 1atm = 760 torr = Pa (přesně) = 0,1 MPa (přibližně) 1 atm = 1, at odvozená od normálního tlaku atmosféry hydrostatický tlak svislého sloupce, vysokého 760 mm, čisté rtuti teplé 0 C při normální tíhovém zrychlení 9, m.s -2. Technická atmosféra (at) absolutní 1 at = 735,52 torr = ,5 Pa (přesně) = 0,1 MPa (přibližně) 1 at = 0, atm. dříve používaná jednotka tlaku. tlak, který vznikne působením síly 1 kilopondu (kp) kolmo na plochu 1 cm 2. byla definována jako normální tlak vzduchu při hladině moře. 21

22 PRINCIPY MĚŘENÍ TLAKU K měření tlaku lze použít jakéhokoliv fyzikálního děje, který je tlakem ovlivňován. Přístroje k měření tlaku = TLAKOMĚRY obvyklé složení ČIDLO, reagujícího na příslušný fyzikální děj, INDIKÁTOR, který chování čidla převádí na děj objektivně pozorovatelný zrakem. Mezi čidlo a indikátor se někdy zařazuje převodový člen, který reakci čidla zesiluje, přenáší na dálku, nebo transformuje. Konstrukce tlakoměru závisí na: velikosti měřeného tlaku časové proměnnosti měřeného tlaku potřebné přesnosti měření. Podle kladených požadavků se kombinují různé druhy čidel a indikátorů. 22

23 PŘÍSTROJE PRO MĚŘENÍ TLAKU Hydrostatické tlakoměry Deformační tlakoměry Tlakoměry se silovým účinkem Tlakoměry elektrické Snímače s oporovými tenzometry Piezoelektrické snímače tlaku Kapacitní snímače tlaku Inteligentní převodníky tlaku 23

24 ROZDĚLENÍ TLAKOMĚRŮ TLAKOMĚRY souhrnný název pro všechny přístroj na měření tlaku MANOMETRY tlakoměry pro měření přetlaků VAKUOMETRY tlakoměry k měření velmi malých absolutních tlaků (méně než barometrický tlak) DIFERENČNÍ TLAKOMĚRY k měření tlakových rozdílů ROZDĚLENÍ TECHNICKÝCH TLAKOMĚRŮ podle funkčního principu: hydrostatické deformační pístové elektrické převodníky tlaku 24

25 HYDROSTATICKÉ TLAKOMĚRY využívá se účinku hydrostatického tlaku mírou tlaku je výška kapalinového sloupce h měření tlaku se převádí na měření délky údaj hydrostatických tlakoměrů je závislý na hustotě manometrické kapaliny a na teplotě spolehlivé a přesné přístroje využívané hlavně k laboratorním účelům nevýhodou je, že neposkytují signál vhodný pro dálkový přenos a pro další zpracování p = h ρ g 25

26 HYDROSTATICKÉ TLAKOMĚRY U tlakoměr nejčastěji skleněná U-trubice manometrické kapaliny: rtuť, voda, alkohol, tetrachlor nádobkový tlakoměr s potlačenou hladinou modifikace U-tlakoměru s jedním rozšířeným ramenem změna výšky hladiny v nádobce je velmi malá odečítání výšky hladiny pouze v jednom rameni Mikromanometr nádobkový tlakoměr se šikmou trubicí nakloněním ramene se zvýší citlivost viz další typy a variace hydrostatických tlakoměrů uvedených v literatuře 26

27 MĚŘENÍ MALÝCH TLAKOVÝCH ROZDÍLŮ Hydrostatický tlakoměr se svislou trubicí a potlačenou hladinou Hydrostatický tlakoměr typu Betz Hydrostatický tlakoměr typu Askania Schéma Provedení Hydrostatický tlakoměr se sklopenou trubicí a potlačenou hladinou 27

28 DEFORMAČNÍ TLAKOMĚRY Při měření tlaku dochází k deformaci čidla, která se vhodným způsobem přeměňuje na jiný signál, který je vhodný pro další zpracování. princip je založen na pružné deformaci a změně tvaru tlakoměrného prvku vlivem působení měřeného tlaku oblast použití je vymezena platností Hookeova zákona nejčastěji používané tlakoměry v průmyslu Nejčastěji používanými tlakoměrnými prvky jsou: Bourdonova trubice membrána vlnovec 28

29 VLASTNOSTI DEFORMAČNÍCH TLAKOMĚRŮ VÝHODY velká přestavující síla robustní měřící systém možnost připojení přídavných převodníků na elektrický signál (použití odporového, kapacitního či indukčnostního převodníku) velký měřící rozsah jednoduchost spolehlivost v provozu jednoduchá obsluha a údržba NEVÝHODY elastická dopružování případně trvalá deformace během provozu statická charakteristika vykazuje hysterezi vyžadují pravidelnou kalibrační kontrolu 29

30 TRUBICOVÝ (BOURDONŮV) TLAKOMĚR BOURDONOVO PERO pro měření přetlaku i podtlaku zploštělá mosazná trubice eliptického průřezu, která se tlakem narovná nejpoužívanější typ deformačních tlakoměrů měřící rozsah MPa 30

31 MEMBRÁNOVÉ TLAKOMĚRY pro měření přetlaku, podtlaku a diferencí tlaku tlakoměrný element kovová membrána membrána je sevřena mezi dvěma přírubami tlak je možno přivádět z jedné strany nebo z obou stran průhyb membrány se přenáší na ukazovatel výhodou je malá setrvačná hmotnost membrány a proto možnost použití v provozech s chvěním a otřesy měřící rozsahy: do 4 MPa 31

32 VLNOVCOVÝ TLAKOMĚR tlakoměrný element je vlnovec - tenkostěnný kovový měch umístěný v pouzdře tlak je možno přivádět z jedné strany nebo z obou stran tuhost vlnovce a tím i průběh charakteristiky lze upravit vložením pružiny deformace vlnovce se přenáší na ukazovatel vlnovec má dobrou linearitu a značnou přestavující sílu často používaný prvek u pneumatických regulačních systémů měřící rozsahy: do 0,4 MPa 32

33 TLAKOMĚRY SE SILOVÝM ÚČINKEM PÍSTOVÉ TLAKOMĚRY píst přesného průřezu umístěný ve válci tlakové médium vzduch, voda nebo olej tlaková síla na píst je kompenzována tíhou pístu a závaží měří na základě definice tlaku G z, G p S - tíha závaží a pístu -plocha pístu p = G z + S G měření tlaku se převádí na měření síly silový účinek je kompenzován například závažím nebo pružinou použití hlavně ke kalibraci a ověřování vysoká přesnost p 33

34 ELEKTRICKÉ PŘEVODNÍKY TLAKU snímače tlaku, které poskytují výstupní elektrický signál jsou vybaveny tlakoměrným prvkem jehož deformace se vlivem působení tlaku převádí na změnu elektrické veličiny jako je odpor, kapacita, náboj, atd. moderní a perspektivní snímače vybavené moderními elektronickými vyhodnocovacími obvody Nejčastější: snímače tlaku s odporovými tenzometry kapacitní snímače tlaku piezoelektrické snímače tlaku 34

35 SNÍMAČE S ODPOROVÝMI TENZOMETRY ODPOROVÝ TENZOMETR využití piezorezistivního jevu při mechanickém namáhání v oblasti pružných deformací dochází u kovových vodičů nebo polovodičů ke změně jejich elektrického odporu fóliová rozeta pro membránové senzory tlaku KOVOVÉ ODPOROVÉ TENZOMETRY tenké odporové drátky ve tvaru vlásenky fóliové vytvořené odleptáním kovové vrstvy drátkový fóliový 35

36 SNÍMAČE S ODPOROVÝMI TENZOMETRY POLOVODIČOVÉ TENZOMETRY řezáním broušením či leptáním z monokrystalu křemíku citlivější než kovové, závislost na teplotě provedení snímačů s křemíkovou membránou 36

37 DEFORMAČNÍ SENZORY TLAKU TRUBICOVÉ pružný člen je navržen tak, aby bylo snadné měřit jeho maximální deformaci senzory polohy Obr. Senzor tlaku s Bourdonovou trubicí 37

38 KAPACITNÍ SNÍMAČE TLAKU jedna elektroda kondenzátoru je tvořena membránou jejíž poloha se mění při působení tlaku změna vzdálenosti elektrod kondenzátoru se projeví změnou jeho kapacity C = ε ε 0 r S d ε 0 ε r - permitivita vakua - relativní permitivita S - plocha elektrod d - vzdálenost elektrod Diferenciální kapacitní senzor s oddělovací kapalinou pro měření diference tlaku membrána tvoří střední pohyblivou elektrodu měřící rozsah: 100 Pa 40 MPa 38

39 PIEZOELEKTRICKÉ SNÍMAČE TLAKU Princip piezoelektrický jev při mechanické deformaci některých krystalů (např. křemene, BaTiO 3 ) vzniká uvnitř dielektrika polarizace a tím elektrický náboj PIEZOELEKTRICKÝ SENZOR výbrus z krystalu, který má piezoelektrické vlastnosti x elektrická osa, y mechanická osa na plochách kolmých k elektrické ose jsou naneseny elektrody velikost náboje Q je úměrná působící síle F 39

40 PIEZOELEKTRICKÉ SNÍMAČE TLAKU Podélný piezoelek. jev Příčný piezoelek. jev Eadamek/uceb/DATA/s_6_1.htm 40

41 PIEZOELEKTRICKÉ SNÍMAČE TLAKU při silovém působení na výbrus vzniká náboj piezoelektrický snímač je generátorem náboje snímač představuje zdroj napětí s vysokým vnitřním odporem vhodný pro měření rychlých dějů vhodný pro měření za vysokých teplot měřící rozsah až do 100 MPa U = Q C k F C U výstupní napětí snímače = x membrána piezoelektrické krystaly kryt elektroda 41

KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3

KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3 KOMPRESORY F 1 F 2 F 3 V 1 p 1 V 2 p 2 V 3 p 3 1 KOMPRESORY V kompresorech se mění mechanická nebo kinetická energie v energii tlakovou, při čemž se vyvíjí teplo. Kompresory jsou stroje tepelné, se zřetelem

Více

ROZDĚLENÍ PODLE VELIKOSTI

ROZDĚLENÍ PODLE VELIKOSTI MĚŘENÍ TLAKU 1 ROZDĚLENÍ TLAKU p = ROZDĚLENÍ PODLE VELIKOSTI : Podtlak Přetlak tlak určitého prostředí proti normálnímu atmosférickému okolí ROZDĚLENÍ PODLE CHARAKTERU : Atmosférický tlak = Tlak barometrický

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření tlaku (podtlak, přetlak)

Více

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak.

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak. Základní pojmy Definice tlaku: Síla působící kolmo na jednotku plochy F p= [Pa, N, m S 2 ] p Přetlak tlaková diference atmosférický tlak absolutní tlak Podtlak absolutní nula t 2 ozdělení tlakoměrů Podle

Více

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA 4. KAPITOLY Úvod do problematiky měření tlaků Kapalinové tlakoměry

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření hladiny 2 P-10b-hl ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Hladinoměry Principy, vlastnosti, použití Jedním ze základních

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

p V = n R T Při stlačování vkládáme do systému práci a tím se podle 1. věty termodynamické zvyšuje vnitřní energie systému U = q + w

p V = n R T Při stlačování vkládáme do systému práci a tím se podle 1. věty termodynamické zvyšuje vnitřní energie systému U = q + w 3. DOPRAVA PLYNŮ Ve výrobních procesech se často dopravují a zpracovávají plyny za tlaků odlišných od tlaku atmosférického. Podle poměru stlačení, tj. poměru tlaků před a po kompresi, jsou stroje na dopravu

Více

6. Měření veličin v mechanice tuhých a poddajných látek

6. Měření veličin v mechanice tuhých a poddajných látek 6. Měření veličin v mechanice tuhých a poddajných látek Pro účely měření mechanických veličin (síla, tlak, mechanický moment, změna polohy, rychlost změny polohy, amplituda, frekvence a zrychlení mechanických

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření tlaku - 1 17.SPEC-t.2. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. MĚŘENÍ TEORIE A PRINCIPY T- MaR Další pokračování o principech

Více

Vakuová fyzika 1 1 / 40

Vakuová fyzika 1 1 / 40 Měření tlaku Měření celkových tlaků Měření parciálních tlaků Rozdělení měřících metod Vakuová fyzika 1 1 / 40 Absolutní metody - hodnota tlaku je určena přímo z údaje měřícího přístroje, nebo výpočtem

Více

1 SENZORY SÍLY, TLAKU A HMOTNOSTI

1 SENZORY SÍLY, TLAKU A HMOTNOSTI 1 SENZORY SÍLY, TLAKU A HMOTNOSTI Senzory používající ve většině případů princip převodu síly, tlaku a tíhy na deformaci. Využívají fyzikálních účinků síly. Časově proměnná síla vyvolá zrychlení a hmotnosti

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

Základy procesního inženýrství. Stroje na dopravu a stlačování vzdušniny

Základy procesního inženýrství. Stroje na dopravu a stlačování vzdušniny Základy procesního inženýrství Stroje na dopravu a stlačování vzdušniny 28.2.2017 1 Doprava a stlačování vzdušniny Kompresní poměr: tlak na výstupu/tlak na vstupu Ventilátory - kompresní poměr 1.1 Dmychadla

Více

LOPATKOVÉ STROJE LOPATKOVÉ STROJE

LOPATKOVÉ STROJE LOPATKOVÉ STROJE Předmět: Ročník: Vytvořil: Datum: STROJÍRENSTVÍ ČTVRTÝ BIROŠČÁKOVÁ I. 22. 11. 2013 Název zpracovaného celku: LOPATKOVÉ STROJE LOPATKOVÉ STROJE Lopatkové stroje jsou taková zařízení, ve kterých dochází

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

3. Výroba stlačeného vzduchu - kompresory

3. Výroba stlačeného vzduchu - kompresory zapis_pneumatika_kompresory - Strana 1 z 6 3. Výroba stlačeného vzduchu - kompresory Kompresory jsou stroje ke stlačování ( #1 ) vzduchu, neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého

Více

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení... 34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.2 k prezentaci Zdroje tlakového vzduchu

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.2 k prezentaci Zdroje tlakového vzduchu Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Technologie montáží, vy_32_inovace_ma_21_04 Autor Ing.

Více

3. Výroba stlačeného vzduchu - kompresory

3. Výroba stlačeného vzduchu - kompresory echatronika 02 - Pneumatika 1 z 5 3. Výroba stlačeného - kompresory Kompresory jsou stroje ke stlačování (kompresi), neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého pohybu) na tlakovou

Více

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9. 1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,

Více

Senzory tlaku. df ds. p = F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa. - definice tlaku: 2 způsoby měření tlaku: změna rozměrů.

Senzory tlaku. df ds. p = F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa. - definice tlaku: 2 způsoby měření tlaku: změna rozměrů. Senzory tlaku - definice tlaku: 2 způsoby měření tlaku: p = df ds F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa p F pružný člen změna rozměrů přímý (intrinsický) senzor senzor mechanického napětí (v prostředích,

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S MECHANICKÉ VLASTNOSTI PLYNŮ. Co už víme o plynech? Vlastnosti ply nů: 1) jsou snadno stlačitelné a rozpínavé 2) nemají vlastní tvar ani vlastní objem 3) jsou tekuté 4) jsou složeny z částic, které se neustále

Více

(elektrickým nebo spalovacím) nebo lidskou #9. pro velké tlaky a menší průtoky

(elektrickým nebo spalovacím) nebo lidskou #9. pro velké tlaky a menší průtoky zapis_hydraulika_cerpadla - Strana 1 z 6 10. Čerpadla (#1 ) v hydraulických zařízeních slouží jako zdroj - také jim říkáme #2 #3 obecně slouží na #4 (čerpání, vytlačování) kapalin z jednoho místa na druhé

Více

RV, RK SIGMA PUMPY HRANICE A KOMPRESORY 426 2.98 71.01

RV, RK SIGMA PUMPY HRANICE A KOMPRESORY 426 2.98 71.01 SIGMA PUMPY HRANICE VODOKRUŽNÉ VÝVĚVY A KOMPRESORY RV, RK SIGMA PUMPY HRANICE, s.r.o. Tovární 65, 75 Hranice tel.: 6/6, fax: 6/ 57 Email: sigmahra@sigmahra.cz 6.9 7. Použití Vývěvy RV se používají v mnoha

Více

Armatury. obecný ventil, obecný kohout slouží k regulaci či zastavení průtoku kapalin či tlakových plynů

Armatury. obecný ventil, obecný kohout slouží k regulaci či zastavení průtoku kapalin či tlakových plynů Armatury obecný ventil, obecný kohout slouží k regulaci či zastavení průtoku kapalin či tlakových plynů kulový kohout provrtaná koule v těsném pouzdře obvykle se používá pouze v polohách plně otevřeno/zavřeno

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST RV, RK VODOKRUŽNÉ VÝVĚVY A KOMPRESORY SIGMA PUMPY HRANICE, s.r.o. Tovární č.p. 65, 5 Hranice I - Město, Česká republika tel.: 5 66, fax: 5 66 e-mail: sigmapumpy@sigmapumpy.com

Více

Úvod do hydraulických pohonů

Úvod do hydraulických pohonů Úvod do hydraulických pohonů Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_04_AUT_73_uvod_do hydrauliky Téma: Úvod do hydrauliky Číslo projektu: CZ.1.07/1.5.00/34.10.1036

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.20 Integrovaná střední

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2012/2013 8.8 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření

Více

Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: měřidla tlaku

Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: měřidla tlaku Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: měřidla tlaku Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1252_měřidla_tlaku_pwp Název školy: Číslo a název projektu: Číslo

Více

Přednáška 6. Vývěvy s pracovní komorou: pístové, s valivým pístem, olejové a suché rotační vývěvy, šroubové vývěvy.

Přednáška 6. Vývěvy s pracovní komorou: pístové, s valivým pístem, olejové a suché rotační vývěvy, šroubové vývěvy. Přednáška 6 Vývěvy s pracovní komorou: pístové, s valivým pístem, olejové a suché rotační vývěvy, šroubové vývěvy. Vývěvy Základní rozdělení: transportní přenášejí molekuly od vstupního hrdla k výstupnímu

Více

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021.

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Stroje na dopravu kapalin Čerpadla jsou stroje, které dopravují kapaliny a kašovité

Více

Ideální kapalina. Tekutiny ve farmaceutickém průmyslu. Inženýrství chemicko-farmaceutických výrob. » Kapaliny. » Plyny

Ideální kapalina. Tekutiny ve farmaceutickém průmyslu. Inženýrství chemicko-farmaceutických výrob. » Kapaliny. » Plyny Tekutiny Charakteristika, proudění tekutin Tekutiny ve farmaceutickém průmyslu» Kapaliny» rozpouštědla» kapalné API, lékové formy» disperze» Plyny» Vzduchotechnika» Sušení» Fluidní operace Ideální kapalina»

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod Kapacitní senzory a) b) c) ε r1 Změna kapacity důsledkem změny a) aktivní plochy elektrod d) ε r2 ε r1 e) ε r2 b)vzdálenosti elektrod c)plochy dvou dielektrik s různou permitivitou d) tloušťky dvou dielektrik

Více

Inovace výuky Fyzika F7/ 10. Barometr. Atmosférický tlak, tlak, teplota vzduchu, barometr, aneroid

Inovace výuky Fyzika F7/ 10. Barometr. Atmosférický tlak, tlak, teplota vzduchu, barometr, aneroid Inovace výuky Fyzika F7/ 10 Barometr Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Fyzika Mechanické vlastnosti tekutin 7. ročník

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné

Více

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení).

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). SNÍMAČE - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). Rozdělení snímačů přímé- snímaná veličina je i na výstupu snímače nepřímé -

Více

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení 2010 Brno 06 - cvičení vnější parametry sušení strana 2 Proč určujeme parametry prostředí? správné řízení sušícího procesu odvislné na správném řízení naplánovaného sušícího procesu podle naměřených hodnot

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

KOMPRESORY DMYCHADLA VENTILÁTORY

KOMPRESORY DMYCHADLA VENTILÁTORY KOMPRESORY DMYCHADLA VENTILÁTORY STROJE PRO STLAČOVÁNÍ A DOPRAVU PLYNŮ Těmito stroji lze plynům dodat tlakovou a kinetickou energii. Základními parametry jsou dosažitelný přetlak na výstupu stroje p /MPa/

Více

Tření Smykové tření Součinitel smykového tření Značení Příklady hodnot součinitele smykového tření Klidové tření Součinitel klidového tření Značení

Tření Smykové tření Součinitel smykového tření Značení Příklady hodnot součinitele smykového tření Klidové tření Součinitel klidového tření Značení Přímá úměrnost mezi gravitační silou a hmotností tělesa Na tělesa s různou hmotností působí země různou F g m=60 kg F g =mg g=10 N/kg F g =( 10.60 ) N=600 N F g =?N Jak je znát z výpočtu: F g =10.m (m=hmotnost

Více

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA 2. DOPRAVA KAPALIN Zařízení pro dopravu kapalin dodávají tekutinám energii pro transport kapaliny, pro hrazení ztrát způsobených jejich viskozitou (vnitřním třením), překonání výškových rozdílů, umožnění

Více

VY_32_INOVACE_C 08 19. hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem.

VY_32_INOVACE_C 08 19. hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem. Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku Mechanika plynů Vlastnosti plynů Molekuly plynu jsou v neustálém pohybu, pronikají do všech míst nádoby plyn je rozpínavý. Vzdálenosti mezi molekulami jsou větší než např. v kapalině. Zvýšením tlaku je

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

TEKUTINOVÉ POHONY. Pneumatické (medium vzduch) Hydraulické (medium kapaliny s příměsí)

TEKUTINOVÉ POHONY. Pneumatické (medium vzduch) Hydraulické (medium kapaliny s příměsí) TEKUTINOVÉ POHONY TEKUTINOVÉ POHONY Pneumatické (medium vzduch) Hydraulické (medium kapaliny s příměsí) Přednosti: dobrá realizace přímočarých pohybů dobrá regulace síly, která je vyvozena motorem (píst,

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak

Více

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela

Více

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

21. ROTAČNÍ LOPATKOVÉ STROJE 21. ROTARY PADDLE MACHINERIS

21. ROTAČNÍ LOPATKOVÉ STROJE 21. ROTARY PADDLE MACHINERIS 21. ROTAČNÍ LOPATKOVÉ STROJE 21. ROTARY PADDLE MACHINERIS Hydraulické Tepelné vodní motory hydrodynamická čerpadla hydrodynamické spojky a měniče parní a plynové turbiny ventilátory turbodmychadla turbokompresory

Více

7. Měření výšky hladiny

7. Měření výšky hladiny 7. Měření výšky hladiny Při měření výšky hladiny se jedná o určení polohy rozhraní kapaliny a plynnou látkou (voda - vzduch), mezi dvěma nemísitelnými kapalinami, nebo o signalizaci hladiny sypkých látek.

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Projection, completation and realisation. MHH Horizontální odstředivá kondenzátní článková čerpadla

Projection, completation and realisation. MHH Horizontální odstředivá kondenzátní článková čerpadla Projection, completation and realisation Horizontální odstředivá kondenzátní článková čerpadla Horizontální kondenzátní čerpadla řady Čerpadla jsou určena k čerpání čistých kondenzátů a horké čisté vody

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE ZE STROJNICTVÍ

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE ZE STROJNICTVÍ SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE ZE STROJNICTVÍ Školní rok: 2012/2013 Obor: 23-44-L/001 Mechanik strojů a zařízení 1. Spoje a spojovací součásti rozdělení spojů z hlediska rozebíratelnosti rozdělení

Více

Mechanika kapalin a plynů

Mechanika kapalin a plynů Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný

Více

OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ

OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ 1. Spoje a spojovací součásti rozdělení spojů z hlediska rozebíratelnosti rozdělení spojů z hlediska fyzikální podstaty funkce 2. Spoje se silovým stykem šroubové

Více

PARAMETRY MĚŘENÉ NA DVOUPROUDÉM MOTORU

PARAMETRY MĚŘENÉ NA DVOUPROUDÉM MOTORU PARAMETRY MĚŘENÉ NA DVOUPROUDÉM MOTORU EPR vstup NACT OLEJ OP,OT, OQ FF/ FU FP PALIVO EGT EPR výstup Obr.1 NK - nízkotlaký kompresor, VK - vysokotlaký kompresor, VT - vysokotlaká turbina, NT - nízkotlaká

Více

DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN

DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN y y g v H y x x v vodorovná rovina H z z z x g vodorovná rovina vztažné úrovně Z J V S z g MĚŘENÍ VÝŠKY LETU DEFINICE VÝŠEK METODY MĚŘENÍ VÝŠEKY

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti

Více

LOGO. Struktura a vlastnosti kapalin

LOGO. Struktura a vlastnosti kapalin Struktura a vlastnosti kapalin Povrchová vrstva kapaliny V přírodě velmi často pozorujeme, že se povrch kapaliny, např. vody, chová jako pružná blána, která unese např. hmyz Vysvětlení: Molekuly kapaliny

Více

Stručný přehled výrobků

Stručný přehled výrobků Stručný přehled výrobků Vakuum a tlak Kapaliny A Thomas Industries Company Výrobky Rietschle Společnost Rietschle zaujímá již více než 50 let přední postavení ve světě v oblasti tlakové a vakuové techniky.

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední

Více

TENZOMETRY tenzometr Použití tenzometrie Popis tenzometru a druhy odporovými polovodičovými

TENZOMETRY tenzometr Použití tenzometrie Popis tenzometru a druhy odporovými polovodičovými TENZOMETRY V současnosti obvyklý elektrický tenzometr je pasivní elektrotechnická součástka používaná k nepřímému měření mechanického napětí na povrchu součásti prostřednictvím měření její deformace. Souvislost

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové SPALOVACÍ MOTORY Druhy spalovacích motorů rozdělení podle způsobu zapalování podle počtu dob oběhu podle chlazení - zážehové = zvláštním zdrojem (svíčkou) - vznětové = samovznícením - čtyřdobé - dvoudobé

Více

Zachování hmoty Rovnice kontinuity. Ideální kapalina. Zachování energie Bernoulliho rovnice. Reálná kapalina - viskozita

Zachování hmoty Rovnice kontinuity. Ideální kapalina. Zachování energie Bernoulliho rovnice. Reálná kapalina - viskozita Tektiny ve farmacetickém průmysl Tektiny Charakteristika, prodění tektin» Kapaliny» rozpoštědla» kapalné API, lékové formy» disperze» Plyny» Vzdchotechnika» Sšení» Flidní operace Ideální kapalina» Ideální

Více

Mechanika tekutin. Hydrostatika Hydrodynamika

Mechanika tekutin. Hydrostatika Hydrodynamika Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Základní parametry vývěv Mezní tlak vývěvy p mez Tlak na výstupu vývěvy, od kterého je schopna funkce p 0 Čerpací schopnost

Více

Termomechanika cvičení

Termomechanika cvičení KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Vlastnosti kapalin. Povrchová vrstva kapaliny

Vlastnosti kapalin. Povrchová vrstva kapaliny Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří

Více

PŘEHLED JEDNOTEK TLAKU

PŘEHLED JEDNOTEK TLAKU PŘEHLED JEDNOTEK TLAKU Zdeněk Faltus, BD SENSORS s.r.o. V mezinárodní soustavě veličin (ISQ) je tlak odvozenou veličinou, definovanou podílem síly a plochy. ČSN EN ISO 80000-4 uvádí definici p = df da

Více

Mechanické vlastnosti kapalin hydromechanika

Mechanické vlastnosti kapalin hydromechanika Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

Opakování Napětí. Opakování Základní pojmy silového působení. Opakování Vztah napětí a deformace. Opakování Vztah napětí a deformace

Opakování Napětí. Opakování Základní pojmy silového působení. Opakování Vztah napětí a deformace. Opakování Vztah napětí a deformace Tektiny ve farmacetickém průmysl Tektiny Charakteristika, prodění tektin» Kapaliny» rozpoštědla» kapalné API, lékové formy» disperze» Plyny» Vzdchotechnika» Sšení» Flidní operace Opakování Základní pojmy

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,

Více

FYZIKA I cvičení, FMT 2. POHYB LÁTKY

FYZIKA I cvičení, FMT 2. POHYB LÁTKY FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného

Více

Přístroje na měření tlaku SITRANS P Snímače relativního, absolutního a diferenčního tlaku

Přístroje na měření tlaku SITRANS P Snímače relativního, absolutního a diferenčního tlaku Přehled Snímače tlaku SITRANS P, série Z pro relativní tlak (7MF156- ) Snímač tlaku SITRANS P, série Z (7MF156- ) měří relativní tlak agresivních a neagresivních plynů, kapalin a par. Výhody Vysoká přesnost

Více