Historie matematiky. základní přehled. Zdeněk Halas KDM MFF UK. Zdeněk Halas (KDM MFF UK) Historie matematiky 1 / 15
|
|
- Ján Sedlák
- před 6 lety
- Počet zobrazení:
Transkript
1 Historie matematiky základní přehled Zdeněk Halas KDM MFF UK Zdeněk Halas (KDM MFF UK) Historie matematiky 1 / 15
2 Úvod a literatura Historie matematiky prehistorie starověké kultury (Egypt, Mezopotámie) antické Řecko arabská M, středověk M symbolika diferenciální a integrální počet axiomatizace M algebra, geometrie (důraz ZŠ) učebnice Zdeněk Halas (KDM MFF UK) Historie matematiky 2 / 15
3 Úvod a literatura Proč historie M neučíme současnou M znát vývoj pojmů ( paleta přístupů, inspirace; posouzení náročnosti) staré mat postupy a důkazy mohou být inspirativní kontinuita věty se jmenují po matematicích historické poznámky užití k motivaci příběhy, historky užití k motivaci vyučování matematiky společně s její historií napomáhá tomu, že M není chápána jako hotový dokonalý produkt padající z nebe - je zřejmé, že se M tvořila - M jako strhující příběh hledání pravdy, poznání - při hledání je místo pro chybu - povědomí o autorství vede lépe k vědeckému přístupu - citování autorů, ne ono to tak je Zdeněk Halas (KDM MFF UK) Historie matematiky 3 / 15
4 Úvod a literatura Historie matematiky lze pěstovat různě: - tematicky (historie goniometrie, ) - po oblastech (M ve starověkém Egyptě, Řecku, ) - instituce, časopisy, - osobnosti (život a dílo Archiméda ze Syrákús) pro nás však: podstatné je postihnout vývoj matematického myšlení - z jakého popudu byly zavedeny dané pojmy - načerpat inspirativní odvození - jak lidé přistupovali k matematice (sbírky řešených úloh, definice věta důkaz, axiomatizace) - Zdeněk Halas (KDM MFF UK) Historie matematiky 4 / 15
5 Úvod a literatura Literatura Vybrané svazky edice Dějiny matematiky dostupné z velmi kvalitní stránky: ŠEDIVÝ, J Antologie matematických didaktických textů Období Skriptum MFF UK v Praze, SPN, 1987 KOLMAN, A Dějiny matematiky ve starověku Praha, Academia, 1968 JUŠKEVIČ, A P Dějiny matematiky ve středověku Praha, Academia, 1969 KONFOROVIČ, A G Významné matematické úlohy Praha, SPN, 1989 STRUIK, D J Dějiny matematiky Praha, Orbis, 1963 BALADA, F Z dějin elementární matematiky Praha, SPN, 1959 ZNÁM, Š a kol Pohľad do dejín matematiky Bratislava, Alfa, 1986 Zdeněk Halas (KDM MFF UK) Historie matematiky 5 / 15
6 4 období dějin matematiky Základní periodizace dějin matematiky podle Kolmogorova 1 tvorba elementárních matematických pojmů (do 6 stol př Kr) - prehistorie - starověk: Egypt, Mezopotámie; Čína, Indie (i po 6 stol př Kr) 2 M konstantních veličin (6 st př Kr 16 st) starověké Řecko, islámská matematika, středověk 3 M proměnných veličin (17 st začátek 19 st) diferenciální a integrální počet (a analytická geometrie souřadnice) 4 M zobecněných prostorových a kvantitativních vztahů (od poloviny 19 stol) teorie grup, matice, vektory, neeukleidovské geometrie, topologie, Zdeněk Halas (KDM MFF UK) Historie matematiky 6 / 15
7 4 období dějin matematiky 1 období paleolit (starší doba kamenná) až 6 stol př Kr prehistorie: - archeologické nálezy (vrubovky, jeskynní malby, ornamenty) - utváření pojmu čísla, primitivní numerace (čárky na vrubovkách) - utváření pojmu geometrického útvaru starověké kultury: - písmo dochované matematické texty - Egypt, Mezopotámie, Čína, Indie - matematika často ve formě sbírek řešených úloh - rozvoj numeračních soustav - klasifikace geometrických útvarů, výpočty obsahů a objemů - utváření základů geodézie, řešení úloh hospodářské praxe Zdeněk Halas (KDM MFF UK) Historie matematiky 7 / 15
8 4 období dějin matematiky 2 období (6 stol př Kr 16 stol) A) období antického Řecka: - M se vytváří jako exaktní, deduktivní věda - systematické dokazování, vznik axiomatické metody - objev nesouměřitelnosti, tzv 1 krize matematiky - goniometrie, kuželosečky - Eukleidés, Archimédés, Apollónios, Hérón, Diofantos, Pappos - po rozpadu západořímské říše přesun do islámského světa B) středověká M: - postupně vznikají překlady arabských překladů antických děl do latiny - západní Evropa se seznamuje s M starověkého Řecka - oživil se počtářský charakter M, do Evropy přichází indická numerace (poziční desítková soustava, Fibonacci) - další rozvoj trigonometrie, řešení rovnic 3 a 4 stupně, logaritmy - utváření současné matematické symboliky (od 15 stol) Zdeněk Halas (KDM MFF UK) Historie matematiky 8 / 15
9 4 období dějin matematiky 3 období (17 až pol 19 stol) vznik diferenciálního a integrálního počtu - R Descartes vznik analytické geometrie (začátek 17 stol) souřadnice grafy funkcí, geom problémy řešeny algebraicky - diferenciální a integrální počet: nezávisle objevili I Newton, G W Leibniz (kol roku 1670) úžasně silný nástroj pro zkoumání fyzikálních jevů diferenciální rovnice, mechanistický obraz světa další významní matematikové: L Euler (18 stol) J L Lagrange A Cauchy (19 stol) 2 krize matematiky: nepřesně definovány základní pojmy matematické analýzy, práce s nekonečně malými veličinami; překonáno až v 19 století aritmetizací matematické analýzy (korektní definice limity pomocí ε, δ) Zdeněk Halas (KDM MFF UK) Historie matematiky 9 / 15
10 4 období dějin matematiky 4 období (od poloviny 19 stol) - neeukleidovské geometrie, lineární algebra, algebra, funkcionální analýza, topologie, - vyšší abstraktnost - postupující axiomatizace M (teorie množin, geometrie, přirozená čísla, teorie pravděpodobnosti, mechanika) - poznání hranic axiomatické metody (Kurt Gödel) - Gödelovy věty o neúplnosti 3 krize matematiky - vznikají zcela nové disciplíny či se od základů mění: teorie grup, topologie; teorie diferenciálních rovnic, teorie pravděpodobnosti, mat statistika - existující disciplíny se dělí na řadu dílčích disciplín (dnes se M člení na téměř 900 disciplín) - mění se vztah mezi M a jejími aplikacemi - M se začíná vyvíjet v souvislosti s vlastními problémy, které bylo třeba řešit (i bez přímých požadavků praxe, která již není hnací silou); vznikají teorie, které nejsou modelem žádné známé situace v materiálním světě Zdeněk Halas (KDM MFF UK) Historie matematiky 10 / 15
11 Co je matematika Co je matematika Matematika je věda, která se zabývá prostorovými a kvantitativními vztahy reálného světa Původ slova matematika (μαθηματική) Anatolius, biskup v Laodiceji kol roku 280 po Kr podle citátu Héróna (1 stol po Kr), spis Definitiones 138,3 Na základě čeho byla matematika pojmenována? Peripatetikové říkají, že rétorice a poetice s celým provozováním hudby můžeme porozumět bez zvláštního vyškolení (mé mathonta); nikdo však nemůže dosáhnout znalosti předmětů příznačně nazvaných matematika (mathématiké), pokud v nich předem neprošel školením (mathésis) Proto bylo pěstování těchto předmětů nazváno matematikou Zdeněk Halas (KDM MFF UK) Historie matematiky 11 / 15
12 Co je matematika Matematické disciplíny v antice Pýthagorejci Pýthagorejec Archýtás (dle Profyria, kom k Ptolemaiovým Harmonikám): Ve své knize O matematice píše hned na začátku: Zdá se, že matematikové dosáhli správného poznání a nelze se divit, že pochopili podstatu každé jednotlivé věci; neboť když pronikli k poznání celku, tak vidí v pravém světle také všechny jednotlivé části Předali nám jasné poznání rychlosti hvězd, jejich východů a západů, také o geometrii, aritmetice a sférické geometrii a v neposlední řadě také o hudbě; neboť tyto nauky (mathémata) považujeme za příbuzné Ovlivnilo i vzdělávání na středověkých univerzitách kvadrivium: aritmetika geometrie músika astronomie Zdeněk Halas (KDM MFF UK) Historie matematiky 12 / 15
13 Co je matematika Matematika ve Vydrově učebnici (1806) Chápání matematiky bylo ve starém Řecku mnohem širší toto širší pojetí se udrželo až do začátku 19 stol viz např Vydrovy Počátkové Arytmetyky ([8], str 195, 196): Všecko, co jest z částek smíšeno neb složeno, a může buď rozmnoženo neb zmenšeno býti, slove velikost, quantitas Umění pak, kteréž se s velikostí obírá, nazýváme Matematykou, mathesim Umění velikosti rozptýlené slove Arytmetyka; umění pak velikosti spojené Geometrye, Zdeněk Halas (KDM MFF UK) Historie matematiky 13 / 15
14 Co je matematika Čistá matematyka ve Vydrově učebnici (1806) Arytmetyka Geometrye Analyzys Algebra Trygonometrye Učení o křivých čárkách Počítání dyfferencyální a integrální Zdeněk Halas (KDM MFF UK) Historie matematiky 14 / 15
15 Co je matematika Rozvržení matematyky smíšené (tj aplikovaná matematika) Mechanyka Hydrostatyka Aerometrye Hydraulika Optyka, prohledačství Dyoptryka Perspektýva Astronomie Gnomonyka Chronologie Geografia Hydrografie Taktyka Artylerye Archytektura vojenská Archytektura městská Umění kmeny k stavení náležitě otesati Umění, které jedná o tesání kamenů Muzyka neb hudba Zdeněk Halas (KDM MFF UK) Historie matematiky 15 / 15
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo
Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19
Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Cvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)
Historie matematiky a informatiky
Evropský sociální fond Investujeme do vaší budoucnosti Historie matematiky a informatiky 2014 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 1 Co je matematika? Matematika
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Geometrie pro počítačovou grafiku - PGR020
Geometrie pro počítačovou grafiku - PGR020 Zbyněk Šír Matematický ústav UK Zbyněk Šír (MÚ UK) - Geometrie pro počítačovou grafiku - PGR020 1 / 18 O čem předmět bude Chceme podat teoretický základ nezbytný
Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
TEMATICKÝ PLÁN VÝUKY
STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:
Matematika I. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy
V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor
Název ŠVP Motivační název Datum 15.6.2009 Název RVP Verze 01 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Platnost od 1.9.2009 Forma vzdělávání Koordinátor Délka studia v letech: denní forma
MATEMATIKA I. Marcela Rabasová
MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
D - Přehled předmětů studijního plánu
D - Přehled předmětů studijního plánu Vysoká škola: Součást vysoké školy: Název studijního programu: Název studijního oboru: Slezská univerzita v Opavě Matematický ústav v Opavě Matematika Obecná matematika
Určení předmětů, jejich formy a témata pro profilovou část maturitní zkoušky v roce 2011/12 v jarním i podzimním termínu
Pokyn ředitele č. 9/2011 č. j. 495/2011/SSUP Určení předmětů, jejich formy a témata pro profilovou část maturitní zkoušky v roce 2011/12 v jarním i podzimním termínu Ředitel Střední školy uměleckoprůmyslové
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Netradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
Prehistorie. prameny vrubovky počátky představ o čísle jazyk a představy o čísle počátky geometrie
Prehistorie prameny vrubovky počátky představ o čísle jazyk a představy o čísle počátky geometrie Prameny období dlouhé tisíce let: od paleolitu po starověké Řecko (6. stol. př. Kr.) Ačkoli máme ze starověku
Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace
Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového
Historie matematiky a informatiky 2 1. přednáška 24. září 2013. Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze
Historie matematiky a informatiky 2 1. přednáška 24. září 2013 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze Co je matematika? Obor, který se hojně používá v dalších oborech
Podmínky pro hodnocení žáka v předmětu matematika
Podmínky pro hodnocení žáka v předmětu matematika Společné ustanovení pro všechny třídy čtyřletého studia a 5. až 8. ročníku osmiletého studia: Žákům bude vyučujícími umožněno doplnit chybějící klasifikaci
Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292
Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
KAG/SZZDI Didaktika matematiky Szv 2 L. Státní závěrečné zkoušky povinně volitelné (statut bloku: B)
1 Studijní program: N0114A170004 Učitelství matematiky pro střední školy Akademický rok: 2019/2020 Studijní obor: Učitelství matematiky pro střední školy maior Studium: Kombinované Specializace: ma Etapa:
Co vedlo ke zkoumání řezů kuželové plochy?
Různé přístupy ke kuželosečkám Zdeněk Halas KDM MFF UK Parabola dle Apollónia Elipsa a hyperbola dle Apollónia Konstrukce elipsy proužková součtová Obsah elipsy Zdeněk Halas (KDM MFF UK) 1 / 35 Zdeněk
Čísla a číslice ve starověku
Čísla a číslice ve starověku Zdeněk Halas V tomto textu se seznámíme s některými prehistorickými a starověkými způsoby záznamu a zápisu čísel. Čerpat přitom budeme z dochovaných dokladů. U prehistorie
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
Seminář z matematiky. jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)
Eudoxovy modely. Apollónios (225 př. Kr.) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní. Deferent, epicykl a excentr
Počátek goniometrie Eudoxovy modely Deferent, epicykl a excentr Apollónios (225 př Kr) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní Zdeněk Halas (KDM MFF UK) Goniometrie v antice 25
Matematika - Historie - 1
Matematika - Historie - 1 Vybrali jsme zajímavé jevy z historie matematiky a sestavili z nich jeden test. Doufáme, že se podaří splnit hned několik cílů. Test vás potěší, překvapí a poučí. Odpovědi hledejte
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června
B-IIa Studijní plány pro bakalářský SP Matematika se zaměřením na vzdělávání
B-IIa Studijní plány pro bakalářský SP Matematika se zaměřením na vzdělávání Označení studijního plánu Sdružené studium studijní plán maior - prezenční forma Povinné předměty obecná část Úvod do psychologie
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
Učitelství 2. stupně ZŠ tématické plány předmětů matematika
Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie
1. Fakulta aplikovaných věd a katedra matematiky
Kvaternion 1 (2012), 45 52 45 VÝUKA MATEMATICKÉ ANALÝZY NA ZÁPADOČESKÉ UNIVERZITĚ V PLZNI GABRIELA HOLUBOVÁ a JAN POSPÍŠIL Abstrakt. Cílem příspěvku je představit výuku matematické analýzy na Fakultě aplikovaných
Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20
Fyzika I. p. 1/20 Fyzika I. Něco málo o fyzice Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Fyzika I. p. 2/20 Fyzika Motto: Je-li to zelené, patří to do biologie. Smrdí-li to, je to chemie.
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Učebnice a sbírky úloh z matematiky
Učebnice a sbírky úloh z matematiky V přehledu jsou uvedeny učebnice zahrnující předepsané učivo. Konkrétní tituly doporučí jednotliví vyučující. I. Učebnice a pracovní sešity pro studijní obory 1. díl
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě
Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 9. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor účelně a efektivně
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA
SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.
Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy
Učebnice do primy 2014/15
Učebnice do primy Hudební výchova učebnice v elektronické podobě (FRAUS) pracovní sešit - Český jazyk 6 pro ZŠ a VG (nová generace) PS (FRAUS) /papírová podoba/ Český jazyk přehled učiva ZŠ (J. Melichar,
Matematika II. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: O7A, C3A, S5A, O8A, C4A, S6A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem umožnit studentům dosáhnout lepší výsledky ve společné
Gymnázium Jana Blahoslava, Ivančice, Lány 2. Školní vzdělávací program. Příloha č.1. Volitelné předměty
Gymnázium Jana Blahoslava, Ivančice, Lány 2 Školní vzdělávací program Příloha č.1 Volitelné předměty 2 OSMILETÉ VŠEOBECNÉ STUDIUM ČTYŘLETÉ VŠEOBECNÉ STUDIUM (zpracováno podle RVP ZV a RVP G) 1.2 Vzdělávací
Deskriptivní geometrie 1
S třední škola stavební Jihlava Deskriptivní geometrie 1 01. Úvod do DG 1 Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Bakalářské a diplomové práce. katedra matematiky
Bakalářské a diplomové práce katedra matematiky 31.10.2011 Závěrečné práce obecné informace databáze VŠKP výběr a zadání témat -kdy -jak zpracování práce odevzdání a obhajoba práce -kdy -jak okruhy témat
Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice www.math.muni.cz/matematika_drsne_svizne
Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice www.math.muni.cz/matematika_drsne_svizne 1 Jak vlastně studenti vnímají matematiku? počítání s čísly? pravidla na přerovnávání písmenek?
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
MATEMATIKA A Metodický list č. 1
Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači
Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
Závěrečná zpráva o seminářích Rozvíjíme matematickou gramotnost na základní a střední škole v roce 2015
Závěrečná zpráva o seminářích Rozvíjíme matematickou gramotnost na základní a střední škole v roce 20. Úvod Vzhledem k závažnosti matematického vzdělávání, které provází děti a žáky od předškolního věku
Manažerská ekonomika KM IT
KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout
aneb jiný úhel pohledu na prvák
Účelná matematika aneb jiný úhel pohledu na prvák Jan Hejtmánek FEL, ČVUT v Praze 24. června 2015 Jan Hejtmánek (FEL, ČVUT v Praze) Technokrati 2015 24. června 2015 1 / 18 Outline 1 Motivace 2 Proč tolik
Bonn, Rheinischen Friedrich-Wilhelms-Universität
Bonn, Rheinischen Friedrich-Wilhelms-Universität Seznam přednášek Bc s anotacemi http://www.mathematics.uni-bonn.de/files/bachelor/ba_modulhandbuch.pdf Studijní plán-požadavky http://www.mathematics.uni-bonn.de/studium/bachelor/studienprogramm
Řešení "stiff soustav obyčejných diferenciálních rovnic
Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární
Cvičení z matematiky - volitelný předmět
Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu
Přehled požadovaných učebnic
1. ročník - školní rok 2018 / 2019 Český jazyk a literatura: učebnice podle dohody s vyučující Německý jazyk: Maturita Solutions - 3rd edition SB + WB DIREKT neu 1, přepracované vydání, nakladatelství
Umění vidět v matematice
Umění vidět v matematice Mgr. Jiří Kulička, Ph.D. Dopravní Fakulta Jana Pernera Katedra Informatiky v dopravě Oddělení aplikované matematiky jiri.kulicka@upce.cz Toto není univerzitní přednáška zjednodušení
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
Čísla a číslice ve starověku
Čísla a číslice ve starověku Zdeněk Halas V tomto textu se seznámíme s některými prehistorickými a starověkými způsoby záznamu a zápisu čísel. Čerpat přitom budeme z dochovaných dokladů. U prehistorie
POŽADAVKY pro přijímací zkoušky z MATEMATIKY
TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy
Historické extremální úlohy
Historické extremální úlohy Pavlína Račková Univerzita obrany, Fakulta vojenských technologií, Katedra matematiky a fyziky e-mail: pavlinarackova@unobcz bstrakt V článku jsou uvedeny některé historické
Anglický jazyk: Upstream Elementary Oxford Heroes I. Díl ( matematická třída) Francouzský jazyk: Extra 1. Německý jazyk: Pingpong 1,2,3
Učebnice pro šk.rok 2010/2011 Prima: Prométheus, Herman: Úvodní opakování ( opakování z obecné školy) Kladná a záporná čísla Dělitelnost Osová a středová souměrnost Racionální čísla a procenta Český jazyk
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
Doporučené učebnice pro vyšší gymnázium - školní rok 2019/ A
1.A 2.A 3.A 4.A Čj Aj Nj Fj Prokop: Dějiny literatury od starověku do poč. 19. st. Sochorová: Čítanka I, Čj v kostce Passt schon 1 Prokop: Dějiny literatury 19. a poč. 20. stol. Prokop: Čítanka Sochorová:
Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2015/16
Gymnázium, Dašická 1083, Pardubice Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2015/16. 1. Český jaz.: 1/ Sochrová: Český jazyk v kostce pro SŠ, Fragment
Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia školní rok 2018/19
Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia školní rok 2018/19. 2) Literatura pro 1. ročník středních škol (nakladatelství Didaktis) 2. Anglický jazyk: 1) 1. F, H:
Nabídka seminářů pro 7.A a 3.B ve školním roce 2015/2016
Nabídka seminářů pro 7.A a 3.B ve školním roce 2015/2016 Studenti si volí semináře s celkovou dotací 4 hodiny týdně. Nabízené semináře mají dotaci 1 hodinu, resp. 2 hodiny týdně. Student si tedy může navolit
Přehled požadovaných učebnic
1. ročník - školní rok 2019 / 2020 Český jazyk a literatura: učebnice podle dohody s vyučující Maturita Solutions pre intermediate - 3rd edition SB + WB Německý jazyk: 1 direkt interaktiv, nakladatelství
Základy aritmetiky a algebry II
Osnova předmětu Základy aritmetiky a algebry II 1. Lineární rovnice, řešení v tělesech Q, R, C, Z p, počet řešení v okruhu Z n, n N \ P. Grafické řešení, lineární nerovnice. 2. Kvadratická rovnice. Didaktický
Učebnice pro vyšší stupeň gymnázia 2011/2012
Učebnice pro vyšší stupeň 011/2012 ČJL AJ kvinta A Kvinta B sexta A sexta B Septima A Septima B oktáva A oktáva B Prokop-Dějiny Prokop-Dějiny Prokop Prokop Prokop-Přehled Prokop-Přehled Prokop-Přehled
4. úprava 26.8.2010 ÚPRAVY VE VYUČOVACÍCH
4. úprava 26.8.2010 ÚPRAVY VE VYUČOVACÍCH PŘEDMĚTECH 1 ÚPRAVY VE VYUČOVACÍCH PŘEDMĚTECH Projednáno pedagogickou radou dne: 26. 8. 2010 Schválila ředitelka školy: 26. 8. 2010 Platnost od: 1. 9. 2010 Podpis
Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia školní rok 2019/2020
Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia školní rok 2019/2020. 2) Literatura pro 1. ročník středních škol (nakladatelství Didaktis) Řiďte se pokyny vyučujících v
PROFILOVÁ MATURITNÍ ZKOUŠKA TÉMATA - EKONOMIKA (školní rok 2011/2012)
TÉMATA - EKONOMIKA 1. Marketing 2. Management 3. Hospodářská politika 4. Trh, tržní hospodářství 5. Podnikání jako základ tržní ekonomiky 6. Hospodaření s oběžným majetkem, logistika 7. Dlouhodobý majetek
PROFILOVÁ MATURITNÍ ZKOUŠKA TÉMATA - EKONOMIKA (školní rok 2012/2013)
TÉMATA - EKONOMIKA 1. Marketing 2. Peníze a cenné papíry 3. Hospodaření s oběžným majetkem, logistika 4. Zahraniční obchodní činnost 5. Bankovní soustava ČR 6. Bankovní operace 7. Podnikání jako základ
OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21
OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...
(Člověk a společnost) Učební plán předmětu. Průřezová témata
Dějepis (Člověk a společnost) Učební plán předmětu Ročník 6 Dotace 2 Povinnost povinný (skupina) Dotace skupiny Vzdělávací předmět jako celek pokrývá následující PT: ENVIRONMENTÁLNÍ VÝCHOVA: - Vztah člověka