Implementace automatického měření preanalytické interference na koagulometrech cobas t 511 a ACL TOP 750

Podobné dokumenty
Doporučení k převzetí biologického materiálu klinickou laboratoří.

Koagulometr cobas t 511 porovnatelnost s jiným typem koagulometru a první úspěšný cyklus EHK

Zavedení nového přístroje v hematologické laboratoři

ročník 22 číslo 4 rok 2018 Časopis pro klienty Roche Diagnostics v České a Slovenské republice

Doporučení k převzetí biologického materiálu klinickou laboratoří.

Preanalytické interference a praktické využití sérových indexů

Nová doporučení o interní kontrole kvality koagulačních vyšetření. RNDr. Ingrid V. Hrachovinová, Ph.D. Laboratoř pro poruchy hemostázy, ÚHKT Praha

Poslední trendy krevních odběrů. Mgr. Tomáš Grim Mgr. Zuzana Kučerová

Indikátory kvality preanalytické fáze. Pracovní den, Lékařský dům, Praha Bunešová M., ÚLCHKB 2. LF UK a FN Motol, Praha

Laboratorní automatizace - pohled z praxe. Zdeněk Veškrna OKB Nemocnice Znojmo

Preanalytická fáze na rozhraní mezi klinickým

30 let vývoje biochemických analyzátorů

Koagulační vyšetření v rámci laboratorní automatizace a řešení firmy Stago (Biomedica ČS) RNDr. Jan Trbušek, Ph.D. Biomedica ČS, s.r.o.

Souvislosti mezi EHK, akreditací a laboratorní diagnostikou (glukóza).

Parametry metod automatické fotometrické analýzy

Automatizace v imunohematologii - včera, dnes a zítra? Ondřej Zedníček LAB-MED Systems s.r.o. Ostrava

Základní koagulační testy

Indikátory kvality preanalytické fáze. FONS Pardubice, Bunešová M., Friedecký B.

laboratorní technologie

Závěrečná zpráva. Zkoušení způsobilosti v lékařské mikrobiologii (Externí hodnocení kvality)

Seznámení s novým vydáním normy ISO 15197:2013. Drahomíra Springer. ÚLBLD VFN a 1.LF UK Praha

Závěrečná zpráva. Zkoušení způsobilosti v lékařské mikrobiologii (Externí hodnocení kvality)

Požadavek Výsledek (informace)

Procesy a management rizik ve zdravotnické laboratoři. Roubalová Lucie

Závěrečná zpráva. Zkoušení způsobilosti v lékařské mikrobiologii (Externí hodnocení kvality)

Bc. Jiří Kotrbatý Proces akreditace v hematologické laboratoři, Sysmex Hotel Voroněž, Brno

Validace sérologických testů výrobcem. Vidia spol. s r.o. Ing. František Konečný IV/2012

Co přinesla automatizace v pacientských laboratořích TO. Transfuzní oddělení Fakultní nemocnice Olomouc

SPC NH_OKL 02 Metody hematologie

HbA1c. Axis - Shield. Společnost je zapsána v obchodním rejstříku Městského soudu v Praze, odd. C vložka 1299

Srovnání výsledků EHK získaných na systémech POCT a v laboratořích. J. Kratochvíla, B. Friedecký SEKK Pardubice

Preanalytická fáze laboratorních vyšetření a risiko zdravotní péče

Kalibrace analytických metod. Miroslava Beňovská s využitím přednášky Dr. Breineka

Protokol o srovnání POCT EUROLyser CRP s akreditovanou metodou stanovení CRP imunoturbidimetricky na analyzátoru Unicel DxC 800

Komplexní řešení automatizované laboratoře nabízené firmou Abbott

synlab czech, s.r.o. Laboratoř Plzeň, Majerova 2525/7 Majerova 2525/7, Plzeň

Validační protokol LT CRP HS II (ADVIA 1800)

MMN, a.s. Oddělení laboratoře Metyšova 465, Jilemnice

VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO

Pavel Prouza Novinky v portfoliu Roche

Preanalytický systém cobas 8100 Roche na OKB FN Brno

Thermo Scientific TCAutomation Řešení laboratorní automatizace. Adaptabilní automatizace. ke zrychlení laboratorních procesů

cobas 8100 automated workflow series 3D inteligence v laboratorní automatizaci

Frekvence laboratorních chyb Neanalytických chyb je významně více,než analytických (50-80% všech laboratorních chyb!?)

SPC NH_OKL 02 Metody hematologie

VÝZNAM NĚKTERÝCH FAKTORŮ PREANALYTICKÉ FÁZE V MOLEKULÁRNÍ BIOLOGII

Postavení laboratorního vyšetření v klasickém systému péče o pacienta Klinik ik indikuje laboratorní vyšetření Laboratoř vyšetření provádí Klinik výsl

1. Biochemická a hematologická laboratoř MZ-BIOCHEM Poliklinika sv. Alžběty, Vodní 13, Uherské Hradiště

Laboratorní automatizace proč a jak?

NÁVOD K POUŽITÍ VÁPNÍK 600 KATALOGOVÉ ČÍSLO 207

Biochemická laboratoř

Preanalytické interference a praktické využití sérových indexů. Miroslava Beňovská

Protokol o zkoušce č.j. 1/2016, počet stran 12, strana číslo 1. V Praze dne Č.j. 1/2016

Doporučení ČSKB-Markery poškození myokardu Klin. Biochem. Metab., 16 (37), 2008, 1, Universal Definition of Myocardial Infarction

Glasswing OrSense OHBKT ÚVN

Vliv hemolýzy na stanovení celkového a přímého bilirubinu

Úloha laboratoře při správě systémů POCT. Ondřej Wiewiorka

CentroLab s.r.o. Sokolovská 810/304, Praha 9

Doporučení pro akreditace jednotlivých vyšetření z odbornosti 818

Odůvodnění veřejné zakázky podle 156 zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů (dále jen ZVZ )

Glukóza Ing. Martina Podborská, Ph.D. OKB FN Brno Zpracováno s pomocí přednášek RNDr. Petra Breineka Školní rok 2015/2016

Diagnostika lupus antikoagulans

Automatická močová linka cobas 6500 Jedna zkumavka, jeden dotyk plně automatizovaný proces vyšetření moči

SEZNAM LABORATORNÍCH VYŠETŘENÍ PHEM Centrální laboratoře, LKCHI Pracoviště hematologie

Protokol o testování systému glukometr měřící proužky Glukometr BioHermes GluCoA1c

OPAKOVÁNÍ JE MATKOU MOUDROSTI ANEB JAK SPRÁVNĚ POJMOUT PREANALYTICKOU FÁZI A KVALITU PRÁCE. Kapustová Miloslava (Spoluautoři - odborná literatura)

Současné vyšetřovací metody používané k diagnóze hemofilie. Mgr. Jitka Prokopová Odd. hematologie a transfuziologie Nemocnice Pelhřimov, p.o.

NAT testování dárců krve v ÚVN Praha

Elecsys SCC první zkušenosti z rutinní praxe. Ing. Pavla Eliášová Oddělení klinické biochemie Masarykova nemocnice v Ústí nad Labem

Automatizace v malé a střední laboratoři. 7.Střešovický transfuzní den M. Králová ÚHKT

Volba vybraných kardiologických markerů v laboratoři

Seznam vyšetření VYŠETŘENÍ LIKVOR KL ON Kladno, a.s.

Nové generace a verze metod heterogenní imunoanalýzy Dana Sichertová

2,00-4,00. 6 týdnů - koagulačně Protein S (PS) koagulačně % citrát 1:10-6 týdnů APC-řeď.FV deficientní

1. Laboratoř klinické biochemie a hematologie Zahradníkova 494/2, Brno 2. Odběrové místo Jugoslávská 13, Brno. Identifikace postupu vyšetření

PŘEZKOUMÁNÍ SYSTÉMU MANAGEMENTU KVALITY V HEMATOLOGICKÉ LABORATOŘI

Robotická mikrobiologie - systém W.A.S.P.

Preanalytický systém MPA neodmyslitelná součást provozu OKB FN Brno

VOLNÁ VAZEBNÁ KAPACITA Fe 300

Protokol o srovnání POCT Quo-Test s akreditovanou metodou stanovení HbA1c vysokoúčinnou kapalinovou chromatografií - Variant II TURBO BioRad

cobas 8000 série modulárních analyzátorů Inteligentní a výkonné řešení laboratoře

Hematologická vyšetření krve. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Dodatečné informace č

HEMOFILIE - DIAGNOSTIKA A LÉČBA V SOUČASNOSTI

Organizace transfuzní služby. I.Sulovská

Podrobný seznam vyšetření - hematologie

Příloha je nedílnou součástí osvědčení o akreditaci č.: 146/2017 ze dne:

REFERENČNÍ ROZMEZÍ HEMATOLOGICKÝCH VYŠETŘENÍ. Parametry krevního obrazu pro dospělé nad 15 let

Jak si ověřit správnou funkci glukometru?

Speciální koagulační vyšetření I

Protokol o zkoušce č.j. 5/2014, počet stran 13, strana číslo 1. V Praze dne Č.j. 5/2014

Srovnání hematologického analyzátoru Heska Element HT5 a veterinárního hematologického analyzátoru IDEXX ProCyte DX v klinickém prostředí

Preanalytická a postanalytická fáze Petr Breinek BC_Pre a Postanalyticka faze_2009 1

EUC Klinika Zlín a.s. Oddělení klinické biochemie a hematologie LP_02 Příloha č.1 Kritické meze a podmínky pro nátěr KO

Rozšířený protokol 1/2012 o testování systému glukometr měřící proužky Wellion Calla light na žádost zadavatele

laboratorní technologie

DŮLEŽITOST PROGRAMŮ INTERNÍ I EXTERNÍ KONTROLY KVALITY V SOUČASNÉ LABORATOŘI

Hemolyzační promývací roztok 80 H

Protokol o testování systému glukometr měřící proužky Glukometr Glucocard X-meter

Závěrečná zpráva. PT#M/21/2018 (č. 1021) Sérologie chlamydií. Zkoušení způsobilosti v lékařské mikrobiologii (Externí hodnocení kvality)

Transkript:

Preanalytické otázky jsou hlavním zdrojem chyb při vyšetření základních koagulačních testů. Automatizace detekce preanalytických problémů včetně hemolýzy, ikteru a lipemie (HIL), nesprávného objemu plnění odběrových zkumavek a výskytu sraženin je implementována u poslední generace analyzátorů a pomáhá tento problém řešit. Cílem této studie bylo zhodnotit přidanou hodnotu nového preanalytického modulu integrovaného do automatických koagulometrů v porovnání s dosud používanou vizuální kontrolou vzorků. Implementace automatického měření preanalytické interference na koagulometrech cobas t 511 a ACL TOP 750 doc. Mgr. LUDĚK SLAVÍK, Ph.D., ANETA PAVLÍKOVÁ DiS, PETRA CHALUPNÍKOVÁ, DANIELA NEPLECHOVÁ, PETRA KUPKOVÁ, Mgr. JANA ÚLEHLOVÁ, Ph.D. Hemato-onkologická klinika Fakultní nemocnice a Lékařské fakulty Univerzity Palackého Olomouc Úvod Preanalytické chyby jsou důležitou součástí rutinních laboratorních chyb v koagulaci s mnohdy fatálními důsledky pro správné výsledky laboratorních vyšetření a bezpečnost pacientů. 1 Základní preanalytické problémy v hemostáze zahrnují nedostatečně naplněné zkumavky, sražené vzorky, hemolyzované, lipemické nebo ikterické vzorky (interference HIL), vzorky odebrané v nevhodných zkumavkách a problémy s identifikací pacientů. Hemolýza je nejčastější příčinou preanalytické neshody. 2,3 In vitro hemolýza může nastat v důsledku nesprávného odběru vzorků (špatný žilní přístup), nadměrného protřepání vzorku, nevhodné přepravy nebo skladování vzorků. Interference v důsledku hemolýzy vzorku je důsledkem jak analytických, tak biologických variabilit u vzorku. 4 Příčin vzniku hemolýzy může být několik, pokud pomineme patofyziologický stav u pacienta, pak in vitro hemolýzu může nejčastěji vyvolat pomalý nebo obtížný odběr vzorků, prodloužené zaškrcení paže, použití nesprávných adaptérů při odběru (např. motýlové jehly nebo i. v. katetry) nebo nevhodné jehly (např. jehly s malým průsvitem), dále neúspěšné pokusy najít žílu, nepřiměřené míchání vzorku nebo následně v laboratoři nevhodná manipulace při odstředění vzorku, či nevhodná doprava vzorku (zastaralé systémy potrubní pošty bez kontroly akcelerace rychlosti). Optická interference je způsobena zejména změněnou absorbancí Hb při vlnových délkách běžně používaných optickými analyzátory. Bylo zdokumentováno, že měření pomocí mechanických koagulometrů může být také ovlivněno hemolyzovanými vzorky, protože lýza červených krvinek uvolňuje cytoplazmatické a plazmatické membránové molekuly, které interferují s hemostázou. Viditelná hemolýza po centrifugaci je definována jako přítomnost volného Hb v plazmě v koncentraci > 300 mg/dl. 5 Lipemie, definovaná jako zákal v důsledku zvýšené koncentrace lipidů, je druhou nejčastější endogenní interferující látkou. Často je způsobena parciálním podáváním syntetických lipidových emulzí nebo nedostatečným časem odběru krve po jídle. Zvýšená lipemie ovlivňuje výsledky základních koagulačních testů, zejména D-dimerů, kdy může zásadně ovlivnit optimální klinickou léčbu pacientů. 9 Vizuální kontrola jednotlivých vzorků pracovníky laboratoře byla běžnou metodou používanou v minulém desetiletí k detekci preanalytických problémů. 10 Zvyšující se pracovní zátěž a potřeba standardizace technologických postupů vedou laboratoře k zavedení plně automatizovaných analytických systémů. 11 Ačkoli automatizace je už delší dobu 10 4 2018

běžná v klinické chemii, pro koagulační přístroje byla automatizace preanalytické detekce interference a problémů navržena až u poslední generace přístrojů. 12-20 Koagulometry cobas t 511 (Roche) a ACL TOP 750 (Werfen) jsou plně automatizované systémy pro testování hemostázy, které nabízejí preanalytickou kontrolu integrity vzorků pro detekci plazmatických indexů (HIL), nesprávného objemu vzorku a výskytu sraženin. Cílem této studie bylo srovnání optického koagulačního analyzátoru ACL TOP 750 CTS, každodenně používaného v naší laboratoři, s novým koagulačním analyzátorem cobas t 511, který jako první na trhu využívá reagenční kazety, jež jsou velmi oblíbené v klinické chemii. Materiál a metody Detekce preanalytických parametrů provedená vizuální nebo manuální kontrolou vzorků byla srovnávána s novým preanalytickým modulem integrovaným do automatických koagulometrů cobas t 511 a ACL TOP 750. V rámci posuzování preanalytické fáze byly vyhodnocovány interference hemoglobinu (Hb), bilirubinu a triglyceridů (TG) na vzorcích plazmy obsahující interferující látku ve vysokých koncentracích a byl hodnocen vliv HIL na výsledky základních koagulačních testů PT, aptt a DDIM. Přístroj Plně automatický optický koagulometr s true-walk systémem a plně automatizovanou a uživatelsky definovatelnou preanalytickou kontrolou vzorků. Díky nejvyšší úrovni výkonu je systém ACL TOP 750 CTS ideální pro jakékoli laboratorní prostředí s velkým objemem zpracovávaných vzorků. Systém ACL TOP 750 maximalizuje jednoduchost, rychlost a produktivitu, zvyšuje automatizaci testování a kvalitu na nejvyšší úroveň. Nyní s automatizovanými preanalytickými kontrolami vzorků a pokročilým automatizovaným řízením kvality systém minimalizuje riziko chyb a zvyšuje efektivitu zlepšené péče o pacienty. Obr. č. 1: cobas t 511 s precizní obsluhou Přístroj cobas t 511 Přístroj cobas t 511 je společně s větším analyzátorem cobas t 711 prvním koagulometrem na trhu, který využívá reagenční kazety. Koncept reagenčních kazet usnadňuje obsluhu analyzátoru a software kontrolní jednotky umožňuje naprogramovat automatickou přípravu reagencií podle potřeby laboratoře, tzv. Walk Away Reagent Management. Veškeré pozice pro uchovávání reagencií v přístroji jsou chlazené, čímž je zaručena jak velká stabilita reagencií na palubě, tak snížení finančních nákladů. Systémy jsou otevřené a umožňují rovněž použití diagnostik jiných výrobců. Velmi komfortní funkcí koagulometru cobas t 511 je možnost doplňování vzorků, reagencií a spotřebního materiálu bez nutnosti přerušit nebo zastavit chod přístroje. Automatické testování integrity vzorků (HIL) zvyšuje kvalitu výsledků. Možnost vkládat uzavřené primární zkumavky od různých výrobců minimalizuje riziko kontaminace nebo potenciálního kontaktu s infekčním materiálem ze strany obsluhujícího personálu. Další funkcí, kterou přístroj nabízí, je automatická rotace primárních zkumavek ve stojánku pro načtení čárového kódu. Vizuální preanalytická kontrola Doposud byla preanalytická kontrola koagulačních vzorků prováděna vizuálně se subjektivním hodnocením. Snaha o standardizaci postupně vedla k definici škál, a to zejména u hemolýzy. Jak je patrné na obr. č. 3, jednalo se pouze o hrubé Normální Hemolyzovaný Lipemický Ikterický Obr. č. 2: Schematické znázornění možných příčin interference pro manuální hodnocení zhodnocení možné interference. Nicméně výhodou zavedení škál hodnocení byla standardizace, alespoň v rámci jedné laboratoře. Automatická preanalytická kontrola HIL test se provádí kvůli získání přibližné kvantifikace endogenních interferencí. Analyzátor je schopen semikvantitativního měření a hlášení hemolýzy, ikteru a indexu lipemie. Index hemolýzy (H), index ikteru (I) a index lipemie (L) jsou 11

Hgb minimální 20 50 100 250 500 1000 Obr. č. 3: Schéma škály pro hodnocení hemolýzy vzorku (mg/dl). založeny na výpočtech měření absorbancí zředěných vzorků při různých vlnových délkách. Analyzátor používá k určení indexů HIL samostatnou vyhrazenou testovací aplikaci a kazetu HIL. Analyzátor cobas t 511 používá k detekci hemolyzátu 588 nm. a ACL TOP 750). Soubor vzorků o 84 pacientech byl analyzován po zamražení alikvotů při 24 C. Tyto vzorky jsme před měřením vytemperovali na laboratorní teplotu, promíchali a následně měřili. Další soubor vzorků jsme shromažďovali 8 dnů po sobě, kdy jsme si v rozmezí dopolední pracovní doby (7:00 12:00) všímali vizuálně zajímavých vzorků a ihned měřili jejich preanalytiku jak na ACL TOP 750, tak na cobas t 511 a zjišťovali, kolik námi vizuálně pozitivních vzorků (hemolýza, ikterus, lipemie) je současně pozitivních i na přístrojích. Všechny vzorky byly analyzovány do 4 hodin po odběru a po centrifugaci (10 minut, 1 800 g, 20 C na Jouan C4i). Rozsah měření testu HIL je 5 100. Hodnoty indexu HIL 100 naznačují následující přibližné koncentrace interferencí: H-index 100 1 300 mg/dl hemoglobinu I-index 100 66 mg/dl bilirubinu L-index 100 cca 2 000 mg/dl intralipidu Testovací specifické interferenční limity pro indexy HIL jsou definovány v e-čárovém kódu každého příslušného testu. Pokud naměřená hodnota indexu HIL překročí horní limit, zobrazí se u daného testu chybové hlášení. Základní koagulační testy zahrnující protrombinový čas (PT), aktivovaný parciální tromboplastinový čas (aptt) a D-dimer byly prováděny postupně na dvou analyzátorech (cobas t 511 Interferenční studie na základních koagulačních testech Pro každou interferující látku (volný hemoglobin, bilirubin nebo triglyceridy) bylo nashromážděno dostatečné množství alikvotů, které jsme po rozmražení paralelně testovali na PT, aptt, lupus antikoagulans a D-Dimer na každém z analyzátorů cobas t 511 a ACL TOP 750 CTS. Pro stanovení byla použita srovnatelná diagnostika obou výrobců. V případě testu PT reagencie s rekombinantními Měření HIL testu může být použito pro jednotlivý vzorek pomocí manuálního zadání, nebo automaticky pro každý vzorek, nebo pouze pro konkrétní test. Srovnání vizuální kontroly a automatické kontroly vzorků pro jednotlivé preanalytické interferující látky 3 2,5 2 1,5 1 Vzorky pacientů v naší laboratoři byly cíleně shromažďovány po vizuálním zhodnocení charakteru plazmy. Pro studii byla použita plazma od hospitalizovaných a ambulantních pacientů jak z dospělé, tak dětské populace, odebraná do plastových zkumavek Vacuette obsahujících 3,2% citrát sodný. 0,5 Manuální hodnocení preanaly ky 0 HIL Roche cobas t 511 HIL Graf č. 1: Srovnání vizuální a automatické kontroly pro jednotlivé interferující látky 12 4 2018

100 90 80 70 60 50 40 30 20 10 0 PT aptt Graf č. 2: Hodnocení redukce počtu odmítnutých vzorků z důvodu překročení preanalytických pravidel lidskými tromboplastiny, u testu aptt reagencie s oxidem křemičitým a se syntetickými fosfolipidy ( aptt SP, Werfen) a se směsí sójových fosfolipidů (aptt screen, Roche), u testu citlivého na lupus antikoagulans reagencie drvvt (dilute Russel viper venom time, Werfen) a reagencie aptt lupus obsahující kyselinu ellagovou a směs mozkových králičích a sójových fosfolipidů (Roche) a pro test D-dimer diagnostika druhé generace s kombinací dvou monoklonálních protilátek. Lupus cobas t 511 cobas t 511 Manuální hodnocení Manuální hodnocení resp. 0,56 % u automatického hodnocení preanalytických pravidel, p < 0,001). Oba typy hodnocených automatických analyzátorů s integrovanými preanalytickými moduly, tedy jak cobas t 511, tak, shodně označily 12 vzorků (0,84 %) překračujících limity preanalytických interferujících látek, oproti tomu vizuální kontrola detekovala 38 pozitivních vzorků (2,65 %). Ikterické vzorky byly detekovány ve shodném počtu preanalytickými moduly analyzátorů jako při manuálním stanovení (0,07 0,14 % vs. 0,14 %, p NS), stejně tak lipemické vzorky (0,14 % vs. 0,14 %, p NS). Zásadní rozdíl byl v hodnocení hemolýzy, kde bylo při manuálním hodnocení nalezeno 34 pozitivních vzorků oproti 8, resp. 9 vzorkům z automatických preanalytických systémů (2,37 % vs. 0,56 0,63 %, p < 0,001). Interferenční studie základních koagulačních testů Stanovení základních koagulačních testů bylo porovnáváno na skupině 67 pacientů s manuálně vyhodnocenou interferencí v preanalytické fázi vyšetření, kdy pomocí využití automatického hodnocení preanalytické fáze bylo dosaženo redukce odmítnutí vzorků v rozsahu 57 85 % dle typu stanovení. Při hodnocení jednotlivých testů byla vždy hodnocena korelace hodnot pomocí směrnice a odchylky. Souhrn Vizuální nebo manuální kontrola zjistila statisticky více vzorků s preanalytickými problémy než nové preanalytické moduly integrované na cobas t 511, resp. ACL TOP 750 (3,5 % vs. 6,6 %, p <0,001). Výsledky 5,50 INR Srovnání vizuální kontroly a kontroly vzorků pomocí automatického hodnocení preanalytiky bylo provedeno na 1 435 vzorcích z běžného provozu laboratoře. Vizuální nebo manuální kontrola zjistila statisticky více vzorků s preanalytickými problémy než preanalytický modul integrovaný v automatických koagulometrech Roche cobas t 511 a ACL TOP 750 CTS (2,65 % vs. 0,84 %, p > 0,001). Většina vzorků s preanalytickou interferencí byla odmítnuta kvůli hemolýze vzorku (2,37 % po vizuální kontrole, Roche cobas t 511 5,00 4,50 4,00 3,50 3,00 2,50 2,00 1,50 y = 0,8368x + 0,2095 R² = 0,5926 1,000 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 Graf č. 3: Korelace hodnot INR mezi stanoveními na cobas t 511 a 13

Většina preanalytických chyb vznikla v důsledku špatného plnění odběrového systému. Interference ve formě hemolýzy, ikteru a lipemie (HIL) se projevily při jednotlivých testech, když koncentrace 5,30 4,80 4,30 aptt R y = 0,9979x - 0,0884 R² = 0,7492 volného hemoglobinu, bilirubinu nebo triglyceridů překročily prahovou hodnotu, která byla specifická pro analyzátor a použitou diagnostickou soupravu. Roche cobas t511 3,80 3,30 2,80 2,30 1,80 Závěr 1,30 Automatická a standardizovaná kontrola rutinních koagulačních vzorků pomocí cobas t 511, resp. ACL TOP 750, zvýšila přesnost a konzistenci při detekci preanalytických otázek ve srovnání s vizuální kontrolou. Hlavní výhodou je automatická detekce preanalytických chyb a odstranění subjektivního hodnocení těchto parametrů, což vedlo ke značné redukci preanalytických chyb. Diskuse Preanalytické moduly s automatizovanou spektrofotometrickou detekcí pro interferenci HIL a s nástroji kontrolujícími objem naplnění primární náběrové zkumavky včetně výskytu mikrosraženin jsou nově vyvinuté technologické inovace pro zlepšení kvality vyšetřovaného materiálu v procesu testování hemostázy. Naším cílem bylo zhodnotit vliv zavedení automatického hodnocení preanalytické fáze oproti doposud užívanému subjektivnímu hodnocení možného preanalytického ovlivnění výsledku. Při posuzování jsme se zaměřili pouze na hodnocení hemolýzy, ikteru a lipemie (HIL). Nehodnotili jsme výskyt špatně naplněných zkumavek a výskyt mikrosraženin, jelikož na našem pracovišti se tyto problémy vyskytují v minimální míře. U hodnocení HIL jsme byli příjemně překvapeni. Na rozdíl od implementace v klinické chemii, kde preanalytické Roche cobas t511 0,80 0,80 1,30 1,80 2,30 2,80 3,30 3,80 4,30 4,80 25000 20000 15000 10000 5000 Graf č. 4: Korelace hodnot poměrů aptt mezi stanoveními na cobas t 511 a 2,20 2,00 1,80 1,60 1,40 1,20 1,00 D-DIM y = 1,0697x - 418,39 R² = 0,9772 2000 0 4000 6000 8000 10000 12000 14000 16000 18000 20000 Graf č. 5: Korelace hodnot D-dimeru mezi stanoveními na cobas t 511 a Roche cobas t511 Lupus an koagulans y = 0,9402x - 0,0123 R² = 0,9343 0,80 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 Graf č. 6: Korelace hodnot poměru drvvt času mezi stanoveními na cobas t 511 a ACL TOP 750 CTS 14 4 2018

systémy vedou ke zvýšenému odmítání vzorků, v koagulaci se naopak počet vzorků s interferencemi snížil. To je asi zásadní věc pro implementaci automatického hodnocení preanalytické fáze do koagulace, jelikož každý vzorek, který je nutné opakovat, nám opožďuje možnost reagovat na potenciálně krvácivý stav u pacienta. doc. Mgr. Luděk Slavík, Ph.D. Hemato-onkologická klinika Fakultní nemocnice a Lékařské fakulty Univerzity Palackého Olomouc, I.P. Pavlova 185/6, 779 00 Olomouc Kontakt: ludek.slavik@fnol.cz Pracuje v hematologické laboratoři již od roku 1994. Hlavní odborná orientace zahrnuje problematiku poruch hemostázy. V současné době pracuje jako zástupce přednosty pro laboratorní diagnostiku na Hemato-onkologické klinice FN Olomouc. I když své práci věnuje hodně času, rád si najde chvilky na rybaření, cestování a sport. V oblibě má zejména vytrvalostní běhání s oblíbeným krédem Steva Prefontaina: Úspěch není, jak daleko jste se dostali, ale vzdálenost, kterou jste pro něj urazili. LITERATURA 1. Bonar R, Favaloro EJ, Adcock DM. Quality in coagulation and hemostasis testing. Biochemia Medica 2010; 20(2): 184-99. http:// dx.doi.org/10.11613/bm.2010.023 2. Chawla R, Goswami B, Singh B, Chawla A, Gupta VK, Mallika V. Evaluating laboratory performance with quality indicators. Lab Med 2010; 41: 297-300. http://dx.doi.org/10.1309/ LMS2CBX BA6Y0OWMG 3. Lippi G, Guidi GC, Mattiuzzi C, Plebani M. Preanalytical Variability: The dark side of the moon in laboratory testing. Clin Chem Lab Med 2006; 44: 358-365 (PMID: 16599826). 4. Lippi G, Plebani M, Favaloro EJ. Interference in coagulation testing: focus on spurious hemolysis, icterus and lipemia. Semin Thromb Hemost 2013; 39: 258-66 (PMID: 23229354). 5. Lippi G, Banfi G, Buttarello M, et al. Recommendations for detection and management of unsuitable samples in clinical laboratories. Clin Chem Lab Med 2007; 45(6): 728-36 (PMID: 175795 24). 6. Nikolac, N. Lipemia: causes, interference mechanisms, detection and management. Biochem Med (Zagreb) 2014; 24(1): 57-67 (PMID: 24627715). 7. Kazmierczak SC. Hemolysis, lipemia, and high bilirubin. Effect on laboratory tests. In: Accurate Results in the Clinical Laboratory: A Guide to Error Detection and Correction. Elsevier Inc 2013; 53-62. http://dx.doi. org/10.1016/b978-0-12-415783-5.00005-0 8. Castellone DD. Interference of hemolysis, icteric & lipemia coagulation testing. Advance healthcare network for laboratory 2011; 20(10): A30. 9. http://laboratory-manager.advanceweb.com/ Archives/Article-Archives/Interference-of-Hemolysis-Icteric-Lipemia-Coagulation-Testing. aspx 10. Favaloro EJ, Funk DM, Lippi G. Pre-analytical variables in coagulation testing associated with diagnostic errors in hemostasis. Lab Med 2012; 43(2): 1-10. DOI: 10.1309/LM- 749BQETKYPY PVM. 11. Vermeer HJ, Thomassen E, de Jonge N. Automated processing of serum indices used for interference detection by the laboratory information system. Clin Chem 2005; 51: 244-7 (PMID: 15613722). 12. Sédille-Mostafaie N, Engler H, Lutz S, Korte W. Advancing hemostasis automation-successful implementation of robotic centrifugation and sample processing in a tertiary service hospital. Clin Chem Lab Med 2013; 51(6): 1273-8 (PMID: 23241682). 13. Lippi G, Plebani M, Favaloro EJ. Technological advances in the hemostasis laboratory. Semin Thromb Hemost 2014; 40(2): 178-85 (PMID: 24443219). 14. Ricos C, Alvarez V, Cava F, et al. Current databases on biologic variation: pros, cons and progress. Scand J Clin Lab Invest 1999, update 2014; 59: 491-500 (PMID: 667686). 15. Lippi G, Salvagno GL, Montagnana M, Lima -Oliveira G, Guidi GC, Favaloro EJ. Quality standards for sample collection in coagulation testing. Semin Thromb Hemost 2012; 38(6): 565-75 (PMID: 22669757). 16. Ver Elst K, Vermeiren S, Schouwers S, Callebaut V, Thomson W, Weekx S. Validation of the minimal citrate tube fill volume for routine coagulation tests on ACL TOP 500 CTS. Int J Lab Hematol 2013; 35(6): 614-9 (PMID: 23663653). 17. Adcock Funk DM, Lippi G, Favaloro EJ. Quality standards for sample processing, transportation, and storage in hemostasis testing. Semin Thromb Hemost 2012; 38: 576-85 (PMID: 22706973). 18. Lippi G, Ippolito L, Favaloro EJ. Technical evaluation of the novel preanalytical module on instrumentation laboratory ACL TOP: advancing automation in hemostasis testing. J Lab Autom 2013; 18(5): 382-90 (PMID: 23736064). 19. Park SJ, Chi HS, Chun SH, Jang S, Park CJ. Evaluation of performance including influence by interfering substances of the Innovance D-dimer assay on the Sysmex coagulation analyzer. Ann Clin Lab Sci 2011; 41(1): 20-4 (PMID: 21325250). 20. Simundic AM, Nikolac N, Ivankovic V, et al. Comparison of visual vs. automated detection of lipemic, icteric and hemolyzed specimens: can we rely on a human eye? Clin Chem Lab Med 2009; 47(11): 1361-5 (PMID: 19778291). 15