Fázový závěs. 1. Zadání:



Podobné dokumenty
Laboratorní úloha 7 Fázový závěs

Schmittův klopný obvod

Signál v čase a jeho spektrum

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

ASYNCHRONNÍ ČÍTAČE Použité zdroje:

Obr. 1 Činnost omezovače amplitudy

SEKVENČNÍ LOGICKÉ OBVODY

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

Oscilátory Oscilátory

Teoretický úvod: [%] (1)

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Generátory měřicího signálu

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

Hlavní parametry rádiových přijímačů

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Koncepce přijímačů a vysílačů

VY_32_INOVACE_E 15 03

2-LC: ČÍSLICOVÉ OBVODY

Projekt Pospolu. Sekvenční logické obvody Klopné obvody. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jiří Ulrych.

2. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II

Teorie elektronických obvodů (MTEO)

Základní zapojení s OZ. Vlastnosti a parametry operačních zesilovačů

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)

Sekvenční logické obvody

2.9 Čítače Úkol měření:

KZPE semestrální projekt Zadání č. 1

4.2. Modulátory a směšovače

TDA7000. Cílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7000 a

Operační zesilovač, jeho vlastnosti a využití:

1.6 Operační zesilovače II.

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

Přenosová technika 1

Zesilovače. Ing. M. Bešta

OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ

Měření na nízkofrekvenčním zesilovači. Schéma zapojení:

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

3. D/A a A/D převodníky

Logické funkce a obvody, zobrazení výstupů

Studium klopných obvodů

A/D převodníky, D/A převodníky, modulace

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

ELEKTRONIKA. Maturitní témata 2018/ L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY

OPERA Č NÍ ZESILOVA Č E

Klopný obvod typu D, dělička dvěma, Johnsonův kruhový čítač

5. A/Č převodník s postupnou aproximací

Měření frekvence a času

4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU

Analogově-číslicové převodníky ( A/D )

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

Registry a čítače část 2

Operační zesilovač (dále OZ)

TRANZISTOROVÝ ZESILOVAČ

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs

Direct Digital Synthesis (DDS)

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

6 Algebra blokových schémat

Elektronické praktikum EPR1

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

3. Měření efektivní hodnoty, výkonu a spotřeby energie

Na trh byl uveden v roce 1971 firmou Signetics. Uvádí se, že označení 555 je odvozeno od tří rezistorů s hodnotou 5 kω.

Operační zesilovače. U výst U - U +

Obsah DÍL 1. Předmluva 11

KOMBINAČNÍ LOGICKÉ OBVODY

- + C 2 A B V 1 V 2 - U cc

MĚŘENÍ HRADLA 1. ZADÁNÍ: 2. POPIS MĚŘENÉHO PŘEDMĚTU: 3. TEORETICKÝ ROZBOR. Poslední změna

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Základy elektrického měření Milan Kulhánek

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Experiment s FM přijímačem TDA7000

Title: IX 6 11:27 (1 of 6)

Manuál přípravku FPGA University Board (FUB)

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.

Číslicové obvody základní pojmy

VY_32_INOVACE_ENI_2.MA_05_Modulace a Modulátory

Číslicový Voltmetr s ICL7107

DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz

CW01 - Teorie měření a regulace

Měření na bipolárním tranzistoru.

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

Měření pilového a sinusového průběhu pomocí digitálního osciloskopu

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

OPERAČNÍ ZESILOVAČE. Teoretický základ

I. Současná analogová technika

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

13 Měření na sériovém rezonančním obvodu

Elektronika pro informační technologie (IEL)

Způsoby realizace této funkce:

Měřící přístroje a měření veličin

Seznam témat z předmětu ELEKTRONIKA. povinná zkouška pro obor: L/01 Mechanik elektrotechnik. školní rok 2018/2019

P1 Popis laboratorních přístrojů a zařízení

Maturitní témata. pro ústní část profilové maturitní zkoušky. Dne: Předseda předmětové komise: Ing. Demel Vlastimil

Transkript:

Fázový závěs 1. Zadání: A. Na ázovém závěsu (IO NE 565 ve školním přípravku) změřte: a) vlastní kmitočet 0 oscilátoru řízeného napětím (VCO) b) závislost kmitočtu VCO na řídicím napětí (vstup VCO IN) v rozsahu 1-5 V ss c) závislost výstupního napětí ázového detektoru na svorce VCO IN v závislosti na ázovém rozdílu harmonického (t.j. sinusového) signálu na vstupu IN1 (U m = 1 V, = 5 khz) a signálu TTL na vstupu IN. d) při propojených svorkách OUT a IN změřte závislost výstupního napětí U ázového detektoru s iltrem na vstupním kmitočtu v oblasti vlastního kmitočtu 0. Určete rozsah synchronizace Δ u a rozsah zachycení Δ z Doporučená literatura: Katalog TESLA č. 4 (modrý) Amatérské radio B 1979/3 Amatérské radio B 1990/4 Seiart,M.: Polovodičové prvky a obvody na spracovanie spojitých signálov. ALFA, Bratislava 1988 Vedral,J.: Elektronické obvody měřicích přístrojů. Skriptum ČVUT-FEL, Praha 1994 Tietze,U., Schenk,Ch.: Halbleiter-Schaltungstechnik. Springer Vlg, Berlin 1993 1

. Popis měřeného předmětu: Měřeným předmětem je přípravek s IO NE 565 (číslicový ázový závěs). Blokové schema je na obr. 55 odpovídá obecnému blokovému schematu ázového závěsu (viz teoretický rozbor). +6 V 10n C 1 R 5k6 IN1 +/-1V 1µ FD Z 5k6 VCO OUT R 1 IN TTL IN VCO C 10n INT -6 V Obr. 55 3. Teoretický rozbor: a) vlastností měřeného předmětu Fázový závěs (Phase - Locked Loop, PLL; e Nachlausynchronisation) je speciálním typem regulačních obvodů, jejichž akční a regulovanou veličinou je kmitočet nebo áze. Jeho úlohou je regulovat kmitočet (rekvenci) oscilátoru VCO tak, aby byl přesně deinovaným násobkem kmitočtu signálu 1 řídicího (reerenčního) generátoru. Principiální uspořádání je na obr. 56 Reerenční generátor u 1 1 Fázový detektor u d Dolní propust u Napětím u řízený oscilátor u Dělič kmitočtu 1:N Obr. 56

Blokové schema odpovídá klasické regulační smyčce, s tím rozdílem, že vstupními a výstupními veličinami nejsou jako obvykle napětí a proudy, ale rekvence, a v porovnávacím obvodu (ázovém detektoru) se porovnávají áze. Fázový závěs vyrovnává malé rozdíly mezi vstupním a výstupním kmitočtem, čili vyrovnává kmitočet porovnávacího signálu na hodnotu kmitočtu signálu vstupního 1. Porovnávací kmitočet je buď přímo kmitočtem výstupním, nebo jeho deinovaným podílem ( = /N). Fázový závěs obsahuje tyto obvody: ázový detektor (FD) s přenosem K d aktivní dolní propust (zpravidla 1. řádu) (DP) s přenosem A.(jω) oscilátor řízený napětím (VCO - Voltage Controlled Oscillator, r Spannungsgesteuerte Oscillator) s přenosem K 0 (dělič kmitočtu (D)s dělicím poměrem 1/N - zařadí se jen tehdy, když 1 )) Při otevřené regulační smyčce, bez přítomnosti vstupního signálu kmitá oscilátor VCO na vlastním kmitočtu 0. Po připojení vstupního signálu (u 1 ) a uzavřené regulační smyčce porovnává detektor jeho ázi a rekvenci s porovnávacím signálem. Při nesouladu vznikne na výstupu detektoru napětí u d. Předpokládejme, že ázový detektor pracuje jako analogová násobička a jeho výstupní napětí je součinem napětí u 1 a u. Obsahuje tedy složky s rekvencemi 1 - a 1 +. Složka se součtovou rekvencí se potlačí iltrem (dolní propustí), rozdílová složka se zesílí a slouží jako řídící signál pro řízení rekvence oscilátoru VCO. Ta se změní tak, aby 1-0. Použije-li se dělič rekvence, = 1 a = N. 1 ( N je dělící poměr děliče). Jsou-li rekvence vstupního a porovnávacího signálu velmi rozdílné, součtový a rozdílový signál se nachází mimo pásmo propustnosti dolní propusti. Proto na vstup VCO nepřichází žádné chybové napětí u. Napětím řízený oscilátor kmitá na své vlastní rekvenci 0. Když se však obě rekvence 1 a vzájemně přibližují, rozdílová rekvence 1 - se dostane do pásma propustnosti iltru a ázový závěs se zavěsí. Na výstupu iltru vzniká chybové napětí u, které změní rekvenci oscilátoru VCO tak, aby rozdíl 1 - byl nulový. Řídicí napětí VCO je úměrné ázovému rozdílu mezi vstupním a výstupním napětím. V důsledku záporné zpětné vazby v regulační smyčce působí toto napětí tak, aby regulační odchylka (rozdíl kmitočtů nebo áze) byla minimální (ideálně nulová). To znamená, že kmitočet výstupního signálu ázového závěsu je buď roven reerenčnímu kmitočtu, nebo je jeho deinovaným násobkem (podle nastaveného dělicího poměru N děliče kmitočtu ve zpětnovazební smyčce). Chybové napětí je řídicím napětím oscilátoru VCO, jehož rekvence je v okolí pracovního bodu lineárně závislá na řídicím napětí podle vztahu = + K. U k 0 kde... výstupní kmitočet řízeného oscilátoru VCO (U 0 ) k... klidový kmitočet neřízeného oscilátoru VCO (U = 0) K 0... řídicí konstanta VCO U... střední hodnota chybového napětí Je-li u 1 = 0 (chybí vstupní signál) VCO kmitá na vlastní rekvenci 0. Při u 1 0 FD porovná jeho kmitočet 1 a ázi s porovnávacím signálem u,. Součtová rekvence se potlačí iltrem DP, rozdílová složka se zesílí A-krát (leží totiž v pásmu propustnosti iltru) a slouží jako regulační signál pro řízení kmitočtu VCO tak, aby 1 -, = 0. Pro výstupní kmitočet pak platí 3

= = N N Chování PLL výstižně popisuje závislost chybového napětí U na kmitočtu, tzv. převodní charakteristika (obr. 57). Na převodní charakteristice jsou patrné dva kmitočtové intervaly - oblast udržení a oblast zachycení. Oblast udržení (synchronizace) Δ u vyjadřuje, v jakém rozsahu změn vstupní rekvence 1 se pracující ( zachycený ) ázový závěs udrží v synchronizmu, t.j. v jakém kmitočtovém pásmu je schopen sledovat vstupní reerenční (řídicí, pilotní) signál. V ustáleném stavu při konstantní vstupní rekvenci je ázový posun mezi napětími u 1 a u konstantní (ϕ), protože 1 =. oblast udržení (synchronizace).δ u U oblast zachycení.δ z 0 1 U 0 u z Obr. 57 Frekvence oscilátoru VCO dokáže sledovat rekvenci vstupního signálu jen v rozpětí 0 ± Δ u za předpokladu, že obvod ázového závěsu byl předtím ustálený. Proto se.δ u nazývá oblast udržení obvodu PLL. Rozprostírá se symetricky kolem vlastní rekvence VCO a nezávisí na šířce pásma iltru. Na druhé straně je šířka oblasti udržení závislá na zesílení regulační smyčky, t.j. přenosu ázového detektoru a zesílení iltru, na amplitudě vstupního a výstupního signálu a dále na realizovatelné rozladitelnosti VCO. Oblast zachycení Δ z je kmitočtové pásmo, v němž je volně kmitající oscilátor VCO schopen synchronizace s reerenčním signálem. Je to největší rozdíl rekvencí. 1-0 při kterém se ještě obvod PLL zavěsí. Šířka oblasti je dána zejména mezní rekvencí m iltru DP (obr.58) 4

(jπ) Obr. 58 m Je-li - 0 < m, t.j. leží-li rozdíl kmitočtů v pásmu propustnosti iltru, chybový signál projde iltrem jako u na řídicí vstup VCO, oscilátor je tedy možno ladit. Říkáme, že ázový závěs je zavěšen. Čím vyšší je mezní kmitočet iltru, tím širší je oblast zavěšení PLL. Vyšší mezní kmitočet DP však zhoršuje stabilitu regulační smyčky. Oblast zachycení je vždy užší než oblast synchronizace (viz obr. 57) Jestliže - 0 > m, řídicí napětí je iltrem potlačeno, VCO není řízen a kmitá tedy na vlastní rekvenci 0 stejně jako při absenci reerenčního (pilotního) signálu. Na rozdíl od oblasti udržení je šířka oblasti zachycení přímo závislá na šířce pásma iltru DP. Druhy ázových závěsů Analogové - pro zpracování analogových (zpravidla harmonických) signálů (modulace, demodulace) Číslicové - pro synchronizaci a kmitočtovou syntézu logických signálů (zpravidla TTL). Fázový detektor je v těchto obvodech realizován obvodem EX OR, princip činnosti zcela odpovídá předchozímu popisu. Fázové závěsy se vyrábějí jako integrované obvody (MHB 4046, NE 565...). Jednotlivé typy se kromě základního rozdělení na analogové a číslicové liší zejména vlastním kmitočtem VCO a technologií (TTL, CMOS). Prvky ázového závěsu Fázový detektor Úkolem ázového detektoru je dávat výstupní signál, který deinovaným způsobem závisí na rozdílu ází (rekvencí) vstupních signálů. Vstupní signály jsou harmonické nebo pravoúhlé. Jako lineární ázový detektor se nejčastěji používá analogová násobička, jejíž výstupní signál je úměrný součinu okamžitých hodnot obou vstupních signálů. Digitální ázové detektory jsou sestavené z číslicových prvků (logická hradla AND, XOR, klopné obvody a pod.), které na obou dvou vstupech vyžadují pravoúhlá napětí. Dolní propust V téměř všech zapojeních obvodu PLL se používají dolnopropustní iltry prvního řádu. 5

Napětím řízené oscilátory (VCO) V principu je zde možné použít jakékoliv zapojení oscilátoru s možností změny rekvence výstupního signálu v malé oblasti (např. ± 10 až 50 %) okolo vlastní rekvence 0. Většinou se požaduje lineární závislost rekvence na řídícím napětí. Jako VCO se používají např. oscilátory LC laděné varikapy, astabilní multivibrátory nebo převodníky U/. Použití ázového závěsu Fázový demodulátor Při této aplikaci použijeme pouze obvod ázového detektoru popř. s připojeným iltrem a na jeho oba dva vstupy přivedeme vhodně upravené signály, jejichž ázový posun určujeme. Střední hodnota výstupního napětí FD je potom úměrná tomuto ázovému posunu. Úzkopásmová propust Smyčka zpětné vazby je uzavřená, vstupní signál u 1 přivádíme na vstup ázového detektoru, výstupní signál u V dostaneme na výstupu VCO. V případě, že je vstupní rekvence mimo rozsah zachycení ázového závěsu, kmitá oscilátor na vlastní rekvenci 0 s amplitudou U 0m. Je-li vstupní rekvence v oblasti zachycení obvod se zavěsí a rekvence VCO sleduje rekvenci vstupního signálu. Amplituda výstupního signálu je opět U 0m. Obvod se bude chovat jako pásmová propust s téměř pravoúhlou přenosovou rekvenční charakteristikou a šířkou pásma.δ z (obr.59). U m 0.Δ z 1 Demodulátor FM Obr. 59 Obvod ázového závěsu se může použít pro demodulaci rekvenčně modulovaného signálu, jestliže vlastní rekvence oscilátoru VCO je blízká nosné rekvenci. Frekvence VCO potom sleduje rekvenci vstupního signálu a chybové napětí u představuje demodulovaný signál n. 6

Kmitočtová syntéza Pomocí obvodu ázového závěsu je možné z velmi přesné a stabilní reerenční rekvence získat signály s diskrétně odstupňovanými kmitočty, které mají stejnou přesnost a stabilitu jako reerenční rekvence. PLL 1 1 /M M : 1... Fázový detektor Filtr VCO N. 1 /M /N N : 1... programovací vstupy Obr. 60 Princip kmitočtové syntézy je na obr.60. Výstup oscilátoru VCO je spojený se vstupem ázového detektoru přes číslicový programovatelný dělič rekvence s dělícím poměrem N. Jak získat dělič rekvence pomocí čítače je popsáno níže v kapitole o sekvenčních logických obvodech. Při pracujícím ázovém závěsu je rekvence výstupního signálu N-krát větší než vstupní rekvence 1. Dalším programovatelným děličem rekvence s dělícím poměrem M můžeme získat zlomkový racionální násobitel. Výstupní rekvence zapojení je: N =. M 1 Nastavením M a N můžeme získat velké množství signálů s diskrétně odstupňovanými rekvencemi se stejnou stabilitou a přesností jako má reerenční signál 1. Sekvenční logické obvody Čítač je složitější sekvenční obvod sestavený z jednoduchých bistabilních klopných obvodů (sekvenční obvody typu RS, JK, T, D). Čítač započítá každý vstupní impulz a svůj stav o jedničku zvýší (dopředný čítač) nebo sníží (vratný čítač). Obousměrné (reverzibilní) čítače mohou vstupní impulzy přičítat i odečítat. Čítač obvykle začíná počítat impulzy z výchozího nulového stavu, do kterého jej lze nastavit signálem nulování (reset, clear) přivedeným na k tomu určený vstup. Některé čítače mohou čítat z libovolného výchozího stavu, který se nastaví kombinací logických úrovní na vstupech předvolby počátečního stavu (preset, load). Maximální počet vstupních impulzů N, které je schopen čítač přijmout, je kapacita čítače. Po překročení této kapacity čítač generuje 7

výstupní impulz (přenos, přeplnění - carry, owerlow), čítač pracuje jako dělič N : 1 (desítkový - 10 : 1). Při čítání modulo m (mod m) nedosáhne n-bitový čítač svého maximálního obsahu n - 1, ale ze stavového čísla m < n - 1 přejde do nižšího stavového čísla - do stavového čísla 0. To je možné zařídit zkrácením cyklu čítače tak, že po příchodu m-tého impulzu je pomocí kombinačního obvodu přivedena aktivní úroveň na asynchronní vstup nulování (RESET). b) měřicí metody Z hlediska použitých metod měření se jedná o běžná měření napětí, kmitočtu a zobrazování průběhu signálů pomocí dvoukanálového osciloskopu. Schema zapojení pro měření charakteristiky ázového detektoru (bod Ac) je na obr. 61, schema zapojení pro měření regulačních vlastností obvodu ázového závěsu ( bod Ad) na obr. 6. Poznámky k průběhu měření jsou v kapitole Instrukce k postupu měření. TRI IN sin 1 IN1 IN IN VCO PLL V= A B TTL Obr. 61 sin 1 IN1 IN VCO OUT PLL V= A B IN Obr. 6 8

4. Instrukce k postupu měření Vlastní kmitočet 0 oscilátoru VCO změříme pomocí měřiče kmitočtu připojeného na výstup OUT při rozpojené zpětnovazební smyčce (OUT - IN). Jeho velikost ověříme i početně ze vztahu: 1, 0 = 4. R. C Při rozpojené zpětnovazební smyčce a připojeném ss zdroji na vstup IN VCO změříme závislost kmitočtu VCO na řídícím napětí dle bodu Ab zadání. Pro měření závislosti výstupního napětí ázového detektoru na ázovém rozdílu vstupních signálů potřebujeme dva signály s nastavitelným ázovým posunem. Získáme je např. vhodným zapojením dvou unkčních generátorů, z nichž jeden musí mít schopnost ázové synchronizace (KZ 1405 - ZOPAN). Nejvýhodnější je konigurace : dvoukanálový osciloskop OLDSTAR OS 900 s vestavěným unkčním generátorem a výstupem TTL, unkční generátor KZ 1405. Oba generátory předběžně naladíme na přibližně stejný kmitočet 0 = 5 khz, na KZ 1405 pomocí osciloskopu nastavíme rozkmit sinusového signálu ± 1 V, a propojíme je podle schematu na obr. 61. Signál z výstupu TTL v OS 900 zabudovaného generátoru (konektor je na zadním panelu) přivedeme na vstup TRI IN KZ 1405. Zde stlačíme tlačítko CONT a točítkem PHASE se snažíme nastavovat ázový posun v rozsahu 90 o až 70 o. Přitom je nutné aby bylo zobrazení obou průběhů stabilní, byla patrná činnost ázové regulace (vzájemný posun průběhů) a docházelo ke znatelné a plynulé změně výstupního napětí ázového detektoru. Pokud tomu tak není je s největší pravděpodobností příčina v rozdílné rekvenci obou průběhů nebo v nedodržení jejich požadovaných úrovní (překontrolujte). V tomto případě pomůže jemná změna rekvence sinusového signálu tak, až se objeví na jeho průběhu malá vodorovná ploška, která určuje okamžik (interval) synchronizace obou signálů a pomůže nám při přesném odečítání ázového posunu. Není-li k dispozici generátor s TTL výstupem, je nutné před připojením generátoru nastavit pomocí osetu a osciloskopu nízkou úroveň pravoúhlého signálu (L) na cca 0 V a vysokou úroveň (H) na cca 4 V. Nesprávné nastavení těchto úrovní, neodpovídající logice TTL, může mít za následek neunkčnost obvodu ázové regulace s důsledky popsanými výše. Měření závislosti výstupního napětí U ázového detektoru s iltrem na vstupním kmitočtu začneme na rekvenci 0, kdy je obvod zavěšen a plynule ji snižujeme. Současně sledujeme chování obou signálů a údaj voltmetru. V okamžiku (při rekvenci u ), kdy se údaj voltmetru skokem změní a rekvence signálu u vzroste na hodnotu 0 ještě vstupní rekvenci trochu snížíme a začneme ji opět zvyšovat. Přitom dojde při rekvenci z k zavěšení, údaj voltmetru se opět skokem změní a dále plynule sleduje změnu vstupní rekvence. Tak se zpět dostáváme k rekvenci 0. Další postup je stejný jako výše popsaný s tím rozdílem, že nyní budeme vstupní rekvenci nejprve zvyšovat a následně snižovat až k 0. Celý postup změny rekvence při měření je též názorně vyznačen šipkami v obr. 57. 9