Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona.



Podobné dokumenty
Praktikum III - Optika

pracovní list studenta

V-A charakteristika polovodičové diody

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Název: Tranzistorový zesilovač praktické zapojení, měření zesílení

Cvičení z matematiky jednoletý volitelný předmět

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí

PRAKTIKUM II Elektřina a magnetismus

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu.

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4

pracovní list studenta

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

SEZNAM ANOTACÍ. Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Úloha 1: Zapojení integrovaného obvodu MA 7805 jako zdroje napětí a zdroje proudu

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu Jaminovým interferometrem

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).

Odborně-pedagogický koncept

Úloha 5: Charakteristiky optoelektronických součástek

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

vývojvoj a perspektivy

pracovní list studenta

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Regresní a korelační analýza

Modelování a simulace Lukáš Otte

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

základní vzdělávání druhý stupeň

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

CZ.1.07/1.5.00/

Regresní a korelační analýza

ANOTACE vytvořených/inovovaných materiálů

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

pracovní list studenta Elektrický proud v kovech Voltampérová charakteristika spotřebiče Eva Bochníčková

Měření modulů pružnosti G a E z periody kmitů pružiny

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

Fyzikální praktikum...

ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR

3.5 Ověření frekvenční závislosti kapacitance a induktance

V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

VY_52_INOVACE_2NOV64. Autor: Mgr. Jakub Novák. Datum: Ročník: 8. a 9.

Protokol. Vzdáleně měřený experiment charakteristiky šesti různých zdrojů světla

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Pracovní návod 1/5

10. Předpovídání - aplikace regresní úlohy

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc

Zkvalitnění výuky využitím ICT technologií CZ.1.07/1.5.00/ Matematika a její aplikace. Matematika. Závislosti a funkční vztahy

Pravidla pro tvorbu tabulek a grafů v protokolech z laboratoří fyziky

Luxmetr LS-BTA, lampička, izolepa, 32 kusů průhledné fólie (nejlépe obaly od CD).

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

PŘECHODOVÝ JEV V RC OBVODU

Elektronické praktikum EPR1

PRAKTIKUM II Elektřina a magnetismus

Voda a život Wasser und Leben

Požadavky k opravným zkouškám z matematiky školní rok

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Grafy s fyzikální. tématikou ANOTACE VY_32_INOVACE_56. VY_32_INOVACE_56 Grafy s fyzikální tématikou autorka: Mgr. Lenka Andrýsková, Ph.D.

Regresní a korelační analýza

Téma: Měření voltampérové charakteristiky

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

MATURITNÍ TÉMATA Z MATEMATIKY

Měření hodnoty g z periody kmitů kyvadla

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

pracovní list studenta

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Aplikovaná matematika I

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

Manuální, technická a elektrozručnost

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD Čj SVPHT09/03

CZ.1.07/1.5.00/

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Požadavky k opravným zkouškám z matematiky školní rok

Elektronické praktikum EPR1

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_03_FY_A

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky optoelektronických součástek

Matematika PRŮŘEZOVÁ TÉMATA

Maturitní témata profilová část

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

pracovní list studenta

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce:

Základy matematiky pracovní listy

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

PRAKTIKUM II Elektřina a magnetismus

Transkript:

PROMOTE MSc POPIS TÉMATU FYZIKA 7 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Boltzmannův zákon Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk Praktický test teoretického zákona. 2 hodiny Věk žáků: 17 Připravené autorkami příspěvku. PC, Excel Praktická verifikace Boltzmannova zákona o rozdělení energie. Využití základního poznatku z termodynamiky v experimentu. Pro měření je dostupný podpůrný text. PH7 1

Několik poznámek k základním poznatkům o grafu funkce ve fyzikálním vzdělávání Úvod Jedním z hlavních požadavků moderních přírodovědných vzdělávacích systémů v současnosti je rozvoj takových schopností osobnosti, které budou mít trvalou hodnotu a budou všestranně použitelné. K těmto přírodovědným schopnostem osobnosti nepochybně patří porozumění příčinným vztahům a jejich matematickému vyjádření např. formou funkcí a jejich grafů. Graf funkce poskytuje množství informací, které navíc může zprostředkovat počítač. V době počítačů se stává zobrazení funkčních vztahů grafem běžným dorozumívacím prostředkem nejen ve fyzice a technice, ale i v denním životě. Metody, které umožňují matematicky vyjádřit různé příčinné vztahy a následné změny, jsou trvalé hodnoty, které může mladý člověk použit v různých povoláních. V příspěvku jsou prezentované základní poznatky o grafu funkce potřebné pro činnost budoucích učitelů ve fyzikální laboratoři formou blokového schématu s využitím počítače. 1 K metodice formování dovednosti používat graf funkce s fyzikálním obsahem Přenos poznatků o grafu funkce z matematiky do fyziky je pro studenty náročný, což potvrzuje rovněž výzkum [1], [2]. Graf fyzikální funkce, na rozdíl od matematické funkce má svoje specifika především proto, že popisuje konkrétní přírodní zákonitosti, které by studenti měli umět zjistit. Z tohoto důvodu byla pro studenty, budoucí učitele fyziky vypracovaná vhodná metodika k osvojení si schopnosti pracovat s grafem fyzikální funkce. Tuto metodiku může učitel použít i při formování fyzikálních poznatků žáků v základní a střední škole. Metodika přenosu poznatků o grafech funkcí vyžadovala a) stanovit rozsah potřebných informací sestavených do hierarchické řady (25 informací), b) vypracovat blokové schéma se zařazenými informacemi o činnosti studentů c) vypracovat vysvětlující učební text. S těmito činnostmi se studenti v začátcích studia setkali v přednáškách, seminářích a při laboratorních měřeních. Část hierarchicky uspořádaných strukturních prvků grafu využívaných ve fyzikálním vzdělávaní a upravených pro potřeby studentů, budoucích učitelů: aproximovat body zobrazující výsledky měření při fyzikálním ději spojitou čárou grafu, použit grafickou interpolaci a extrapolaci ke stanovení hodnot veličin i v těch oblastech, kde se měření nekonalo, vidět na přímkovém grafu děje probíhající rovnoměrně, vidět souvislost mezi přímkovým grafem při rovnoměrně probíhajícím fyzikálním ději a grafem lineární funkce v matematice, umět z grafu zapsat fyzikální rovnici, stanovit rychlost změny rovnoměrného děje měřením podílu y x na grafu funkce y = y( x) a vidět souvislost se směrnicí přímky při lineární funkci v matematice, vidět na křivkovém grafu děje probíhající nerovnoměrně, vidět souvislost mezi křivkovým grafem při nerovnoměrně probíhajícím fyzikálním ději a křivkovým grafem z oblasti matematických funkcí (kvadratická funkce, lomená racionální funkce, mocninná funkce, exponenciální funkce apod.), zapsat z křivkového grafu všeobecnou fyzikální rovnici, transformovat křivkový graf na přímkový graf, sestrojit přímkový graf v nových souřadnicích, PH7 2

zapsat fyzikální rovnici z přímkového grafu fyzikální závislosti a stanovit hodnoty fyzikálních veličin a konstant, buď jako směrnici přímky ve tvaru podílu y x nebo jako úsek, který vytíná přímkový graf na jednej ze souřadnicových os, po použití grafické extrapolace. 2 Blokové schéma vyšetřování fyzikální závislosti grafickou metodou pomocí počítače V současnosti je ve fyzikální laboratoři řada experimentů podporovaných počítačem a výstupy těchto experimentů bývají většinou grafy znázorňující vzájemné závislosti fyzikálních veličin. Grafická zobrazení jsou buď přímková nebo křivková a studenti z nich mohou buď přímo nebo po určitých matematických úpravách číst různé fyzikální informace. Při vyšetřování fyzikálních závislostí zobrazených počítačem je třeba si uvědomit důležitost postupných kroků. Na KF FPV jsme se zabývali metodikou vyšetřování fyzikálních závislostí nasnímaných, resp. zobrazených počítačem a v další části příspěvku prezentujeme blokové schéma a metodiku vyšetřování fyzikální závislosti grafickou metodou pomocí programu MS Excel. Blokové schéma [6] vede studenta matematickou cestou při zpracovávání výsledků fyzikálního měření k vyjádření fyzikální závislosti a stanovení hodnot fyzikálních veličin a konstant (obr. 1). PH7 3

Obr. 1 Metodika vyšetřování fyzikální závislosti grafickou metodou pomocí programu MS Excel 1. Z naměřených hodnot fyzikálních veličin v programu MS Excel vytvořte vhodnou tabulku. 2. Z vytvořené tabulky pomocí příkazu Vložit/Graf v pravoúhlé souřadnicové soustavě sestrojte graf závislosti kolektorového proudu I k na napětí U EB tranzistoru NPN. 3. Ze známých důvodů je potřebné zobrazenou fyzikální závislost fitovat (vyrovnat). Lineární i nelineární závislost (typu kvadratické funkce, lomené racionální funkce, mocninné funkce, exponenciální funkce apod.) fitujte (vyrovnejte) následovně. Klikněte pravým tlačítkem myši na zobrazenou závislost a použitím příkazu Přidat trendovou čáru vyberte některou z už předdefinovaných fitovacích (vyrovnávacích) funkcí. Fitovací funkci vyberte na základě poznatků získaných z návodu k laboratorní úloze, resp. z odborné literatury v dané oblasti fyziky. PH7 4

4. V tomto dialogovém okně ještě vyberte příkaz Možnosti, označte Zobrazení rovnice regrese a Zobrazení koeficientu spolehlivosti. Klikněte na OK a program zobrazí fitovanou závislost, vypíše analytické vyjádření rovnice regrese i s koeficientem spolehlivosti. Když se hodnota koeficientu spolehlivosti blíži k hodnotě +1 nebo 1 (např. 0,996) považujte výběr fitovací funkce za správný. 5. Z rovnice regrese zapište fyzikální rovnici a z ní přímo odčítejte hodnotu konstanty B, napište, co konstanta B představuje a vysvětlete jak z ní určíme hodnotu Boltzmannovy konstanty k a určete ji. 3 Laboratorní úloha zpracovaná grafickou metodou Praktické ověření platnosti Boltzmannova zákona rozdělení energie V laboratorní úloze se postupuje podle návodu, který je uvedený v skriptech [3] a který byl pro naše potřeby upraven. Boltzmannova konstanta se stanoví pomocí voltampérové charakteristiky přechodu PN. Závislost kolektorového proudu na vstupním napětí vyjadřuje vztah eu EB Ik = I0 exp. (1) kt Změří se závislost kolektorového proudu I k tranzistoru typu NPN na napětí U EB mezi emitorem a bází. Pomocí programu MS Excel se zobrazí graf této závislosti a grafickou metodou se má stanovit hodnota Boltzmannovy konstanty k a výsledky se porovnají s tabulkovou hodnotou. Měření se opakuje při různých teplotách. Obr. 2 V průběhu fyzikálního měření získáme tabulku naměřených hodnot na obr. 2 a když postupujeme v souladu s blokovým schématem a podle prezentované Metodiky..., dopracujeme se k stanovení hodnoty Boltzmannovy konstanty grafickou metodou. Zobrazená křivková závislost na obr. 2 je podobná funkci exponenciálního typu. Závislost fitujeme exponenciální funkcí, zobrazíme si regresní rovnici a koeficient spolehlivosti. PH7 5

Program MS Excel zobrazí fitovanou závislost, vypíše rovnici regrese ve tvaru y Bx = Ae, y = 6 10 12 e 39,304x (2) a koeficient spolehlivosti R 2 = 0,981. Výběr fitovací funkce lze považovat za správný, když R 2 ±1 (viz blokové schéma a Metodiku vyšetřování ). Bx Z regresní rovnice (2) tvaru y = Ae y = 6 10-12 e 39,304x, zapíšeme fyzikální rovnici BU EB 12 39,304U EB I k = I 0e Ik = 6 10 e. (3) e Z návodu k laboratorní úloze vyplývá, že konstanta B = hledaná hodnota kt e Boltzmannovy konstanty k =, kde e je velikost elementárního elektrického náboje a T BT je absolutní teplota, při níž měření probíhá. V regresní rovnici (2) koeficient A ( 6 10 12 ) představuje ve fyzikální rovnici (3) hodnotu proudu I 0. Stanovení hodnoty Boltzmannovy konstanty: 19 e 1,602 10 k = = J K 1, BT 39,304 291,46 k = 1,39845 10 23 J K 1. 23 Tabulková hodnota Boltzmannovy konstanty je k = 1,380 658 10 J K 1. Závěr Prezentovaná laboratorní úloha je ze souboru osmi laboratorních úloh, jejichž výsledky se zpracovávají grafickou metodou a které studenti učitelského studia fyziky v rámci Fyzikálních praktik I, II, III a IV na Katedře fyziky Fakulty prírodných vied absolvují. Osvojení si grafické metody jako jedné z poznávacích metod při zpracování výsledků fyzikálních měření pomocí počítače lze hodnotit velmi pozitivně. Vyšetřování fyzikálních závislostí a zpracování výsledků laboratorních měření podle navržené metodiky a podle prezentovaného blokového schématu se osvědčilo a projevilo se to zejména v podobě správně vyhodnocených protokolů laboratorních měření. Literatura: [1] Horváthová, D.: Úloha grafu v laboratórnom meraní v príprave budúcich učiteľov: In: Didfyz 2000. Nitra : UKF, 2001, str. 109 119. ISBN 80-8050-387-7 [2] Horváthová, D.: K práci s grafom funkcie v laboratórnom meraní v príprave budúcich učiteľov: In: 2. Vedecká konferencia doktorandov, Nitra: UKF, 2001, str. 142 147. ISBN 80-8050-386-9 [3] Kecskés, A., Malinarič, S., Vozár, L.: Fyzikálne praktikum. Elektrina, magnetizmus a atomová fyzika. Nitra : FPV, 1994. [4] Rakovská, M.: K otázkam výskumu prírodovedných schopností žiakov. Formovanie prírodovedných poznávacích metód, ACTA DIDACTICA 5, Nitra : UKF, 2002, str. 7 11. ISBN 80-8050-524-1. [5] White, R., T.: The Validation of a Learning Hierarchy. In: American Education Reseach Journal, 1974, Vol. 11, No. 2. [6] Zelenický, Ľ., Horváthová, D., Rakovská, M.: Graf funkcie vo fyzikálnom vzdelávaní. Nitra: FPV UKF, 2005. ISBN 80-8050-826-7 PH7 6