KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204
OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost rychlosti na daném úseku během pohybu? Otázka 3: Co je okamžitá rychlost hmotného bodu v daném čase? Co říká o pohybu tělesa? Otázka 4: Jaká je základní jednotka rychlosti? Otázka 5: Čím měříme okamžitou rychlost automobilu, větru, letadla, lodi, proudění vody?
Průměrná rychlost: Během pohybu se na delším časovém úseku většinou rychlost mění (rozjíždění, zpomalení v zatáčkách, větší rychlost na dálnici než ve městě, brzdění, stání na křižovatkách ) Jak určíme průměrnou rychlost a jaký je její význam? Start Cíl
Úkol 1: Urči, zda má 1.autíčko průměrnou rychlost na stejné trati od startu do cíle menší, větší nebo stejnou jako 2. autíčko. 1. 20m/s 2m/s 2. 20m/s 2m/s Dráha obou je stejná. Ale 1. autíčko zjevně dojede do cíle za kratší čas (většinu dráhy jede rychleji). Proto 1. autíčko má průměrnou rychlost větší.
Průměrná rychlost není aritmetickým průměrem jednotlivých rychlostí na úsecích! Proto ji značíme v P a ne v jako aritmetický průměr jednotlivých rychlostí. Zdůvodnění: aritmetický průměr určujeme např. u více stejně hodnotných měření nebo stejně důležitých členů. Velikosti rychlostí zde nemají stejnou důležitost, záleží na délkách a dobách pohybu na úsecích.
Průměrná rychlost: Průměrná rychlost se nezabývá kolísáním velikosti okamžité rychlosti. Závisí pouze na celkové dráze, kterou těleso urazilo za celkový čas. Průměrná rychlost pohybu:
Úkol 2: Urči průměrnou rychlost vozidla, které projíždí první polovinu dráhy dlouhou 800m rychlostí 20m/s a druhou polovinu dráhy rychlostí 40m/s. Řešení: v p = s c /t c = 1600m/60s = 27m/s
Obecné řešení 2: Urči průměrnou rychlost vozidla, které projíždí první polovinu dráhy rychlostí v 1 a druhou polovinu dráhy rychlostí v 2. s 1 = s/2, v 1 s 2 = s/2, v 2 t 1 = s/2 : v 1 = s/2 v 1 t 2 = s/2 :v 2 = s/2v 2 v p = s t = s s + s = 2v 1 2v 2 2v 1 v 2 v 1 + v 2 Průměrná rychlost na stejně dlouhých úsecích nezávisí na délce dráhy a není aritmetickým průměrem jednotlivých rychlostí.
Úkol 3: Urči průměrnou rychlost vozidla, které projíždí první polovinu doby (tj. 30s) rychlostí 20m/s a druhou polovinu doby rychlostí 40m/s. Řešení: v p = s c /t c = 1800m/60s = 30m/s
Obecné řešení 3 : Urči průměrnou rychlost vozidla, které projíždí první polovinu doby rychlostí 20m/s a druhou polovinu doby rychlostí 40m/s. t 1 = t/2, v 1 t 2 = t/2, v 2 s 1 = v 1 t/2 s 2 = v 2 t/2 v p = s t = (v 1+v 2 ).t 2t = (v 1+v 2 ) 2 Průměrná rychlost vyjde stejně jako aritmetický průměr pouze v případě, že oběma rychlostmi jedeme po stejně dlouhou dobu!
Úkol 4: Vypočti průměrnou rychlost autíčka z minulé hodiny na celé trati od startu do cíle. 43 m 30s 7. 55 m 17 m 3. 24 m 6. 35s 10s 15s 2. 4. 20s 5. 25s 35 m 8. 6 m 29 m 5s 72 m 1. 100 m 40s 0 m 0s 45s 9.
Řešení 4: Vypočti průměrnou rychlost autíčka z minulé hodiny na celé trati od startu do cíle. Podstatné informace: Start : 0s Cíl: 45s celková dráha: s celk = 100m celkový čas: t celk = 45s průměrná rychlost: v p =? v p = s celk / t celk v p = 100m : 45s = 2,2 m/s 0 m 100 m
Úkol 5: Urči rychlost vozidla na úsecích A C a jeho průměrnou rychlost na celé trati. s (km) 90 60 30 A B C 0 1 2 3 4 t (h)
Řešení 5: Rychlost vozidla na úseku A: s (km) 90 60 B C Δs = 30km, Δt = 2h, v A = Δs / Δt v A = 30/2 = 15km/h 30 15 A 0 1 2 3 4 t (h)
Řešení 5: Rychlost vozidla na úseku B: s (km) 90 60 B C Δs = 60km 30km = 30km Δt = 3h - 2h = 1h v B = Δs / Δt v B = 30/1 = 30km/h 30 A 0 1 2 3 4 t (h)
Řešení 5: Rychlost vozidla na úseku C: s (km) 90 60 B C Δs = 90km 60km = 30km Δt = 3,33 h - 3h = 0,33h v C = Δs / Δt v C = 30/0,33 = 90km/h 30 A 0 1 2 3 4 t (h)
Řešení 5: Průměrná rychlost vozidla na celé trati: s (km) 90 60 C s celk = 90km, t celk = 3,33h, v P = s / t v P = 90/3,33 = 27km/h 30 A B Nepotřebujeme znát velikosti rychlostí na jednotlivých úsecích! 0 1 2 3 4 t (h)
DRUHY POHYBŮ Úkol 6: Jak velkou rychlostí by musel jet automobil z poslední úlohy, aby celou trať projel stálou rychlostí a dorazil do cíle za stejný čas? Jak by vypadal jeho graf dráhy? Zakresli do původního grafu jinou barvou.
Řešení 6: Musel by jet právě průměrnou rychlostí 27km/h. s (km) 90 60 30 A B C Projet celou trať stálou rychlostí a přitom urazit stejnou dráhu za stejný čas to je význam průměrné rychlosti v P. 0 1 2 3 4 t (h)
Průměrná rychlost udává, jakou rychlostí by se těleso muselo pohybovat po celou dobu pohybu, aby urazilo danou celkovou dráhu za daný celkový čas.
Otázka: Je průměrná rychlost pohybujícího se tělesa také vektor jako rychlost okamžitá? Průměrná rychlost neříká nic o průběhu pohybu, velikosti ani směru okamžitých rychlostí v různých časech není vektor, ale je skalár.
Úkol 7: Určete, o jakou rychlost jde: Letadlo má cestovní rychlost 800km/h. průměrná Tachometr motocyklu ukazuje rychlost 120km/h. okamžitá Maximální rychlost nákladního automobilu je 80km/h. maximální hodnota okamžité rychlosti
- PŘÍKLADY Sbírka úloh z Fyziky pro SŠ, Oldřich Lepil a kolektiv 2.5 Cyklista projel dráhu 3 km za 10 minut. Jaká byla jeho průměrná rychlost? Jakou dráhu by ujel při této průměrné rychlosti za půl hodiny? 2.7 Automobil jel tři čtvrtiny celkové doby jízdy rychlostí 90 km h 1, zbývající dobu jízdy rychlostí 50 km h 1. Vypočítejte jeho průměrnou rychlost. 2.8 Automobil projel tři čtvrtiny celkové dráhy rychlostí 90 km h 1 a zbývající část dráhy rychlostí 50 km h 1. Vypočítejte jeho průměrnou rychlost. 2.9 Turista šel 2 hodiny po rovině rychlostí 6 km h 1, další hodinu vystupoval do prudkého kopce rychlostí 3 km h 1. Jaká byla jeho průměrná rychlost?
- PŘÍKLADY Sbírka úloh z Fyziky pro SŠ, Oldřich Lepil a kolektiv 2.10 Nákladní automobil jel první polovinu dráhy po dálnici rychlostí 80 km h 1, druhou polovinu dráhy po polní cestě rychlostí 20 km h 1. Vypočítejte jeho průměrnou rychlost. 2.11 Cyklista jede úsek cesty o délce 18 km rychlostí 15 km h 1 a úsek o délce 9 km rychlostí 30 km h 1. Jaká je jeho průměrná rychlost? 2.12 Řidič automobilu plánuje jízdu do vzdálenosti 30 km na dobu půl hodiny. Nejprve je však nucen jet 20 minut za kolonou pomalých vozidel rychlostí 30 km h 1. Jakou rychlostí by musel jet ve zbývajícím čase 10 minut, aby dorazil do cíle za plánovanou dobu?
ODKAZY OBRÁZKŮ Obr.1 Eskalátor: http://upload.wikimedia.org/wikipedia/commons/f/f8/escalator%2c_va%c5%88kovka%2c_b rno_%283%29.jpg Obr.1 Cyklista: Klipart PP