7. Slovní úlohy o pohybu.notebook. May 18, Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu
|
|
- Dalibor Neduchal
- před 9 lety
- Počet zobrazení:
Transkript
1 Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/ Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/ Název a číslo oblasti podpory: Zvyšování kvality ve vzdělání 7.1 Datum zahájení realizace projektu: Datum ukončení realizace projektu: Základní škola Nýrsko, Školní ulice, příspěvková organizace Sídlo: Školní 429, Nýrsko 1. Vzdělávací oblast: Matematika a její aplikace 2. Vzdělávací předmět: Matematika 3. Učivo: Slovní úlohy o pohybu 4. Ročník: 8. /osmý 1
2 Slovní úlohy o pohybu řešené rovnicí 2
3 Slovní úlohy o pohybu jsou úlohy zabývající se vypočítáním rychlosti pohybujícího se tělesa, určením času (doby trvání pohybu) a určením dráhy pohybujícího se tělesa. 3
4 Zopakuj si z fyziky veličiny pro rovnoměrný pohyb: čas 4
5 Převody jednotek: a) na minuty 1,5 h = 0,3 h = 2,4 h = b) na hodiny 15 min = 72 min = 75 min = c) 5 km/h = m/s 120 m/s = km/h 5
6 t = 50 v = s/t 7. Slovní úlohy o pohybu.notebook Jednoduché slovní úlohy o pohybu s = v. t 1. Jakou vzdálenost urazí cyklista za 1,2 h, pojede li průměrnou rychlostí 15 km/h? s = v. t s = 18 km 2. Za kolik hodin překoná automobil vzdálenost 200 km, pojede li průměrnou rychlostí 80 km/h? t = s/v = 2,5 h 3. Motocyklista překonal vzdálenost 60 km za 50 minut. Určete jeho průměrnou rychlost v km/h. 6
7 NÁKRESY 7
8 1. Auto a kamión vyjely z obce O. Auto jede rychlostí v 1, kamión rychlostí v 2, v 1 > v 2. A O s 1 s 2 B auto v 1 (km/h) oba jedou stejnými směry jedou navzájem opačnými směry vozidla se od sebe vzdalují s kamión v 2 (km/h) s = s 1 + s 2 s = s 1 s 2 s = 2s 1 + s 2 Rozhod 8
9 2. Auto vyjelo z obce E rychlostí v 1 a kamión z obce F rychlostí v 2, v 1 > v 2. E P s 1 s 2 F auto v 1 (km/h) s kamión v 2 (km/h) Rozho oba jedou stejným směrem vozidla jedou proti sobě vozidla se k sobě přibližují s = 2s 2 s = s 1 + s 2 s = s 1 s 2 9
10 3. Chodec vyšel z místa M, ze stejného místa vyjel i cyklista. Platí v 2 > v 1 M X N s 1 chodec v 1 (km/h) cyklista v 2 (km/h) Za ur rychlo dojed s 2 oba se pohybují z místa M stejným směrem oba se pohybují z místa M opačnými směry chodec vyšel z místa M, cyklista vyjel z místa N, směr pohybu je stejný s 1 > s 2 s 1 = s 2 s 2 > s 2 10
11 Shrnutí: obvykle se pohybují 2 vozidla rychlostí v 1, v 2 vozidla vyjíždějí buď z jednoho místa nebo ze dvou míst : v 1 > v 2 doby jízdy označujeme t 1, t 2 doby jízdy jsou buď různé: t 1 < t 2 nebo stejné: t 1 = t 2 dráhy těles se značí s 1, s 2, sestavujeme z nich rovnice typu: s = s 1 + s 2, s = s 1 s 2, s 1 = s 2 11
12 SLOVNÍ ÚLOHY 12
13 1. Z místa M vyjela současně navzájem opačnými směry dvě auta. První jelo rychlostí 50 km/h, druhé rychlostí 80 km/h. Jak daleko od sebe budou za 2 h? M s 1 s 2 v 1 = 50km/h v 2 = 80km/h s = s 1 + s 2 s = s = s = 260 km (za 2 h) 13
14 Z Klatov vyjedou současně navzájem opačnými směry dvě auta. První jede rychlostí 60 km/h, druhé 90 km/h. Jak daleko od sebe budou za 90 minut? ŘEŠENÍ s = s 1 + s 2 s = 60. 1, ,5 s = s = 225 km 14
15 2. Z měst A,B vzdálených od sebe 58 km vyjela proti sobě současně 2 auta o rychlostech 80 km/h a 65 km/h. Za jak dlouho se potkají a v jaké vzdálenosti od města A? A s = 58 km s 1 s 2 B v 1 = 80km/h v 2 = 65 km/h s = s 1 + s 2 58 = 80.t + 65.t 58 = 145t t = 0,4 h. 60 = 24 min ( se potkají) s 1 = 80.0,4 = 32 km ( od města A) 15
16 Z míst A a B vzdálených od sebe 210 km, vyjely současně proti sobě dva kamióny rychlostmi 40km/h a 30km/h. Za jak dlouho a jak daleko od místa A se potkají? ŘEŠENÍ s 1 + s 2 = s 40t + 30t = t = 210 t = 3 h (za 3 h se potkají) s 1 = s 1 = 120 km (od místa A) 16
17 Dva turisté, z nichž jeden ujde za hodinu 5km, druhý 6km, vyjdou v 7 hodin ráno proti sobě z míst K a L, vzdálených od sebe 38,5 km. V kolik hodin se potkají? ŘEŠENÍ s 1 + s 2 = s 5t + 6t = 38,5 11t = 38,5 t = 3,5 h (doba, kterou pojedou) potkají se v 10 h 30 min 17
18 3. Z Pardubic vyjelo v 8 h nákladní auto rychlostí v 1 = 32 km/h, v 8 h 45 min za ním vyjel motocykl rychlostí v 2 = 48 km/h. V kolik hodin dostihne motocykl nákladní auto? Jak daleko od Pardubic? nákl. auto jelo 45 min ( 0,75 h), než za ním vyjel motocykl v 8h v 8h 45 min s 1 s 2 v 1 = 32 km/h s s = s 1 + s 2 48.t = 32.0, t 16.t = 24 t = 1,5 h ( dohoní motocykl nákl. auto) v 2 = 48 km/h s = 48. 1,5 = 72 km Motocykl dohoní auto v 10 h 15 min, 72 km od Pardubic. 18
19 Z přístavu vyjel parník rychlostí 24 km/h. Po 20 minutách za ním vyjel motorový člun rychlostí 48 km/h. Za jak dlouho dohoní motorový člun parník? ŘEŠENÍ mot. člun dohoní parník za 20 min 19
20 Vypracovala: Mgr. Miloslava Nagyová Použité materiály: Algebra 9, nakladatelství Nová škola Slovní úlohy řešené rovnicemi úloh, HAV
21 Přílohy Dráha,ÄŤas,rychlost Ăşlohy.doc sl. úlohy o pohybu 1.rtf sl. úlohy o pohybu 2.doc ulohyopohybu.pdf
VY_42_INOVACE_M2_20 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.:
Základní škola a mateřská škola Herálec, Herálec 38, 582 55; IČ: 70987882; tel: 569445137 Operační program: Vzdělávání pro konkurenceschopnost Projekt: ŠKOLA PRO ŽIVOT Registrační číslo projektu: CZ107/1400/212362
Mgr. Lenka Jančová 20. 3. 2014 IX.
Jméno Mgr. Lenka Jančová Datum 20. 3. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Slovní úlohy o pohybu, soustavy
materiál č. šablony/č. sady/č. materiálu: Autor:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVCE_
materiál č. šablony/č. sady/č. materiálu: Autor:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_
km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h
ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a
Název DUM: Úlohy o pohybu
ZŠ a MŠ Štramberk Projekt EU peníze školám Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název sady: Poznáváme svět algebry Název DUM: Úlohy o pohybu Vzdělávací oblast: Vzdělávací obor:
GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?
GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak
Slovní úlohy. o pohybu
Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác
1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost.
1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost. 2. Cyklista jede z osady do města. První polovinu cesty vedoucí přes kopec jel
Digitální učební materiál
Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
MATEMATIKA STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. Mgr. Miloslav Janík. Výukový materiál zpracován v rámci operačního projektu
Výukový materiál zpracován v rámci operačního projektu EU peníze školám REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/1.5.00/34.0512 STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. MATEMATIKA SLOVNÍ
Výukový materiál zpracovaný v rámci projektu EU peníze školám
Výukový materiál zpracovaný v rámci projektu EU peníze školám Regitrační čílo projektu: Šablona: Název materiálu: Autor: CZ..07/..00/.56 III/ Inovace a zkvalitnění výuky protřednictvím ICT VY INOVACE_0/07_Úlohy
20. Výrazy binomické vzorce, rozklad na součin.notebook. March 12, Učivo: Výrazy - umocňování dvojčlenu, rozklad na součin 4. Ročník: 8.
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...
Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 6 _ Výpočet dráhy... 5 7 _ Výpočet času... 6 8 _ PL:
1 _ 2 _ 3 _ 2 4 _ 3 5 _ 4 7 _ 6 8 _
Obsah: 1 _ Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 7 _ Výpočet času... 6 8 _ Pracovní list: ČTENÍ Z
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením
KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204
KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost
56. Po mostě dlouhém 150 m jel nákladní vlak rychlostí 30 km/h. Vlak byl dlouhý 300 m. Jak dlouho jel vlak po mostě?
1. Turista vyšel průměrnou rychlostí 5 km/h, za ½ hodiny za ním vyjel po stejné dráze cyklista průměrnou rychlostí 20 km/h. Za kolik minut dohoní cyklista turistu a kolik km přitom ujede? 2. Ze stanic
EVROPSKÝ SOCIÁLNÍ FOND. Pohyb fyzika PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI. J. Cvachová říjen 2013 Arcibiskupské gymnázium Praha
EVROPSKÝ SOCIÁLNÍ FOND Pohyb fyzika PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI J. Cvachová říjen 2013 Arcibiskupské gymnázium Praha Klid a pohyb Co je na obrázku v pohybu? Co je na obrázku v klidu? Je
Pohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
Rovnoměrný pohyb IV
2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí
Téma Pohyb grafické znázornění
Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak
EU OPVK III/2/1/3/2 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace
POHYBY TĚLES / VÝPOČET RYCHLOSTI foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz 1 VÝPOČET RYCHLOSTI - rychlost v vypočítáme jako podíl velikosti dráhy s a času t, za který
Slouží k procvičení slovních úloh řešených rovnicí. list/anotace
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
1. Mojmír ujel na kole během čtyř dnů celkem 118 km. Druhý den ujel o 12 km víc než první den, třetí den ujel polovinu toho, co druhý den a poslední
1. Mojmír ujel na kole během čtyř dnů celkem 118 km. Druhý den ujel o 12 km víc než první den, třetí den ujel polovinu toho, co druhý den a poslední den o 26 km méně než první den. Kolik km ujel v jednotlivé
VY_42_Inovace_10_MA_1.01_ Slovní úlohy pracovní list
Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0394 VY_42_Inovace_10_MA_1.01_ Slovní úlohy pracovní list Název školy Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor
Slovní úlohy o pohybu I
.2. Slovní úlohy o pohybu I Předpoklady: 0024 Př. : Běžec na lyžích se pohybuje na celodenním výletu průměrnou rychlostí km/h. Jakou vzdálenost ujede za hodinu? Za hodiny? Za hodin? Za t hodin? Najdi vzorec,
Metodické pokyny k pracovnímu listu č Úlohy o pohybu, společné práci a směsích
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.04 Úlohy o pohybu, společné práci a směsích Pracovní list je zaměřen na řešení slovních
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/1.759 Název DUM: Pohyb tělesa
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
Očekávaný výstup Zvládnutí řešení slovních úloh, vedoucích k sestavení dvou rovnic o dvou neznámých. Speciální vzdělávací potřeby.
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 18.7.2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY
POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz Na obrázku je graf závislosti dráhy tělesa na čase. Odpověz na otázky:
POHYBY TĚLES / VÝPOČET ČASU
POHYBY TĚLES / VÝPOČET ČASU foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz 1 VÝPOČET ČASU - čas pohybu t vypočítáme jako podíl velikosti dráhy s a rychlosti v, kterou se
KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205
KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 DRUHY POHYBŮ Velikosti okamžité rychlosti se většinou v průběhu pohybu mění Okamžitá rychlost hmotného bodu (její velikost i
1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka,
1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, Alena o 27 Kč méně než Jana. Celkem uspořily 453 Kč. Kolik
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,
7. Slovní úlohy na lineární rovnice
@070 7. Slovní úlohy na lineární rovnice Slovní úlohy jsou často postrachem studentů. Jenţe Všechno to, co se učí mimo slovní úlohy, jsou postupy, jak se dopracovat k řešení nějaké sestavené (ne)rovnice.
Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
(2) 2 b. (2) Řešení. 4. Platí: m = Ep
(1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci
Očekávané ročníkové výstupy z matematiky 9.r.
Pomůcky: tabulky, kalkulačky 2. pololetí Soustavy lineárních rovnic 1A x y = 1 2x + 3y = 12 1B x y = -3 2x y = 0 2A x y = -2 2x 2y = 2 2B x y = -2 3x 3y = 6 3A y = 2x + 3 x = 0,5. (y 3) 3B x = 2y + 5 y
ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
Svobodná chebská škola, základní škola a gymnázium s.r.o. Slovní úlohy řešené rovnicemi I. procvičování
METODICKÝ LIST DA75 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Slovní úlohy řešené rovnicemi I. procvičování Astaloš Dušan Matematika devátý frontální, fixační samostatná
Slovní úlohy na lineární rovnici
Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na
Rovnoměrný pohyb V
1.1.11 Rovnoměrný pohyb V ředpoklady: 11 edagogická poznámka: Následující příklad je dokončení z minulé hodiny. Studenti by měli mít graf polohy nakreslený z minulé hodiny nebo z domova. ř. 1: etr vyjede
Slovní úlohy: Pohyb. a) Stejným směrem
Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
Rovnoměrný pohyb I
2.2. Rovnoměrný pohyb I Předpoklady: 02020 Pomůcky: Shrnutí minulé hodiny: Naměřený reálný rovnoměrný pohyb poznáme takto: Rozdíly mezi hodnotami dráhy v pohybové tabulce jsou při stálém časovém intervalu
PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát
Autorka: Pavla Dořičáková
Rychlost Obsahový cíl: - Žák pracuje s veličinami dráha, rychlost, čas. - Žák pracuje se základními jednotkami pro dráhu, rychlost, čas. Jazykový cíl: - Žák používá správné tvary přídavných jmen a jejich
Rovnoměrný pohyb II
2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí
Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.
Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Zapamatujte
Funkce. Úkol: Uveďte příklady závislosti dvou veličin.
Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost
VY_32_INOVACE_6/20_Matematika a její aplikace. Předmět: Matematika Ročník: 8. Poznámka: Slovní úlohy Vypracovala: Zuzana Strejcová
VY_32_INOVACE_6/20_Matematika a její aplikace Předmět: Matematika Ročník: 8. Poznámka: Slovní úlohy Vypracovala: Zuzana Strejcová Slovní úlohy procenta Slovní úlohy procenta Slovní úlohy o pohybu Slovní
Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.
Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat
3. Kinematika hmotného bodu
Kinematika 10 3. Kinematika hmotného bodu kineó (z řečtiny) = pohybuji; relativní = vztažný, poměrný 3.1. Mechanický pohyb, hmotný bod (HB) a) Proč uvádíme, že klid nebo pohyb tělesa je relativní pojem?....
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
Výpočet dráhy. Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.
Výpočet dráhy Autor: Pavel Broža Datum: 12. 4. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.3763 Výpočet dráhy vzor 1 Auto jelo po dálnici průměrnou rychlostí 120 km/h.
Základní škola Kaplice, Školní 226
Základní škola Kaplice, Školní 226 DUM VY_2_INOVACE_06MA autor: Michal Benda období vytvoření: 2011 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okruh: téma: Matematika
Rovnice ve slovních úlohách
Rovnice ve slovních úlohách Při řešení slovních úloh postupujeme obvykle takto (matematizace): 1. V textu úlohy vyhledáme veličinu, která je neznámá, a její číselnou hodnotu označíme vhodným písmenem (
MATEMATIKA 8. ročník II. pololetí
MATEMATIKA 8. ročník II. pololetí Úpravy algebraických výrazů: Sčítání a odčítání celistvých výrazů: 1.A a) 5a + ( 3a + 7 ) b) (-3a 4b ) - ( 12a + 6 ) c) ( -8a + 3 ) ( -15a 4 ) 1.B a) 4x + ( 4x + 7 ) b)
Řešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU
Řešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU blazkova@ped.muni.cz V úvodu si položme několik otázek: - Proč řešíme slovní úlohy? - Je řešení slovních úloh žáky oblíbené? - Jaká tématika slovních
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Lineární rovnice
2. Lineární rovnice označuje rovnici o jedné neznámé, ve které neznámá vystupuje pouze v první mocnině. V základním tvaru vypadá následovně: ax + b = 0, a 0 Zde jsou a a b nějaká reálná čísla, tzv. koeficienty
Kinematika pohyb rovnoměrný
DUM Základy přírodních věd DUM III/2-T3-03 Téma: Kinematika rovnoměrný Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Kinematika rovnoměrný Kinematika je jedna ze základních
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029
Rovnoměrný pohyb III
..13 Rovnoměrný pohyb III Předpoklady: 001 Pomůcky: Př. 1: Maky se na kole vydala na výlet, který bohužel neskončil tak, jak si představovala. a) Jak daleko se dostala, jestliže jela 3 minut rychlostí
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_87 Jméno autora: Mgr. Eva Mohylová Třída/ročník:
( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
Název DUM: Pohybová energie v příkladech
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/1.759 Název DUM: Pohybová energie
Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných
HMOTNÝ BOD, POHYB, POLOHA, TRAJEKTORIE, DRÁHA, RYCHLOST
Škola: Autor: Šablona: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek VY_32_INOVACE_MGV_F_SS_1S1_D02_Z_MECH_Hmotny_bod_r ychlost_pl Člověk a příroda Fyzika Mechanika
UŽITÍ TRIGONOMETRIE V PRAXI
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol UŽITÍ
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_18_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ..7/.5./4.82 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.
1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete
II. Kinematika hmotného bodu
II Kinematika hmotného bodu Všechny vyřešené úlohy jou vyřešeny nejprve obecně, to znamená bez číel Číelné hodnoty jou doazeny až tehdy, dopějeme-li k vyjádření neznámé pomocí vztahu obahujícího pouze
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_105 Jméno autora: Mgr. Eva Mohylová Třída/ročník:
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod
Výpočet rychlosti. Autor: Pavel Broža Datum: 14. 3. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.
Výpočet rychlosti Autor: Pavel Broža Datum: 14. 3. 2014 Cílový ročník: 7. Život jako leporelo, registrační číslo CZ.1.07/1.4.00/21.3763 Výpočet rychlosti vzor 1 Auto ujelo celkovou dráhu 14 km za celkový
MIŠ MAŠ. 17 OBVODY, obsahy 7.4.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace.
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
POHYB TĚLESA SADA PŘÍKLADŮ
POHYB TĚLESA SADA PŘÍKLADŮ 1. Doplň následující tabulku rychlostí rovnoměrných pohybů. Výsledky správně zaokrouhli. 1) 2) 3) 4) 5) 6) 7) rychlost rychlost jízda rychlost na let ptáka v obci cyklisty družice
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.759 Název DUM: Newtonovy pohybové
KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217
KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb
Slovní úlohy na pohyb
VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy
58. ročník fyzikální olympiády kategorie G okresní kolo školní rok
58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů
značka v (velocity) c) další jednotky rychlosti:
RYCHLOST 1) Rychlost fyz. veličina, která popisuje pohyb značka v (velocity) 2) Jednotky rychlosti a) zákl. jednotka: 1 m/s = 1 b) dílčí jednotka: 1 km/h m s = 1 ms 1 DÚ: c) další jednotky rychlosti: Příklady
3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE
. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její
. František měl v prasátku o 32 Kč více než Josef a Josef měl o 34 Kč více než Karel. Kolik měl v prasátku Karel, měli-li chlapci dohromady 280 Kč? Karel x Josef x + 34 František x + 66 x + x + 34 + x
Petr Husar, www.e-matematika.cz nesnesitelně snadná matematika! Test z matematiky základní školy úroveň 2 řešení
Test z matematiky základní školy úroveň 2 řešení Každá otázka je za 1 bod, celkový počet bodů je 20. 1. Tři podnikatelé srovnávali své výdaje za měsíc listopad. Novákovy výdaje byly dvakrát větší než Šindelářovy
Matematika 1. Otázka číslo: 1
Matematika 1 Test vychází z početních příkladů pro žáky 8. až 9. tříd. Úlohy pokrývají různá matematická témata. Většina slovních úloh jde řešit rovnicí i úsudkem. Otázka číslo: 1 Tři podnikatelé srovnávali