I. kolo kategorie Z7



Podobné dokumenty
I. kolo kategorie Z5

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

I. kolo kategorie Z8

Úlohy krajského kola kategorie C

Prvočísla a čísla složená

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

1.5.7 Znaky dělitelnosti

I. kolo kategorie Z7

Cvičné texty ke státní maturitě z matematiky

I. kolo kategorie Z7

Kód trezoru 1 je liché číslo.

II. kolo kategorie Z9

Úlohy krajského kola kategorie C

I. kolo kategorie Z7

II. kolo kategorie Z6

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l

Úlohy domácí části I. kola kategorie C

II. kolo kategorie Z9

Cvičné texty ke státní maturitě z matematiky

56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší,

Návody k domácí části I. kola kategorie B

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je = + 444

Moravské gymnázium Brno s.r.o.

Úlohy krajského kola kategorie B

II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš

Algebrogramy. PaedDr. Libuše Sekaninová Martin Blahák (grafická úprava)

Úlohy domácí části I. kola kategorie B

62.ročník Matematické olympiády. I.kolo kategorie Z6

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Úlohy krajského kola kategorie A

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

I. kolo kategorie Z6

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE

53. ročník matematické olympiády. q = 65

Úlohy klauzurní části školního kola kategorie A

Dělitelnost přirozených čísel - opakování

KATEGORIE Z6. (L. Hozová)

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

Řešení úloh z TSP MU SADY S 1

Úlohy domácí části I. kola kategorie B

Klauzurní část školního kola kategorie A se koná

Digitální učební materiál

Úlohy klauzurní části školního kola kategorie A

Návody k úlohám domácí části I. kola 59. ročníku MO kategorie B

Úlohy krajského kola kategorie C

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

Úlohy klauzurní části školního kola kategorie B

Dělitelnost přirozených čísel. Násobek a dělitel

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Úlohy krajského kola kategorie B

I. kolo kategorie Z5

Úlohy domácí části I. kola kategorie C

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků dělitelnosti

Návody k domácí části I. kola kategorie C

Moravské gymnázium Brno s.r.o.

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

MATEMATICKÁ OLYMPIÁDA

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

Dělitelnost šesti

2. Elementární kombinatorika

MATEMATIKA 6. ROČNÍK. Sada pracovních listů CZ.1.07/1.1.16/

64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015

Úlohy domácí části I. kola kategorie C

II. kolo kategorie Z9

Co víme o přirozených číslech

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Cykly a pole

Úlohy klauzurní části školního kola kategorie A

Metodický list. Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základní

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

Počítání s neúplnými čísly 1

53. ročník Matematické olympiády. a prvních 10 jsme sečetli. Jaký jsme dostali výsledek, pokud jsme počítali správně?

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

Úlohy II. kola kategorie A

I. kolo kategorie Z9

Úlohy krajského kola kategorie A

16. Goniometrické rovnice

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017

čtyřicet ponožek od jedné barvy a po třech ponožkách od všech ostatních, tedy celkem = 58

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3

55. ročník matematické olympiády

Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.

66. ročníku MO (kategorie A, B, C)

Přijímací zkouška na MFF UK v Praze

68. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie A

Faktoriály a kombinační čísla

Úlohy domácí části I. kola kategorie B

MATEMATIKA. Diofantovské rovnice 2. stupně

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste.

8 Kořeny cyklických kódů, BCH-kódy

1. Opakování učiva 6. ročníku

Transkript:

60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin číslic tohoto součinu, poté znova součin číslic nového součinu atd., nutně po nějakém počtu kroků dospějeme k jednomístnému číslu. Tento počet kroků nazýváme perzistence čísla. Např. číslo 723 má perzistenci 2, neboť7 2 3=42(1.krok)a4 2=8(2.krok). 1. Najděte největší liché číslo, které má navzájem různé číslice a perzistenci 1. 2. Najděte největší sudé číslo, které má navzájem různé nenulové číslice a perzistenci 1. 3. Najděte nejmenší přirozené číslo, které má perzistenci 3. (S. Bednářová) Možnéřešení.1.Vzadánínenířečeno,ževtomtopřípaděnesmímepoužítnulu.Je- -lijednazčíslicnulová,znamenáto,žesoučinvprvnímkrokujerovněžnulaatedy perzistence je 1. Stačí tedy sestavit největší liché číslo s navzájem různými číslicemi; tím je9876543201. 2. Tentokrát nulu použít nesmíme. Znamená to, že ciferný součin hledaného čísla musí být číslo jednomístné, přičemž se snažíme získat co největší počet navzájem různých činitelů (počet činitelů pak určuje počet číslic tohoto čísla, tedy čím více činitelů, tím vyšší číslo). Uvažujme tedy všechny možné rozklady jednomístných čísel na součiny přirozených čísel. Protože hledáme sudé číslo, potřebujeme, aby alespoň jeden činitel ciferného součinu bylsudéčíslo.toznamená,žecifernýsoučinjerovněžsudéčíslo,takžesepřihledání rozkladůstačíomezitnačísla2,4,6a8.dálesemůžemezaměřitpouzenarozklady, jejichž činitelem je i 1. Příslušná čísla jsou vždy o jeden řád vyšší než čísla odpovídající rozkladům bez 1. 2=1 2,možnosti:12, 4=1 4,možnosti:14, 4=1 2 2,nelze(stejníčinitelé), 6=1 6,možnosti:16, 6=1 2 3,možnosti:132,312, 8=1 8,možnosti:18, 8=1 2 4,možnosti:124,142,214,412. Z nalezených možností je nejvyšší číslo 412. 3. Tento úkol můžeme řešit tak, že postupně procházíme vícemístná čísla počínaje nejmenším(tj. 10) a zjišťujeme jejich perzistenci. První nalezené číslo s perzistencí 3 je hledané číslo. Dvojmístná čísla obsahující číslici 1 nebo 0 mají perzistenci 1, protože příslušný ciferný součin je nejvýše 9. Podobně dvojmístná čísla obsahující číslici 2 mají perzistenci nejvýše 2, protože příslušný ciferný součin je nejvýše 18. Na základě těchto úvah stačí začít prověřovat přirozená čísla až od 33: 33,3 3=9,perzistence1, 34,3 4=12,1 2=2,perzistence2, 8

35,3 5=15,1 5=5,perzistence2, 36,3 6=18,1 8=8,perzistence2, 37,3 7=21,2 1=2,perzistence2, 38,3 8=24,2 4=8,perzistence2, 39,3 9=27,2 7=14,1 4=4,perzistence3. Nejmenší přirozené číslo s perzistencí 3 je 39. Z7 I 2 Ondranavýletěutratil 2 3 penězazezbytkudalještě 2 3 naškoluprodětiztibetu.za 2 3 novéhozbytkuještěkoupilmalýdárekpromaminku.zděravékapsyztratil 4 5 zbylých peněz,akdyžzezbylýchdalpůlkumalésestřičce,zůstalamuprávějednakoruna.sjakým obnosem šel Ondra na výlet? (M. Volfová) Možné řešení. Počet Ondrových korun před výletem označíme x. Ondranavýletěutratil 2 3 peněz,zbylomutedy 1 3 xkorun. NaškoluvTibetudal 2 3 zbylýchpeněz,zbylomu 1 1 3 Dárekmamincestál 2 3 zbytku,zbylomu 1 3 1 9 x= 1 3 x= 1 9 xkorun. 27 xkorun. Ztohoztratil 4 5,zbylomu 1 5 1 27 x= 1 135 xkorun. Půlkuzbylýchpenězdalsestřeajemuzůstaladruhápůlka,tj. 1 2 1 byla 1 koruna. 1 Je-li 270x=1,je x=270.ondrašelnavýletsobnosem270korun. 135 x= 1 Jiné řešení. Úlohu je možné řešit také odzadu podle následujícího schématu: 270 x,ato :3 :3 :3 :5 :2 výlet škole mamce ztratil sestře 1 Postupně, zprava doleva, dostáváme následující hodnoty: 1 2 = 2, 2 5 = 10, 10 3 = 30, 30 3=90a90 3=270.Ondramělpředvýletem270korun. Z7 I 3 Šárka prohlásila: Jsmetřisestry,jájsemnejmladší,LíbajestaršíotřirokyaEliškaoosm.Naše mamkarádaslyší,ženámvšem(isní)jevprůměru21let.přitomkdyžjsemsenarodila, bylomamceuž29. Před kolika lety se Šárka narodila? (M. Volfová) Možnéřešení.PokudvěkŠárkyvletechoznačíme x,potomlíběje x+3,elišce x+8 amamce x+29let.věkovýprůměrvšechje21let,tzn. po úpravě Šárka se narodila před 11 lety. (x+(x+3)+(x+8)+(x+29)):4=21, 4x+40=84, x=11. 9

Z7 I 4 Jindra měl napsáno čtyřmístné číslo. Toto číslo zaokrouhlil na desítky, na stovky a na tisíce a všechny tři výsledky zapsal pod toto číslo. Všechna čtyři čísla správně sečetl a dostal 5 443. Které číslo měl Jindra napsáno? (M. Petrová) Možné řešení. Celé zadání si napíšeme jako sčítání čtyř čísel. Zároveň napíšeme nuly natamísta,kdemusíbýtpozaokrouhlenídanéhočísla,naostatnímístasinapíšeme hvězdičky, které budeme postupně doplňovat. 0 Nejprve si všimneme posledního sloupce, ve kterém je jediná neznámá číslice. Na místo příslušné hvězdičky můžeme doplnit pouze číslici 3, takže neznámé číslo má na místě jednotek číslici 3. 3 0 Třetí sloupec: Je zřejmé, že se při zaokrouhlování na desítky zaokrouhluje dolů. Proto na místě desítek u prvního a druhého čísla musí být stejné číslice. Protože sčítání na místě jednotek nebylo přes desítku, hledáme číslo, jehož dvojnásobek má na místě jednotek číslici4.namístědesítekmůžebýtbuďa)číslice2,nebob)číslice7. a) doplníme číslici 2: Poslední dvojčíslí hledaného čísla je 23. 23 20 Druhý sloupec: I při zaokrouhlování na stovky zaokrouhlujeme dolů, takže na místě stovek prvního, druhého a třetího čísla je stejná číslice. Protože sčítání desítek nebylo přes desítku, opět nic nepřipočítáváme. Hledáme tedy číslo, jehož trojnásobek končí na číslici 4. Tomu vyhovuje jen číslice 8, takže poslední trojčíslí hledaného čísla je 823. 823 820 800 Prvnísloupec:Protože8+8+8=24,připočítáváme2.Zároveňhledanéčíslozaokrouhlujemenatisícenahoru,takžečíslicenamístětisícůuposledníhočíslajeo1většínežzbylé 10

tři.toznamená,žečtyřnásobekčíslicenamístětisícůje5 2 1=2.Toovšemnelze splnit, takže tato možnost nevyhovuje, tzn. číslice 2 na místě desítek být nemůže. b) doplníme číslici 7: Poslední dvojčíslí hledaného čísla je 73. 73 70 Druhý sloupec: Protože 7 +7 = 14, připočítáváme 1 z předchozího součtu. Zároveň hledané číslo zaokrouhlujeme na stovky nahoru, takže číslice na místě stovek u třetího čísla je o 1 většínežzbylédvě(resp.mohoubýtprvnídvě9atřetí0).toznamená,žetrojnásobek číslicenamístěstovekkončínačíslici4 1 1=2.Tomuvyhovujejenčíslice4.Hledané číslo končí na trojčíslí 473. 473 470 500 První sloupec: Hledané číslo se zaokrouhluje na tisíce dolů, takže všechny čtyři chybějící číslice jsou stejné. Má smysl doplnit na místo tisíců pouze číslici 1. Snadno ověříme, že po jejím doplnění je písemné sčítání správně. 1473 1470 1500 1000 Jedinýmřešenímječíslo1473,takžeJindramělnapsánočíslo1473. Z7 I 5 Libor narýsoval kružnici se středem S a body A, B, C, D, jak ukazuje obrázek. Zjistil, žeúsečky SCa BDjsoustejnědlouhé.Vjakémpoměrujsouvelikostiúhlů ASCa SCD? C D A S B 11

(L. Hozová) Možnéřešení.Zezadánívíme,že SC = BD,navíc SC = SD,protožejdeovelikost poloměru kružnice. Trojúhelníky CSD a BDS jsou proto rovnoramenné. Označme DSB = DBS =δ,vizobrázek. C D A S δ δ B Protožesoučetvnitřníchúhlůvtrojúhelníku BDSje180,platí ajelikožúhel BDCjepřímý,platí δ+ δ+ BDS =180, SDC + BDS =180. Zuvedenýchdvourovnicjezřejmé,že SDC =2δ.Protožetrojúhelník CSDjerovnoramenný,jei SCD =2δ.Poněvadžsoučetvnitřníchúhlůvtrojúhelníku CSDje180 a úhel BSA je přímý, dostáváme tyto rovnice: 2δ+2δ+ CSD =180, ASC + CSD +δ=180. Znichvyplývá,že ASC =3δ.Úlohaseptánapoměr ASC : SCD.Podosazení dostaneme3δ:2δ,neboli3:2. Z7 I 6 Najděte všechna trojmístná přirozená čísla, která jsou beze zbytku dělitelná číslem 6 a ve kterých můžeme vyškrtnout jakoukoli číslici a vždy dostaneme dvojmístné přirozené číslo, jež je také beze zbytku dělitelné číslem 6. (L. Šimůnek) Možné řešení. Číslice hledaného čísla označíme takto: x je na místě stovek, y na místě desítek a z na místě jednotek. Přirozené číslo je dělitelné šesti, právě když je součet jeho číslic roven násobku tří a číslice na místě jednotek je sudá. Nejprve uvažujeme pouze o první části této podmínky, podle které musí být součet x+y+ zdělitelnýtřemi.povyškrtnutíčíslice zdostanemedvojmístnéčíslo,ježmábýt rovněžnásobkemšesti.totočíslomásoučetčíslic x+yatenmusíbýttéždělitelnýtřemi. Vyškrtnutáčíslice ztakmohlabýtpouze0,3,6nebo9.stejnouúvahoulzedojítktomu, žetakéčíslice xačíslice ymohoubýtpouze0,3,6nebo9. 12

Nyní uvažujme i o druhé podmínce dělitelnosti šesti. Původní číslo a dvojmístná čísla, kterázněj získámevyškrtnutímjedné číslice,majínamístějednotek buď z,nebo y. Číslice z a y tedy musejí být sudé. Podle zadání dostaneme po vyškrtnutí jakékoli číslice dvojmístné přirozené číslo. Toto číslo může začínat číslicí x nebo y, tyto číslice proto nemohou být nulové. Shrneme-livševýšeuvedené, xmůžebýt3,6nebo9, ymusíbýt6, zmůžebýt0 nebo6.všechnahledanáčíslajsoutedy360,366,660,666,960a966. 13