PŘEDNÁŠKA 1 - OBSAH. Přednáška 1 - Obsah

Podobné dokumenty
PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah

Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

Zesilovače. Ing. M. Bešta

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

Měření na unipolárním tranzistoru

Darlingtonovo zapojení

Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů

Základy elektrotechniky

Studium tranzistorového zesilovače

Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

Typ UCE0 (V) IC (A) PCmax (W)

1.1 Pokyny pro měření

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU NÁVRH A ANALÝZA ELEKTRONICKÝCH OBVODŮ

Přednáška 4 - Obsah. 1 Základní koncept přesného návrhu Koncept přesného operačního zesilovače... 1

[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu.

ITO. Semestrální projekt. Fakulta Informačních Technologií

Stabilizátory napětí a proudu

Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce:

Zadání semestrálních prácí z předmětu Elektronické obvody. Jednodušší zadání

Měření na bipolárním tranzistoru.

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

1 Zdroj napětí náhradní obvod

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

Proudové zrcadlo. Milan Horkel

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Jednostupňové zesilovače

Kapitola 9: Návrh vstupního zesilovače

FEKT VUT v Brně ESO / P5 / J.Boušek 3 FEKT VUT v Brně ESO / P5 / J.Boušek 4

Návrh a analýza jednostupňového zesilovače

Název: Tranzistorový zesilovač praktické zapojení, měření zesílení

Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36

Základní zapojení s OZ. Vlastnosti a parametry operačních zesilovačů

Děliče napětí a zapojení tranzistoru

Manuální, technická a elektrozručnost

Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Klasifikace: bodů výborně bodů velmi dobře bodů dobře 0-49 bodů nevyhověl. Příklad testu je na následující straně.

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů


Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2.

Tranzistory. tranzistor z agnl. slova transistor, tj. transfer resisitor. Bipolární NPN PNP Unipolární (řízené polem) JFET MOS FET

ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY

Operační zesilovače. U výst U - U +

PŘECHODOVÝ JEV V RC OBVODU

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

Bipolární tranzistory

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

FEKT VUT v Brně ESO / P9 / J.Boušek 1 FEKT VUT v Brně ESO / P9 / J.Boušek 2. Uzemněné hradlo - závislost na změně parametrů

elektrické filtry Jiří Petržela aktivní prvky v elektrických filtrech

OPERA Č NÍ ZESILOVA Č E

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

ELEKTRONICKÉ SOUČÁSTKY

Bipolární tranzistory

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony

Digitální učební materiál

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

Fyzikální praktikum 3 Operační zesilovač

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

Ukázka práce na nepájivém poli pro 2. ročník SE. Práce č. 1 - Stabilizovaný zdroj ZD + tranzistor

Popis obvodu U2403B. Funkce integrovaného obvodu U2403B

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

ZÁKLADY ELEKTROTECHNIKY pro OPT

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

Dioda jako usměrňovač

Petr Myška Datum úlohy: Ročník: první Datum protokolu:

Základní druhy tranzistorů řízených elektrickým polem: Technologie výroby: A) 1. : A) 2. : B) 1. :

.100[% ; W, W ; V, A, V, A]

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Určeno pro posluchače všech bakalářských studijních programů FS

Elektronika ve fyzikálním experimentu

ISŠ Nova Paka, Kumburska 846, Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

1 VA-charakteristiky tranzistorů JFET a MOSFET. Úloha č. 7

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

Zvyšování kvality výuky technických oborů

Zpětnovazební stabilizátor napětí

Elektronické praktikum EPR1

PRAKTIKUM II Elektřina a magnetismus

Flyback converter (Blokující měnič)

Základní elektronické prvky a jejich modely

Charakteristiky tranzistoru MOSFET

Elektrotechnická zapojení

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

MĚŘENÍ PARAMETRŮ FOTOVOLTAICKÉHO ČLÁNKU PŘI ZMĚNĚ SÉRIOVÉHO A PARALELNÍHO ODPORU

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

4. NELINEÁRNÍ NESETRVAČNÉ OBVODY

Operační zesilovač (dále OZ)

VÝKONOVÉ TRANZISTORY MOS

VÝVOJOVÁ DESKA PRO JEDNOČIPOVÝ MIKROPOČÍTAČ PIC 16F88 A. ZADÁNÍ FUNKCE A ELEKTRICKÉ PARAMETRY: vstupní napětí: U IN AC = 12 V (např.

Transkript:

PŘEDNÁŠKA 1 - OBSAH Přednáška 1 - Obsah i 1 Analogová integrovaná technika (AIT) 1 1.1 Základní tranzistorová rovnice... 1 1.1.1 Transkonduktance... 2 1.1.2 Výstupní dynamická impedance tranzistoru... 3 1.2 Souběh... 5 1.2.1 Bipolární tranzistory... 5 1.2.2 Unipolární tranzistory... 5 1.2.3 Rezistorový dělič... 6 1.3 Proudové zrcadlo... 7 1.3.1 Násobné proudové zrcadlo... 8 1.3.2 Proudový zdroj... 8 1.4 Princip zatěžovací přímky... 9 1.5 Aktivní zátěž... 14 i

1 ANALOGOVÁ INTEGROVANÁ TECHNIKA (AIT) Pět základních kamenů analogové integrované techniky: 1. Základní tranzistorová rovnice 2. Souběh 3. Proudové zrcadlo 4. Aktivní zátěž 5. Tranzistorový diferenciální stupeň 1.1 Základní tranzistorová rovnice Závislost kolektorového proudu na napětí je u bipolárního tranzistoru v aktivní oblasti popsána základní tranzistorovou rovnicí, která má tento tvar:,, (1.1), (1.2) Obr. 1: Bipolární ranzistor kde je tzv. teplotní napětí, je Boltzmannova konstanta, T je absolutní teplota v kelvinech a je náboj elektronu. Hodnota při T = 300K je 25.8mV. je tzv. saturační proud tranzistoru. Jde o teplotně a materiálově závislou veličinu, jejíž velikost je přímo úměrná ploše emitorového přechodu tedy tranzistor s n-násobnou plochou emitoru, má n-krát větší hodnotu saturačního proudu. Absolutní hodnota je pro běžné tranzistory extrémně malá, její hodnota se pohybuje v řádech aa až fa. Při většině výpočtů parametrů v AIT absolutní hodnota ze vzorců vypadne, podstatný je pouze poměr saturačních proudů (odpovídá poměru emitorových ploch) tranzistoru. Pro většinu výpočtů budeme uvažovat nekonečnou hodnotu proudového zesilovacího činitele β, tedy budeme uvažovat 1

1.1.1 Transkonduktance Průběh základní tranzistorové rovnice tedy závislost ZMĚNY kolektorového proudu ( na ZMĚNĚ napětí ( ) můžeme v blízkosti pracovního bodu ( ) aproximovat přímkou jejíž sklon je dán derivací základní tranzistorové rovnice (1.1) viz Obr. 2. Tato derivace se nazývá transkonduktancí gm daného tranzistoru pro daný kolektorový proud : (1.3) (1.4) (1.5) Vztahy (1.4) a (1.5) jsou zřejmě nejdůležitějšími matematickými vzorci celé analogové integrované techniky. Obr. 2: Transkonduktance gm Ze vztahu (1.4) je zřejmé, že transkonduktance gm pro daný proud je daná poměrem tohoto proudu a velikosti teplotního napětí. To znamená, že není nijak závislá na jakýchkoliv materiálových vlastnostech tranzistoru. Ze vzorce pro gm je navíc zřejmé, že transkonduktance je pro daný proud stejná pro všechny typy bipolárních tranzistorů bez ohledu na jejich velikost. Toto velmi zjednodušuje výpočty parametrů obvodů s bipolárními tranzistory. 2

Pro zjednodušení řady výpočtů je možné bipolární tranzistor v aktivní oblasti (tedy v oblasti, ve které platí základní tranzistorová rovnice (1.1)) nahradit velmi jednoduchým lineárním modelem. Pro malé změny kolem pracovního bodu ( ) si můžeme tranzistor představit jako součástku (black box), která má uvnitř odpor na nějž se aplikují malé změny vstupního napětí (tedy ). Hodnota tohoto vnitřního odporu je dána převrácenou hodnotou transkonduktance gm. Změna výstupního proudu se pak jednoduše spočítá podle ohmova zákona. Obr. 3: Pracovní bod (vlevo) a lineární model bipolárního tranzistoru (vpravo) 1.1.2 Výstupní dynamická impedance tranzistoru Výstupní dynamickou impedanci v aktivní oblasti si můžeme představit jako odpor připojený paralelně k ideálnímu tranzistoru viz. Obr. 4. Obr. 4: Model bipolárního tranzistoru s výstupní dynamickou impedancí 3

Obr. 5: Výstupní charakteristiky ideálního a reálného bipolárního tranzistoru Hodnotu výstupní dynamické impedance je možné určit z charakteristiky na Obr. 5 jako (1.6) Pokud extrapolujeme charakteristiky do záporných hodnot, tak se protnou na ose v hodnotě, která je označena jako. Tato hodnota se nazývá Earlyho napětí, je dána technologickými parametry tranzistoru. Pro běžné NPN tranzistory je její hodnota okolo 100V. Pokud si uvědomíme, že trojúhelníky s odvěsnami a jsou podobné, můžeme hodnotu výstupní dynamické impedance vypočítat jako poměr Earlyho napětí a kolektorového proudu při němž zjišťujeme: (1.7) Protože je Earlyho napětí pro daný typ tranzistoru konstanta, je zřejmé, že čím vyšší hodnota, tím nižší je hodnota. 4

1.2 Souběh Vlastnost elektronického prvku je definována parametrem a. Tento parametr je procesně a teplotně závislý. Souběhem se nazývá skutečnost, že dva identické prvky mají poměr parametru a konstantní, tedy procesně a teplotně nezávislý. 1.2.1 Bipolární tranzistory Na následujících obrázcích jsou bipolární tranzistorové dvojice tvořené segmenty v poměru 1:1, 2:2 a 4:1 navržené tak aby měly dobrý souběh. Obr. 6: bipolární dvojice tranzistorů s poměrem emitorových ploch 1:1 (vlevo) a 2:2 (vpravo) Obr. 7: bipolární dvojice tranzistorů s poměrem emitorových ploch 4:1 1.2.2 Unipolární tranzistory Pro dobrý souběh je dobré segmenty tranzistorů proložit a zajistit co největší rozdíl mezi a (dlouhé kanály, nebo velký drainový proud). Obr. 8: unipolární dvojice tranzistorů s poměrem w/l 2:2 5

1.2.3 Rezistorový dělič Dělič je tvořen stejnými segmenty odporů R0 R15. Obr. 9: Souběh odporového děliče Pro pak platí: (1.8) Podél vnějších segmentů děliče se umístí tzv. dummy segmenty. Všechny segmenty děliče pak mají stejné okolí. 6

1.3 Proudové zrcadlo Proudové zrcadlo je základní blok (obvodový princip) analogové integrované techniky. Jeho základní zapojení vypadá takto: Obr. 10: Základní zapojení proudového zrcadla Předpokládejme, že oba tranzistory proudového zrcadla jsou identické a ideální (tedy nekonečné a nekonečná β). Protože obou tranzistorů je stejné, jsou stejné také jejich kolektorové proudy a platí tato jednoduchá rovnice: (1.9) Vstupní impedance (impedance měřená na spoji báze kolektor T1) je malá (je dána hodnotou při proudu ) zatímco výstupní dynamická impedance (měřena na kolektoru T2) je ideálně nekonečná, pro reálný tranzistor je dána rovnicí (1.7):. V reálné aplikaci můžeme pomocí proudového zrcadla vytvořit proudový generátor například podle následujícího zapojení na Obr. 11: Obr. 11: Proudový generátor Pro v tomto zapojení platí: (1.10) Hodnota je vširokém rozsahu proudu rovna asi 0,7V. 7

1.3.1 Násobné proudové zrcadlo Pomocí násobných tranzistorů je možné vytvořit proudová zrcadla, jejichž výstupní proudy jsou dány celočíselným násobkem (podílem) vstupního (referenčního) proudu. Obr. 12: Násobná proudová zrcadla 1.3.2 Proudový zdroj Pokud potřebujeme hodnotu, která není celočíselným násobkem/podílem proudu, můžeme použít proudový zdroj na Obr. 13. (1.11) Obr. 13: Proudový zdroj Pro napětí na bázích tranzistoru T1 a T2 můžeme napsat tuto rovnici: (1.12) Pokud použijeme základní tranzistorovou rovnici (1.1) pro vyjádření a a dosadíme je do rovnice (1.12), dostaneme: 8

, (1.13) T1 a T2 jsou identické tranzistory. Hodnota je dána jen poměrem (tedy jen číslem) proudu a a nemateriálovou veličinou. Veličina je jednou nejdůležitějších v AIT. 1.4 Princip zatěžovací přímky Tranzistor se společným emitorem jako zesilovač s odporovou zátěží Tranzistor pracuje jako zdroj proudu řízený napětím. Hodnota pro je 25,8mV. Strmost (transkonduktance) gm bipolárního tranzistoru je stejná pro všechny bipolární tranzisotry. Obr. 14: Bipolární tranzistor jako zdroj proudu řízený napětím 9

Obr. 15: Bipolární tranzistor jako řízený zdroj proudu s odporovou zátěží Napěťový zisk A s odporovou zátěží je: (1.14) (1.15) je stejnosměrný úbytek na odporu (nastavený pracovní bod), je změna napětí způsobená změnou napětí. Extrémně podstatný poznatek: napěťový zisk odporově zatíženého tranzistoru je dán stejnosměrným úbytkem na odporu (tedy nastavením pracovního bodu tranzistoru). To tedy znamená, že maximální dosažitelný zisk je dán jen napěťovým prostorem, který máme k dispozici. Tedy rozdílem (vpodstatě hodnotou napájecího napětí). Hodnota napěťového zisku se tak dá zvýšit jen zvýšením hodnoty napájecího napětí. Pokud známe hodnotu napájecího napětí, můžeme lehce určit maximální dosažitelný zisk Amax: (1.16) Vzhledem k tomu, že většinou pracujeme mimo mezní hodnoty (tedy někde mezi hodnotami a ), je maximální dosažitelný zisk menší. Například pro předpokládejme minimální hodnotu (tedy hodnota ). Potom je maximální dosažitelný zisk podle rovnice (1.16). Vzhledem k tomu, že maximální zisk je dán v podstatě napětím, není možné dosáhnout velkého zisku takovéhoto stupně pokud je hodnota nízká. 10

Pokud známe úbytek napětí na odporu (zjistíme třeba simulací nebo měřením) je zisk takového stupně (bipolární tranzistor s odporovou zátěží) dán přímo hodnotou tohoto úbytku, podělenou teplotním napětím: (1.17) Zatěžovací přímka odporu Obr. 16: Zatěžovací přímka odporu Sklon zatěžovací přímky ( ) je dán hodnotou odporu : (1.18) Řešení napěťového děliče (dva odpory v sérii) Obr. 17: Řešení napěťového děliče pomocí principu zatěžovací přímky 11

Řešení sériového spojení odpor dioda Obr. 18: Řešení sériového spojení odpor dioda pomocí principu zatěžovací přímky Řešní tranzistorového zesilovače s kolektorovým odporem Obr. 19: Řešení tranzistorového zesilovače s kolektorovým odporem pomocí principu zatěžovací přímky 12

Obr. 20: Řešení tranzistorového zesilovače s kolektorovým odporem pomocí principu zatěžovací přímky Na první pohled se zdá, že pro zvýšení zisku ( ) stačí použít větší hodnotu odporu. Jenže při větší hodnotě odporu musíme pracovat s menším kolektorovým proudem (s charakteristikou, která odpovídá menší hodnotě kolektorového proudu) pokud bychom pracovali s charakteristikou odpovídající velkému proudu, dostaneme tranzistor do saturace a zapojení nebude správně pracovat. A menší hodnotě kolektorového proudu odpovídá příslušně menší hodnota transkonduktance gm kolikrát zvětšíme odpor, tolikrát musíme zmenšit hodnotu proudu a tolikrát nám klesne transkonduktance, takže tímto způsobem se zisk tohoto zapojení zvýšit nedá. Na Obr. 20 to vypadá tak, že pro větší odpor dostaneme při stejné změně kolektorového proudu větší změnu napětí. Jenže vzhledem k menší transkonduktanci gm při malém proudu musíme použít větší změnu napětí, což vyšší zisk (získaný vyšší hodnotou ) zase sníží. 13

1.5 Aktivní zátěž Obr. 21: Řešení tranzistorového zesilovače pomocí principu zatěžovací přímky Při velkém proudu máme velkou hodnotu transkonduktance gm (pro velký napěťový zisk), ale pokud připojíme do kolektoru velkou impedanci, tranzistor je v saturaci a zapojení nepracuje správně. Možným řešením je použít vyšší hodnotu napětí (na obrázku znázorněno čárkovaně), ale to není praktické, často je to nemožné kvůli maximálnímu možnému napětí tranzistoru (hrozí průraz), nebo prostě vyšší není k dispozici. Tím správným řešením je vyzdvižení zatěžovací přímky velké impedance do oblasti větších proudů, tím dostaneme tranzistor ze saturace do aktivního režimu a současně dosáhneme (díky velké transkonduktanci gm při velkém kolektorovém proudu) žádaného vysokého zisku. Obr. 22: Zatěžovací přímka "vyzdvižené" velké impedance Jaký prvek má tuto charakteristiku??? Je to PNP (případně PMOS) tranzistor 14

Obr. 23: Aktivní zátěž s PNP (PMOS) tranzistory Výhodou aktivní zátěže je možnost postavit jednostupňový zesilovač s vysokým ziskem i pro malé hodnoty napětí, viz Obr. 22 a Obr. 23. Obr. 24: Bipolární (vlevo) a MOSový zesilovač (vpravo) s aktivní zátěží Hodnota proudu určí transkonduktanci pro bipolární tranzistor Hodnota zisku je dána transkonduktancí gm a hodnotou dynamické impedance aktivní zátěže (dynamická impedance bodu, kde je kolektor aktivní zátěže spojen s kolektorem aktivního tranzistoru). Hodnota zisku A: může být velmi vysoká (i přes 1000, to přes 60dB). (1.19) Například pro hodnotu je transkonduktance, a pro je hodnota zisku 15

Obr. 25: Zatěžovací přímka aktivní zátěže (vlevo) a převodní charakteristika (vpravo) Dynamickou impedanci aktivní zátěže a následně i stejnosměrný zisk A je možné spočítat i z hodnot Earlyho napětí aktivního tranzistoru ( ) a tranzistoru aktivní zátěže ( ). Hodnota Earlyho napětí totiž jednoznačně určí hodnotu výstupní (kolektorové) dynamické impedance tranzistoru při daném kolektorovém proudu....transkonduktance tranzistoru Ta při proudu...výstupní dynamická impedance tranzistoru aktivní zátěže...výstupní dynamická impedance aktivního tranzistoru Obr. 26: Znázornění výstupní dynamické impedance Výstupní dynamická impedance tranzistoru aktivní zátěže je svým horním koncem zkratována k zemi přes nulovou (ideálně) vnitřní impedanci napájecího zdroje. Výstupní dynamické impedance a jsou tak vlastně spojeny paralelně jak je znázorněno na následujícím obrázku: 16

Obr. 27: Paralelní spojení výstupních dynamických impedancí Na základě toho potom můžeme spočítat celkovou dynamickou impedanci : (1.20) Z tohoto potom můžeme vypočítat stejnosměrný zisk A: (1.21) Pro běžné hodnoty a potom vyjde hodnota A=1442 = 63dB Pomocí aktivní zátěže je tedy možné navrhnout jednostupňový zesilovač s velmi vysokým ziskem. Ze vzorce (1.21) pro hodnotu tohoto zisku A je dále zřejmé, že hodnota tohoto zisku nijak nezávisí na hodnotě proudového nastavení ( ). Je to tak proto, že výstupní dynamická impedance je nepřímo úměrná proudu, zatímco transkonduktance je naopak přímo úměrná proudu. V součinu, který určuje zisk A se tak hodnota vykrátí. Nezávislost na a vpodstatě žádný vztah k hodnotě jsou velmi cenné vlastnosti speciálně pro nízkopříkonový a nízkonapěťový návrh. 17