Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36
|
|
- Milena Konečná
- před 8 lety
- Počet zobrazení:
Transkript
1 Fyzika I. p. 1/36 Fyzika I. Obvody Petr Sadovský ÚFYZ FEKT VUT v Brně
2 Zdroj napětí Fyzika I. p. 2/36
3 Zdroj proudu Fyzika I. p. 3/36
4 Fyzika I. p. 4/36 Zdrojová a spotřebičová orientace Elektronické zařízení má zdrojovou orientaci a chová se jako zdroj, pokud šipky napětí a proudu směřují obráceným směrem. Elektronické zařízení nebo součástka má spotřebičovou orientaci a chová se jako spotřebič, pokud šipky napětí a proudu směřují stejným směrem.
5 Fyzika I. p. 5/36 I. Kirchhoffovův zákon n j=0 I j = 0 I 1 + I 2 I 3 = 0 Algebraický součet proudů do uzlu vtékajících a z uzlu vytékajících je roven nule.
6 Fyzika I. p. 6/36 II. Kirchhoffovův zákon n j=0 U j = 0 U 2 + U 3 + U 4 U 1 = 0 Algebraický součet napětí, vzatých podél orientované smyčky, je roven nule.
7 Fyzika I. p. 7/36 Princip superpozice Princip superpozice lze zobecnit pro libovolný počet zdrojů napětí i proudů.
8 Fyzika I. p. 8/36 Princip superpozice Pro nelineární rezistor princip superpozice neplatí: Př. Pokud je rezistor nelineární, např. i = f(u) = au 2, kde a je konstanta, pak i 1 = au 2 1, i 2 = au 2 2 ale i = a(u 1 + u 2 ) 2 = au au au 1 u 2 Člen 2au 1 u 2 vzniká působením obou napětí na nelineární součástce.
9 Fyzika I. p. 9/36 Metoda postupného zjednodušování obvodu Metoda postupného zjednodušování obvodu spočívá v postupném nahrazování sériového nebo paralelního zapojení rezistorů jedním prvkem. Ve vzniklém jednoduchém obvodu se pak určí celkový proud obvodem (nebo napětí) a obráceným směrem se vypočítají všechny další neznáme hodnoty napětí a proudů.
10 Výsledný odpor všech sériově spojených rezistorů je vždy větší, než největší z nich. Fyzika I. p. 10/36 Metoda postupného zjednodušování obvodu Sériové zapojení rezistorů U = U 1 + U 2 + U 3 R = U I = R 1+R 2 +R 3 obecně platí R = n R j j=1
11 Fyzika I. p. 11/36 Metoda postupného zjednodušování obvodu Paralelní zapojení rezistorů Na všech paralelně spojených prvcích je stejné napětí. Výsledný proud je dán součtem dílčích proudů v jednotlivých větvích. R = U I = U U R 1 + U R 2 + U R 3 R = 1 1 R R R 3
12 Fyzika I. p. 12/36 Metoda postupného zjednodušování obvodu Obecně platí G = n j=1 G j R = 1 n j=1 1 = R j 1 n j=1 G j Pro dva rezistory platí: R = R 1 R 2 R 1 + R 2 Pro paralelní řazení reistorů se občas používá zkrácené označení R = R 1 R 2 R 3... Výsledný odpor všech paralelně spojených rezistorů je vždy menší, než nejmenší z nich.
13 Fyzika I. p. 13/36 Nezatížený napět ový dělič I = U R 1 + R 2 U 1 = R 1 I = U U 2 = R 2 I = U R 1 R 1 + R 2 R 2 R 1 + R 2 U 2 je obvykle výstupní napětí děliče.
14 Zatížený napět ový dělič I = U R 1 + R 2 R z = U R 1 + ( R 2R z R 2 +R z ) U 2 = I(R 2 R z ) = U 2 = U U R 1 + ( R 2R z R 2 +R z ) R 2 R z R 1 R 2 + R 1 R z + R 2 R z Fyzika I. p. 14/36 R 2 R z R 2 + R z
15 Fyzika I. p. 15/36 Proudový dělič I 2 = I I 1 = I R 1 R 1 + R 2 R 2 R 1 + R 2
16 Fyzika I. p. 16/36 Napět ový dělič příklad Odporový dělič připojený na zdroji napětí U = 12V je tvořen rezistory o odporech R 1 = 700Ω a R 2 = 500Ω. Vypočtěte: a) Jaké výstupní napětí nezatíženého děliče U 2? U 2 = U R 2 R 1 + R 2 = = 5V
17 Fyzika I. p. 17/36 Napět ový dělič příklad b) Jaké je výstupní napětí děliče U 2z, pokud je dělič zatížen rezistorem, který má odpor R z = 500Ω, jaký proud I 2 protéká rezistorem R 2 a jaký proud I z protéká rezistorem R z? U 2z = U R 2 R z = 12 R 1 R 2 + R 1 R z + R 2 R z I 2 = U 2z R 2 = I z = U 2z R z = 3, , = 6, 3mA = 6, 3mA
18 Fyzika I. p. 18/36 Napět ový dělič příklad c) Jaké je výstupní napětí děliče U 2z, pokud je dělič zatížen rezistorem, který má odpor R z = 5000Ω, jaký proud I 2 protéká rezistorem R 2 a jaký proud I z protéká rezistorem R z? U 2z = U R 2 R z R 1 R 2 + R 1 R z + R 2 R z U 2z = = 4, 72V
19 Fyzika I. p. 19/36 Napět ový dělič příklad I 2 = U 2z R 2 = I z = U 2z R z = 4, , = 9, 4mA = 0, 94mA U odporových děličů by měl být proud tekoucí do zátěže minimálně 10 tak menší než proud tekoucí odporem R 2.
20 Fyzika I. p. 20/36 Metoda postupného zjednodušování obvodu příklad Vypočtěte proud I tekoucí ze zdroje napětí U=5V do obvodu. R 1 = 15Ω, R 2 = 10Ω, R 3 = 8Ω, R 4 = 2Ω.
21 Fyzika I. p. 21/36 Metoda postupného zjednodušování obvodu příklad Rezistory R 3 a R 4 jsou zapojeny v sérii a lze je tedy nahradit jedním rezistorem R 34, jehož hodnota odporu je rovna součtu hodnot odporů obou rezistorů. R 34 = R 3 + R 4 = = 10Ω
22 Fyzika I. p. 22/36 Metoda postupného zjednodušování obvodu příklad Rezistory R 2 a R 34 jsou zapojeny paralelně a lze je tedy nahradit jedním rezistorem R 234. Jeho hodnotu lze určit podle vztahu pro paralelní řazení rezistorů. R 234 = R 2 R 34 = R 2R 34 R 2 + R 34 = = 5Ω
23 Fyzika I. p. 23/36 Metoda postupného zjednodušování obvodu příklad Rezistory R 1 a R 2 34 jsou zapojeny v sérii a lze je tedy nahradit jedním rezistorem R 1234, jehož hodnota odporu je rovna součtu hodnot odporů obou rezistorů. R 1234 = R 1 + R 234 = = 20Ω
24 Fyzika I. p. 24/36 Metoda postupného zjednodušování obvodu příklad Proud tekoucí obvodem se pak určí z Ohmova zákona I = U = 5 R = 0, 25A
25 Fyzika I. p. 25/36 Metoda úměrných veličin Metoda úměrných veličin je vhodná především pro jednoduché lineární obvody s jedním nezávislým zdrojem. Je založena na principu úměrnosti, kde R jsou právě konstanty úměrnosti. Postup: 1. Odhadneme (určíme) napětí, respektive protékající proud v některé části obvodu. 2. Postupně dopočítáme všechna napětí a proudy v obvodu. 3. Následně se hodnoty přepočítají s ohledem na skutečné parametry napájecího zdroje.
26 Metoda úměrných veličin příklad Přepočítací koeficient k = U s U s = 5 40 = 0, 125 Fyzika I. p. 26/36
27 Fyzika I. p. 27/36 Metoda transfigurace U některých typů jednoduchých obvodů, metoda postupného zjednodušování i metoda úměrných veličin, selhávají.
28 Metoda transfigurace Transigurací lze část obvodu změnit tak, že bude řešitelný Fyzika I. p. 28/36
29 Metoda transfigurace Fyzika I. p. 29/36
30 Fyzika I. p. 30/36 Metoda transfigurace Transfigurace Y R A = R B = R C = R 1 R 3 R 1 + R 2 + R 3 R 1 R 2 R 1 + R 2 + R 3 R 2 R 3 R 1 + R 2 + R 3
31 Fyzika I. p. 31/36 Metoda transfigurace Transfigurace Y R 1 = R A + R B + R AR B R C R 2 = R B + R C + R BR C R A R 3 = R A + R C + R AR C R B
32 Metoda transfigurace Fyzika I. p. 32/36
33 Fyzika I. p. 33/36 Přímá aplikace Kirchhoffových zákonů Známe: R 1, R 2, R 3, U 01, U 02 V obvodu je 6 neznámých: I 1, I 2, I 3, U 1, U 2, U 3. Pro výpočet šesti neznámých je nezbytné sestavit 6 rovnic.
34 Fyzika I. p. 34/36 Přímá aplikace Kirchhoffových zákonů I. Kirchhoffův zákon pro uzel 1 platí: I 1 + I 2 + I 3 = 0 pro uzel 2 platí: I 1 I 2 I 3 = 0 Protože jsou rovnice závislé, použijeme jen jednu z nich.
35 Fyzika I. p. 35/36 Přímá aplikace Kirchhoffových zákonů II. Kirchhoffův zákon pro smyčky U 01 + U 1 + U 3 = 0 U 3 U 2 + U 02 = 0
36 Fyzika I. p. 36/36 Přímá aplikace Kirchhoffových zákonů Rovnice Ohmova zákona U 1 = I 1 R 1, U 2 = I 2 R 2, U 3 = I 3 R 3
37 Fyzika I. p. 37/36 Přímá aplikace Kirchhoffových zákonů I. Kirchhoffův zákon pro uzel 1 platí: I 1 + I 2 + I 3 = 0 pro uzel 2 platí: I 1 I 2 I 3 = 0 II. Kirchhoffův zákon pro smyčky U 01 + U 1 + U 3 = 0 U 3 U 2 + U 02 = 0 Rovnice Ohmova zákona U 1 = I 1 R 1, U 2 = I 2 R 2, U 3 = I 3 R 3
20ZEKT: přednáška č. 3
0ZEKT: přednáška č. 3 Stacionární ustálený stav Sériové a paralelní řazení odporů Metoda postupného zjednodušování Dělič napětí Dělič proudu Metoda superpozice Transfigurace trojúhelník/hvězda Metoda uzlových
Kirchhoffovy zákony. Kirchhoffovy zákony
Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon
Základní vztahy v elektrických
Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií
Vysoké učení technické v rně Fakulta elektrotechniky a komunikačních technologií Kolejní 906/4 6 00 rno http://www.utee.feec.vutbr.cz ELEKTOTECHNK (EL) lok nalýza obvodů - speciální metody doc. ng. Jiří
12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony
. Elektrotechnika Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Kirchhoffovy zákony Při řešení elektrických obvodů, tedy různě propojených sítí tvořených zdroji, odpory (kapacitami a indukčnostmi)
Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
Určeno pro posluchače všech bakalářských studijních programů FS
rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a
Název: Měření napětí a proudu
Název: Měření napětí a proudu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Elektřina a magnetismus
ZÁKLADY ELEKTROTECHNIKY pro OPT
ZÁKLADY ELEKTROTECHNIKY pro OPT Přednáška Rozsah předmětu: 24+24 z, zk 1 Literatura: [1] Uhlíř a kol.: Elektrické obvody a elektronika, FS ČVUT, 2007 [2] Pokorný a kol.: Elektrotechnika I., TF ČZU, 2003
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový
Úvod do elektrotechniky
Metody náhradního zdroje (Théveninova a Nortonova věta) lze využít při částečné analýze elektrického obvodu, kdy máme stanovit proud nebo napětí v určitém místě obvodu. Příklad: Určete v obvodu na obr.
ITO. Semestrální projekt. Fakulta Informačních Technologií
ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování
Základní definice el. veličin
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič
Příklady: 28. Obvody. 16. prosince 2008 FI FSI VUT v Brn 1
Příklady: 28. Obvody 1. V obvodu na obrázku je dáno E 1 = 6, 0 V, E 2 = 5, 0 V, E 3 = 4, 0 V, R 1 = 100 Ω, R 2 = 50 Ω. Obě baterie jsou ideální. Vypočtěte a) [0,3 b] napětí mezi body a a b a b) [0,7 b]
VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.
Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
Pracovní list žáka (SŠ)
Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +
Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm
Stavba hmoty Popis podstaty elektrických jevů, vyplývajících ze stavby hmoty Stavba hmoty VY_32_INOVACE_04_01_01 Materiál slouží k podpoře výuky předmětu v 1. ročníku oboru Elektronické zpracování informací.
Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá
neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými
Řešení elektronických obvodů Autor: Josef Sedlák
Řešení elektronických obvodů Autor: Josef Sedlák 1. Zdroje elektrické energie a) Zdroje z hlediska průběhu zatěžovací charakteristiky b) Charakter zdroje c) Přenos výkonu ze zdroje do zátěže 2. Řešení
Identifikátor materiálu: VY_32_INOVACE_344
Identifikátor materiálu: VY_32_INOVACE_344 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace. Na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.
Elektronika ve fyzikálním experimentu
Elektronika ve fyzikálním experimentu Josef Lazar Ústav přístrojové techniky, AV ČR, v.v.i. E-mail: joe@isibrno.cz www: http://www.isibrno.cz/~joe/elektronika/ Elektrický obvod Analogie s kapalinou Základními
Základy elektrotechniky 2 (21ZEL2) Přednáška 1
Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na
Podívejme se na ně z pohledu řešení elektrických obvodů a vysvětleme si je na jednoduchých praktických příkladech.
9. Kirchhoffovy zákony (německý fyzik Gustav Kirchhoff (1847)) řeší základní vztahy v elektrických obvodech. První Kirchhoffův zákon říká, že součet proudů do uzlu tekoucích je roven nule. Druhý Kirchhoffův
ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných
TEORIE ELEKTRICKÝCH OBVODŮ
TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl
Elektrický proud 2. Zápisy do sešitu
Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a
2. Elektrické proudové pole
2. Elektrické proudové pole Prochází-li, v celém prostoru uvnitř vodiče elektrický proud nazýváme toto prostředí elektrickým proudovým polem. Elektrický proud je dán uspořádaným pohybem elektrických nábojů
Kirchhoffovy zákony
4.2.16 Kirchhoffovy zákony Předpoklady: 4207, 4210 Už umíme vyřešit složité sítě odporů s jedním zdrojem. Jak zjistit proudy v následujícím obvodu? Problém: V obvodu jsou dva zdroje, jak to ovlivní naše
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu
1 Zdroj napětí náhradní obvod
1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém
2. ZÁKLADNÍ METODY ANALÝZY ELEKTRICKÝCH OBVODŮ
2 ZÁKLADNÍ METODY ANALÝZY ELEKTRICKÝCH OBVODŮ 2 Úvod Analýzou elektrické soustavy rozumíme výpočet všech napětí a všech proudů v soustavě Při analýze se snažíme soustavu rozdělit na jednotlivé obvodové
Obvodové prvky a jejich
Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící
STEJNOSMĚRNÝ PROUD Kirchhoffovy zákony TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Kirchhoffovy zákony TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Elektrické obvody Složitější elektrické obvody tvoří elektrické sítě.
R 4 U 3 R 6 R 20 R 3 I I 2
. TEJNOMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 6 chéma. = V = Ω = Ω = Ω = 6 Ω = 9 Ω 6 = Ω rčit: celkový odpor C,,,,,,,,
I 3 =10mA (2) R 3. 5mA (0)
Kirchhoffovy zákony 1. V obvodu podle obrázku byly změřeny proudy 3 a. a. Vypočítejte proudy 1, 2 a 4, tekoucí rezistory, a. b. Zdroj napětí = 12 V, = 300 Ω, na rezistoru jsme naměřili napětí 4 = 3 V.
Základy elektrotechniky
Základy elektrotechniky Základní veličiny a jejich jednotky Elektrický náboj Q Coulomb [C] Elektrický proud Amber [A] (the basic unit of S) Hustota proudu J [Am -2 ] Elektrické napětí Volt [V] Elektrický
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_B.1.09 Integrovaná střední škola technická Mělník, K učilišti 2566, 276
Základní elektronické obvody
Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektrotechniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektrotechniky 1 Elektrotechnika:
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny ředmět očník /y/..07/.5.00/34.0394 VY_3_NOVA_M_.9_měření statických parametrů zesilovače Střední odborná škola a Střední odborné učiliště,
Výpočet napětí malé elektrické sítě
AB5EN - Výpočet úbytků napětí MUN a metodou postupného zjednodušování Výpočet napětí malé elektrické sítě Elektrická stejnosměrná soustava je zobrazená na obr.. Vypočítejte napětí v uzlech, a a uzlový
VÝKON ELEKTRICKÉHO PROUDU, PŘÍKON
VÝKON ELEKTRICKÉHO PROUDU, PŘÍKON výkon P užitečná práce příkon P0 skutečná práce účinnost udává se v procentech Je-li mezi koncovými body vodiče napětí U a prochází-li jím stálý proud I, jenpříkon roven
Osnova kurzu. Základy teorie elektrických obvodů 3
Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie
Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu
Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb
Určeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
2.4. Výpočty vedení obecně
2.4. Výpočty vedení obecně Při výpočtech silových vedení elektřiny neuvažujeme vždy všechny parametry vedení. Výpočty se dají zjednodušit tím, že se některé parametry v daném případě se zanedbatelným vlivem
Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva).
Úloha 1 Multimetr CÍLE: Po ukončení tohoto laboratorního cvičení byste měli být schopni: Použít multimetru jako voltmetru pro měření napětí v provozních obvodech. Použít multimetru jako ampérmetru pro
R 3 R 6 R 7 R 4 R 2 R 5 R 8 R 6. Úvod do elektrotechniky
Metody náhradního zdroje (Théveninova a Nortonova věta) lze využít při částečné analýze elektrického obvodu, kdy máme stanovit proud nebo napětí v určitém místě obvodu. Příklad: Určete v obvodu na obr.
FYZIKA II. Petr Praus 6. Přednáška elektrický proud
FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní
Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika
- měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................
Elektrický proud. Opakování 6. ročníku
Elektrický proud Elektrický proud Opakování 6. ročníku Obvodem prochází elektrický proud tehdy: 1. Je-li v něm zapojen zdroj elektrického napětí 2. Jestliže je elektrický obvod uzavřen (vodivě) V obvodu
Elektromagnetismus. - elektrizace třením (elektron = jantar) - Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu
Elektromagnetismus Historie Staré Řecko: Čína: elektrizace třením (elektron = jantar) Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu Hans Christian Oersted objevil souvislost
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA Transformátor Měření zatěžovací a převodní charakteristiky. Zadání. Změřte zatěžovací charakteristiku transformátoru a graficky znázorněte závislost
U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu
DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran
Laboratorní práce č. 4: Určení elektrického odporu
Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého
4.2.8 Odpor kovového vodiče, Ohmův zákon
4.2.8 Odpor kovového vodiče, Ohmův zákon Předpoklady: 4207 Některé výsledky minulé hodiny. Odpor 180 Ω VA charakteristika odporu 180 ohmů napětí [V] 0 1,71 3,42 5,38 7,17 8,93 10,71 proud [A] 0,000 0,008
U R U I. Ohmův zákon V A. ohm
Ohmův zákon Ohmův zákon Spojíme li vodivě svorky zdroje o napětí U, začne vodičem procházet proud I. Napětí tedy vyvolalo elektrický proud Proud je pak přímo úměrný napětí (Ohmův zákon): I U R R V A U
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
PŘEDNÁŠKA 1 - OBSAH. Přednáška 1 - Obsah
PŘEDNÁŠKA 1 - OBSAH Přednáška 1 - Obsah i 1 Analogová integrovaná technika (AIT) 1 1.1 Základní tranzistorová rovnice... 1 1.1.1 Transkonduktance... 2 1.1.2 Výstupní dynamická impedance tranzistoru...
Nezávislý zdroj napětí
Nezávislý zdroj napětí Ideální zdroj: Udržuje na svých svorkách napětí s daným časovým průběhem Je schopen dodat libovolný proud, i nekonečně velký, tak, aby v závislosti na zátěži zachoval na svých svorkách
4.2.12 Spojování rezistorů I
4.2.2 Spojování rezistorů Předpoklady: 4, 4207, 420 Jde nám o to nahradit dva nebo více rezistorů jedním rezistorem tak, aby nebylo zvenku možné poznat rozdíl. Nová součástka se musí vzhledem ke zbytku
DIGITÁLNÍ UČEBNÍ MATERIÁL
DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_20
OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1
CZ.1.07/2.2.00/07.0002 Modernizace oboru technická a informační výchova OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1 (CVIČENÍ) 2009 PaedDr. PhDr. Jiří Dostál, Ph.D. Název studijního předmětu: Elektrotechnika 1
Petr Myška Datum úlohy: Ročník: první Datum protokolu:
Úloha číslo 1 Zapojení integrovaného obvodu MA 785 jako zdroje napětí a zdroje proudu Úvod: ílem úlohy je procvičit techniku měření napětí a proudu v obvodové struktuře, měření vnitřní impedance zdroje,
Martin Lipinský A05450 3.6.2007. Fyzikální Praktikum Měření proudu a napětí v obvodech elektrického proudu
Martin Lipinský A05450 3.6.2007 Fyzikální Praktikum Měření proudu a napětí v obvodech elektrického proudu Obsah 1.Měřící potřeby a přístroje...3 2.Obecná část...3 3.Postup měření...3 3.1Seriové zapojení
Ohmův zákon Příklady k procvičení
Ohmův zákon Příklady k procvičení 1) Urči celkový odpor, pro R 1 =10Ω, R 2 =25Ω, R 3 =5Ω, =20Ω, =30Ω, =10Ω. R5 R6 R1 R2 [23,7Ω; ] 2) Urči celkový odpor v odporu, pro R 1 =6Ω, R 2 =6Ω, R 3 =6Ω, =6Ω, =12Ω,
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,
Odporový dělič napětí a proudu, princip superpozice
Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 1 Odporový dělič napětí a proudu, princip superpozice Datum měření: 20.
4.2.12 Spojování rezistorů I
4.2.2 Spojování rezistorů Předpoklady: 4, 4207, 420 Jde nám o to nahradit dva nebo více rezistorů jedním rezistorem tak, aby nebylo zvenku možné poznat rozdíl. Nová součástka se musí vzhledem ke zbytku
4.2.18 Kirchhoffovy zákony
4.2.18 Kirchhoffovy zákony Předpoklady: 4207, 4210 Už umíme vyřešit složité sítě odporů s jedním zdrojem. Jak zjistit proudy v následujícím obvodu? U 1 Problém: V obvodu jsou dva zdroje. Jak to ovlivní
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Výpočty v elektrických obvodech VY_32_INOVACE_F0208.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/34.02 Zlepšení podmínek
Věra Keselicová. květen 2013
VY_52_INOVACE_VK60 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová květen 2013 8. ročník
Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.
FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických
Elektrická měření pro I. ročník (Laboratorní cvičení)
Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření
Základy elektrotechniky (ZELE)
Základy elektrotechniky (ZELE) Studijní program Technologie pro obranu a bezpečnost, 3 leté Bc. studium (civ). Výuka v 1. a 2. semestru, dotace celkem 72h (24+48). V obou semestrech zkouška, zápočet zrušen.
4.2.13 Regulace napětí a proudu reostatem a potenciometrem
4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).
U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω
B 9:00 hod. Elektrotechnika a) Definujte stručně princip superpozice a uveďte, pro které obvody platí. b) Vypočítejte proudy větvemi uvedeného obvodu metodou superpozice. 0 = 30 V, 0 = 5 V R = R 4 = 5
Studijní opory předmětu Elektrotechnika
Studijní opory předmětu Elektrotechnika Doc. Ing. Vítězslav Stýskala Ph.D. Doc. Ing. Václav Kolář Ph.D. Obsah: 1. Elektrické obvody stejnosměrného proudu... 2 2. Elektrická měření... 3 3. Elektrické obvody
Laboratorní regulovatelný proudový zdroj Univerzální (určený k napájení LED)
Ústav elektroenergetiky Laboratorní regulovatelný proudový zdroj Univerzální (určený k napájení LED) LCS01 CVVOZE č. 25094 Dne 20.1.2011 Vypracoval: Ing.Michal Krbal 1 Požadavky na proudový zdroj a jeho
Symetrické stavy v trojfázové soustavě
Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý
I dt. Elektrický proud je definován jako celkový náboj Q, který projde vodičem za čas t.
ELEKTRICKÝ PROUD Stacionární elektrické pole je charakterizováno konstantním elektrickým proudem Elektrický proud I je usměrněný pohyb elektrických nábojů. Jednotkou je ampér, I A. K vzniku elektrického
Elektrotechnika - test
Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika
I. STEJNOSMĚ RNÉ OBVODY
Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů
Řešení elektrických sítí pomocí Kirchhoffových zákonů
4.2.8 Řešení elektrických sítí pomocí Kirchhoffových zákonů Předpoklady: 427 Pedagogická poznámka: Hodina obsahuje čtyři obvody. Fyzikálně mezi nimi není velký rozdíl, druhé dva jsou však podstatně obtížnější
Ohmův zákon, elektrický odpor, rezistory
Ohmův zákon, elektrický odpor, rezistory Anotace: Ohmův zákon, elektrický odpor, rezistor, paralelní zapojení, sériové zapojení Dětský diagnostický ústav, středisko výchovné péče, základní škola, mateřská
Úloha 1: Zapojení integrovaného obvodu MA 7805 jako zdroje napětí a zdroje proudu
Úloha 1: Zapojení integrovaného obvodu MA 7805 jako zdroje napětí a zdroje proudu ELEKTRONICKÉ PRAKTIKUM FJFI ČVUT V PRAZE Číslo úlohy: 1 Autor: František Batysta Datum měření: 18. října 2011 Ročník a
Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů
Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: listopad 203 Klíčová slova: rezistor,
INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.
Číslo projektu CZ.107/1.5.00/34.0425 Název školy INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov Předmět Elektrická měření Tematický okruh Měření elektrických veličin Téma Měření
kde U výst je napětí na jezdci potenciometru, R P2 je odpor jezdce potenciometru, R P celkový odpor potenciometru a U je napětí přivedené
EDL 3.EB 2 /7.ZADÁÍ a) Změřte průběh výstupního napětí potenciometru v závislosti na poloze jezdce při různém zatížení, které je dáno různými hodnotami poměru / Z, například 0; 0,5; ; 5; 0 b) Změřenou
Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka
Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův
4.2.7 Odpor kovového vodiče, Ohmův zákon
4.2.7 Odpor kovového vodiče, Ohmův zákon Předpoklady: 4201, 4205, 4206 Př. 1: Změř závislost proudu procházejícího rezistorem na napětí (VA charakteristiku). Měření proveď pro dva různé rezistory. Hodnotu
ELT1 - Přednáška č. 6
ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,
Symetrizace 1f a 3f spotřebičů Symetrizace 1f a 3f spotřebičů
Symetrizace 1f a 3f spotřebičů Symetrizace 1f a 3f spotřebičů 5.10.2002 V mnoha průmyslových aplikacích se setkáváme s velkými zařízeními připojenými na síť elektrické energie. Tyto spotřebiče by měly
OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1
CZ.1.07/2.2.00/07.0002 Modernizace oboru technická a informační výchova OSNOVA PRO PŘEDMĚT ELEKTROTECHNIKA 1 (PŘEDNÁŠKY) 2009 PaedDr. PhDr. Jiří Dostál, Ph.D. Název studijního předmětu: Elektrotechnika
CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.
CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného
DUM č. 4 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia
projekt GML Brno Docens DUM č. 4 v sadě 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia Autor: Vojtěch Beneš Datum: 09.12.2013 Ročník: 2A, 2C Anotace DUMu: Dokument je souborem cvičení z fyziky
teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů
Jiří Petržela analýza obvodů metodou orientovaných grafů podstata metod spočívá ve vjádření rovnic popisujících řešený obvod pomocí orientovaných grafů uzl grafu odpovídají závislým a nezávislým veličinám,