Západočeská univerzita v Plzni - Univerzita třetího věku - ak. rok 2008/2009 Povrchové inženýrství Doc.Dr.Ing. Antonín Kříž kriz@kmm.zcu.cz www.ateam.zcu.cz
Povrch je jednou z nejdůležitější i nejcitlivější částí strojní součásti. Jeho výrobě, ale i následnému používání je nutné věnovat odpovídající pozornost. Ačkoliv se povrch při běžné vizuální kontrole zdá být jako ideální rovná plocha, ve skutečnosti tomu tak není. 2/121
3/121
4/121
Levý snímek dokumentuje stav povrchu po běžném broušení. Pravý snímek zachycuje stupeň deformace v souvislosti s obrobeným povrchem. Oba tyto snímky dokumentují celou řadu faktorů, které lze shrnout jedním termínem INTEGRITA POVRCHU 5/121
6/121
Charakteristické tvary skutečných profilů drsnosti plch a nosné křivky těchto ploch a) plochy obrobené třískově b) plochy dodatečně ovlivněné tlakovou deformací 7/121
8/121
Čas jsou peníze 9/121
Začátek průmyslové aplikace tenkých vrstev v oblasti řezných nástrojů 1968 CVD depozice vrstvy TiC na řezné destičce ze slinutého karbidu 1968 - Firma Ceratizit začátek průmyslové aplikace tenkých vrstev 21.8.1968 konec svobody v ČSSR 10/121
Co je to tenká vrstva? Srovnání tloušťek lidského vlasu a vrstvy deponované CVD technologií (u PVD vrstev je tloušťka 1-5µm) 11/121
Katalogové vlastnosti vrstev firmy LISS Platit a.s. Povlak Mikrotvrdost Součinitel tření Maximální prac. teplota Barva Materiál Struktura TiN monovrstva 2300 0,4 600 zlatožlutá AlCrN monovrstva 3200 0,35 1100 modrošedá CrN monovrstva 1750 0,5 700 stříbrošedá DLC monovrstva 2500 0,1-0,2 350 černošedá TiAlN nanostrukturovaný 3300 0,3 900 fialovošedá PKD monovstva 8000-10000 0,15-0,2 600 světlešedá TiCN vícevrstvý gradientní 3000 0,4 400 modrošedá multi TiAlSiN multivrstva 40(GPa) 0,55 900 modrošedá AlTiN monovrstva 3800 0,7 800 černo šedá TiCN multivrstva 3300 0,4 400 bronzově hnědá 12/121
Rozšíření použitelnosti řezného nástroje Vrstvy firmy LISS Platit a.s. Zdroj: Ceme Con, Kunden Magazin fur Beschichtungstechnologie, Science, Nr. 10, Januar 2004 13/121 Zdroj: Martin Kathrein, Aktuelle Entwicklungen in der Hartmetallbeschichtung, Hartmetallbeschichtung, Ceratizit - Seminarkunde Důležité vlastnosti řezného nástroje tvrdost nízký koeficient tření tepelná bariéra
Systém tenká vrstva-substrát Vrstva Rozhraní Substrát Deponované tenké vrstvy je třeba chápat jako systém, neboť vrstva pro svoji tloušťku dosahuje společně se substrátem specifických vlastností a chování. Samotné tenké vrstvy mají na rozdíl od objemových materiálů rozdílné vlastnosti a to nejen z důvodů svojí tloušťky, ale i následkem depozičních procesů, které lze označit jako nerovnovážné a iniciující vznik metastabilních fází. 14/121
Pro zajištění požadovaných vlastností je nutné věnovat pozornost všem složkám tvořící daný systém Otěruvzdorná vrstva Odolnost proti opotřebení Redukce tření Korozní odolnost Difúzní bariéra Tepelná bariéra Substrát Pevnost Tuhost Geometrie 15/121 Mezivrstva Adheze Bariéra rozvoje trhlin Kompenzace diletace a pnutí Modifikace struktury a morfologie
Trendy ve volbě polotovaru Evropští uživatelé nástrojů jsou velmi konzervativní, Češi zdrženliví Slinuté karbidy 16/121
Volba polotovaru Nástrojová ocel Slinutý karbid Cermet Keramika Klasická HSS ocel 350 Kč/kg 17/121 Slinuté karbidy Cermety Prášková HSS ocel 800 Kč/kg
Substrát základní materiál Vlastnosti materiálu Slinutý karbid Jemnozrnnost, chemické složení, vhodnost k depozici Zabránění šíření trhliny ve slinutých karbidech řeší firma Tungaloy vhodnou strukturou 18/121 Zdroj: Tungaloy Co., Ltd., http://www.tungaloy.com/disktech.html
Volba polotovaru slinutý karbid Jaké chemické složení, jakou zrnitost? Ne každá sorta SK je vhodná pro zvolenou depozici! TSF 19/121 TSM P- skupina
Kvalita polotovaru Karbidické vycezeniny kalící trhlina - problém při tepelném zpracování 20/121
Kvalita tepelného zpracování Nástrojové oceli je třeba pro dosažení požadovaných vlastností tepelně zpracovat. V případě takto zničené oceli nelze provést žádnou opravu než nástroj poslat do šrotu. Je důležité používat takové oceli, které UMÍ kalírna tepelně zpracovat problémové jsou kobaltové oceli 21/121
Geometrie nástroje často opomíjený faktor ostatní kombinace 50% řezné materiály 19% geometrie řezných nástrojů 1% tenké vrstvy 30% Rozdělení hlavních nároků patentových přihlášek v oboru řezných nástrojů v Německu. r. 2002 Zdroj: Evropský patentový úřad Mnichov 22/121
Změna geometrie nástroje způsobila výrazné zlepšení trvanlivosti 23/121 Zdroj: Ceme Con, Kunden Magazin fur Beschichtungstechnologie, Tools, Nr. 21, May 2004
Makrogeometrie břitu řezného nástroje Varianty makrogeometrie břitu nástroje 1 2 3 24/121
Geometrie nástroje by se měla měnit i podle nadeponované vrstvy TiAlN 7 000 TiAlSiN 15 000 TiAlN s kluznou vrstvou 10 000 25/121
Porovnání variant geometrií Nástroj číslo Varianta I. Varianta II. Varianta III. Opotřebení 1,77 1,69 1,92 Vzhled povrchu 2,15 2,46 1,54 Otřepy 1,46 1,08 2,38 Průměr 1,79 1,75 1,95 Pořadí 2 1 3 26/121
Při návrzích geometrie je třeba využívat všech dostupných možností a znalostí Mezi takové patří také počítačové modelování řezných procesů 27/121
Vedle geometrie je důležité i správné ostří a stav povrchu Břit nástroje Pevně uchycené nečistoty na povrchu mohou způsobit problémy s adhezí tenké vrstvy. Problémy s adhezí mohou nastat také v případě nevhodného stavu řezné hrany. Vrstva musí být k substrátu pro dosažení dobrých vlastností dobře zakotvena. 28/121
Nejen defekty před depozicí chyba u výrobce nástrojů, ale také nesouvislá vrstva na plochách a břitu mají za následek degradaci požadovaných vlastností. 29/121
Předdepoziční úprava může něco vylepšit, ale velké defekty neopraví! PŘED 30/121 PO OMLETÍ
Volba vrstvy Je podle čeho vybírat? Není to cesta do neznáma? 31/121
U některých zákazníků je důležitá barva nástroje 32/121
Zákazník byl nespokojen s kvalitou vrstvy kvůli její barvě a nedával ji v provozu žádnou šanci. Byla nadeponována povrchová vrstva TiN a vše bylo v pořádku Koncepce vrstvy MARWIN SI SHM Šumperk 33/121
Až když barva nástroje vyhovuje, pak se teprve testuje Na zlaté zbarvení reagují naše smysly příznivěji než na ostatní barvy 34/121
Co všechno může depoziční proces změnit? Negativně Pozitivně 35/121
Při depozici nesmí dojít k degradaci vlastností substrátu W Ti Co C Úbytek kobaltu Změna obsahu uhlíku na povrchu substrátu následkem nevhodných parametrů CVD depozice (častý proces u TiCN) N Al Změna obsahu kobaltu na povrchu substrátu následkem nevhodných parametrů PVD depozice - iontového čištění 36/121
Substrát základní materiál Vlastnosti materiálu Rychlořezná ocel Kvalitní materiál je nutnou Depozicí vrstvy nesmí dojít k popuštění materiálu podmínkou pro kvalitní nástroj deponovaná vrstva nemůže zachránit materiálové prohřešky! 37/121
Základní depoziční technologie CVD: TiN, TiCN, Al2O3,.. DLC PVD: TiN, TiCN, TiAlN,AlTiN, TiAlSiN, TiB2, CrN, CrAlSiN, WC/C, MoS2, PLC,... 100 Vrstvy aplikované na nástrojích z RO Ostatní vrstvy 90 80 Podíl [%] 70 60 TiCN TiAlN 50 40 30 TiN 20 10 0 1997 1998 1999 2000 2001 Rok 38/121 2002 2003 2004
Základní depoziční procesy 1050 C 950 C Chemical Vapor Deposition CVD 750 C 10µm CVD 10µm PVD Plasma Assisted Chemical Vapor Deposition PACVD 500 C Physical Vapor Deposition PVD 300 C 39/121
Depoziční procesy Vlastnosti vrstvy Adheze 1050 C 950 C Teplotní stabilita CVD 750 C PACVD 500 C PVD 300 C 40/121 Pnutí
Odborná literatura věnuje oběma technologiím stejnou pozornost 5000 Publikace 4000 3000 CVD PVD 2000 1000 0 1950-1980 1980-1990 1990-2001 2000-2010 Časový průběh výzkumných prací zabývající se CVD/PVD technologií Klíčová slova: CVD / PVD, coatings, wear, tool, tribology Období 2000-2010 je předpokládaný stav Zdroj: COMPENDEX, METADEX, CHEM. ABSTRACTS 41/121
CVD Chemical Vapor Deposition Lom vrstvy od firmy Ceratizit Zdroj: Martin Kathrein, Aktuelle Entwicklungen in der Hartmetallbeschichtung, Hartmetallbeschichtung, Ceratizit - Seminarkunde 42/121 Depoziční zařízení ve firmě Ceratizit
PVD depozice Magnetronové naprašování SubstratStromversorgung N2 Werkstücke C2H2 etc. Plasma Ar Schichtdicken Messgerät (Schwingquarz) DC Stromversorgung Gasflussmessung und Regelung 10µm Magnetron Kathode Magnet A1/57/4 Turbomolekular Pumpstation Obloukové odpařování katody Makročástice 5 µm 43/121
Vývoj progresivních depozičních zařízení Původní zařízení firmy SHM pracovalo pouze s centrální dutou katodou Schéma depozičního zařízení s dutými katodami 44/121
Vývoj progresivních depozičních PVD procesů u firmy PIVOT obloukové odpařování katody PLATIT - π80 LARC : LAteral Rotating ARC-Cathodes CERC : CEntral Rotating ARC-Cathodes 45/121
Typy vrstev: akte ha r ho c by ové z iont ní va nota valent ko Druhy vazeb Ho d Monovrstva Monovrstva s adhezní vrstvičkou Gradientní vrstva Sendvičově řešená vrstva Nanostrukturovaná vrstva Nanokompozitní vrstva KOVALENTNÍ VAZBA C AlN ru SiC Ho Si3N4 Tenké vrstvy velmi často neodpovídají nejen vlastnostmi, ale i svými vazbami objemovým TiC TiB2 Al2O3 materiálům. Následkem nerovnovážných TiN ZrO2 WC depozičních procesů vznikají tyto HETEROmetastabilní fáze. POLÁRNÍ KOVOVÁ Příkladem je TiN, která má dle řady (IONTOVÁ) VAZBA VAZBA autorů, i jistý stupeň kovové vazby, přičemž objemový materiál se vyznačuje Zdroj: Martin Kathrein, Aktuelle Entwicklungen in der Hartmetallbeschichtung, Hartmetallbeschichtung, Ceratizit - Seminarkunde vysokým stupněm iontové vazby. dno har oc tníh zby l en ova é va ta k iontov er akt u
Klasická struktura vrstvy Rok: 1968 Jedna vrstva Monovrstva Zdroj: Martin Kathrein, Aktuelle Entwicklungen in der Hartmetallbeschichtung, Hartmetallbeschichtung, Ceratizit - Seminarkunde 47/121
Klasická struktura vrstvy 70. léta Monovrstva s adhezní vrstvičkou Zdroj: Martin Kathrein, Aktuelle Entwicklungen in der Hartmetallbeschichtung, Hartmetallbeschichtung, Ceratizit - Seminarkunde 48/121
Moderní struktura vrstvy 80. léta 49/121 Zdroj: Martin Kathrein, Aktuelle Entwicklungen in der Hartmetallbeschichtung, Hartmetallbeschichtung, Ceratizit - Seminarkunde Gradientní vrstva
Moderní struktura vrstvy Monovrstva 50/121 Monovrstva s adhezní vrstvičkou 80. léta Zdroj: Martin Kathrein, Aktuelle Entwicklungen in der Hartmetallbeschichtung, Hartmetallbeschichtung, Ceratizit - Seminarkunde Gradientní vrstva
Moderní struktura vrstvy Sendvičově řešená vrstva Skladba vrstvy Část výbrusu kaloty 51/121
Moderní struktura vrstvy - Nanostrukturované vrstvy Nanovrstevná struktura Substrát 100 nm Zdroj: Pavel Holubář, Nová průmyslová technologie povlakování Přednáška Vrstvy a Povlaky 2003 52/121 Schématický postup šíření trhliny multivrstevným systémem
Supermřížka nanovrstvy Příklad nárůstu tvrdosti pomocí řízené periody vrstev 50 nanotvrdost; [GPa] 40 TiN-CrN AlN 30 TiN-CrN 20 7 nm 10 0 1 Zdroj: Nortwestern University, IL, USA 10 100 perioda nanovrstev [nm] 1000 53/121
Nanokompozitní struktura; nc- (Ti1-x Alx)/aSi3N4 Model TEM obrázek monovrstvy nc-kompozitu Source: S. Veprek, TU München Zdroj: S. Veprek, TU Mnichov Nanorozměrové krystaly AlTiN jsou vsazeny do matrice Si3N4 54/121 Zdroj: S. Veprek, TU Mnichov Měřeno v EPF, Lausanne
Tvrdost [GPa] Tvrdost Zdroj: Cselle Tibor, přednáška Quo Vadis Coating, Vrstvy a Povlaky 2004 Nedeponované TiN SK TiAlN AlTiN TiAlSiN Zvýšení mikrotvrdosti aplikací progresivních tenkých vrstev TiAlSiN 55/121
naco nanokompozit založený na bázi Ti. nc-altin / a-si3n4 Největší novinka roku 2005 v oblasti průmyslové aplikace tenkých vrstev na řezných The Camel-Curve : Nanocomposite Structure Eliminates nástrojích je Disadvantages of Conventional Coating nacro : Nanocomposite: (nc-alcrn)/(a- Si 3N4) nacro.. nanokompozit založený na bázi Cr nc-alcrn / a-si3n4 AlCrN 56/121 Zdroj: Cselle Tibor, přednáška Quo Vadis Coating, Vrstvy a Povlaky 2004
Vliv množství hliníku na vznik hexagonální strukturní mřížky B ase m a x. A ln c C rn 7 7,2 VN 7 2,4 T in 6 5,3 W N 5 3,9 N bn 5 2,9 Množství (atomární) Al kdy převažuje hexagonální mřížka Z rn 3 3,4 H fn 2 1,2 Ref.: ISIJ International 38, 925-934 (1998) Hardness0.07 [GPa] T 25[ C] 40 30 AlCrSiN AlTiSiN 20 10 0 Zdroj: Ceme Con, Kunden Magazin fur Beschichtungstechnologie, Tools, Nr. 17, September 2004 57/121 20 40 60 80 100 Al [at%]
Teplotní přetížení nástroje častá příčina jeho poškození Vrstvy jako např. Al2O3 popř. AlTiN vytváří účinné tepelné bariéry Lavinovitý otěr nástroje následkem tepelného i mechanického přetížení Rozdělení odváděného tepla v závislosti na řezné rychlosti při obrábění oceli 58/121
Odolnost proti oxidaci u vrstev s obsahem Al 900 C vzduch, 60 min TiN AlTiN 60%Al 59/121 TiAlN TiAlSiN
CVD depozice vrstvy TiN+ Al2O3+TiN Substrát ultrajemný SK TiN DS* α-al2o3 Ti(C,N,O) MT-Ti(C0,47,N0,53) TiN Sandvik GC 3205 60/121 Při svém pracovním pobytu ve firmě Ceratizit (Rakousko) jsem měl za úkol sledovat trvanlivost VBD nejen jejich produkce, ale i konkurenčních společností, mezi nimiž právě Sandvik vykazoval velmi dobré výsledky. Vedle trvanlivosti jsem sledoval z metalografických výbrusů, tak i z fraktografického pozorování, skladbu vrstev. Celkem jsem takto zanalyzoval 9 konkurenčních a 9 vlastních systémů.
Další trendy depozic Depozice řezné keramiky CVD depozice vrstvy Ti(C,N)+ Al2O3+TiN Substrát neoxidická keramika Si3N4 Lom systému a hloubkový koncentrační profil analýzy GD-OES na povrchu je nepatrná vrstva TiN, následuje šedivá Al2O3 a TiCN 61/121
Frikční vrstvy sp Ternární fázový diagram vazeb u a C:H. Srovnání koef. tření PIN (kulička) Al2O3 Srovnání - "PIN - on - DISC" ball Al2O3 1,1 MoS2 AlTiN Vrstva na bázi uhlíku 1,0 AlTiN 0,9 0,8 koef. tření 0,7 0,6 0,5 0,4 MoS2 Vrstva na bázi uhlíku 0,3 0,2 Krystalografická mřížka MoS2 62/121 0,1 0,0 0,00 0,05 0,10 0,15 0,20 Dráha v km 0,25 0,30 0,35
V minulosti byla hlavní pozornost věnována ekonomice obrábění Hodnoty trvanlivosti T při limitním opotřebení VB=0,3 mm SK (v=38,52,63,80 m/min) TiN (v=54,64,72,80 m/min) TiN-TiP (v=50,60,70,80 m/min) TiAlN-AlP (v=48,57,68,77 m/min) TiAlSiN-alfa (v=52,62,73,80 m/min) TiAlSiN-beta (v=57,67,75,87 m/min) 250 Ra Trvanlivost T (min) 200 150 100 50 0 40 50 60 70 80 Řezná rychlost v (m/min) Ekonomická stránka je samozřejmostí, hlavní trend vývoje bude sledovat kvalitu, ekologický dopad a snadnou obnovitelnost nástrojů. 63/121
Trend vývoje požadavek na moderní nástroje s progresivními vrstvami: - Větší trvanlivost nástroje (využití v hromadné výrobě, automaty) - Obrobený povrch s vyšší kvalitou (lepší povrch při stejné ceně vyšší kvalita) - Obrábění s minimálním množstvím procesní kapaliny (ekologie, cena, starosti s recyklací a skladováním) - Reprodukovatelnost výsledků alespoň z 80% - Odstranění starých vrstev z nástrojů SK bez nutnosti následného přeostření 64/121
Vyplatí se depozice řezných nástrojů? Ceny dle firmy Hofmeister s.r.o. Odvrtaná délka; Lf [m] 50 0 Bez vrstvy TiN TiAlN 65/121 TiN Přeostřeno a deponováno 7.4 Přeostřeno 27 10.8 Přeostřeno a deponováno 28 4.5 Bez vrstvy 50 45,- Kč /1m odvrtané délky Depozice 10 Přeostřeno+přepovlakováno 51 Přeostřeno 20 přeostřeno Depozice 30 288,- Kč /1m odvrtané délky 40 Povlakovaný nástroj 288,- Kč /1m odvrtané délky Bez PVD 78,- Kč /1m odvrtané délky 60 4.5 Bez Multivrstva TiAlN vrstvy Mat: 38MnV35 - Rm=800 N/mm 2 - Emulsion 7% K40UF - d=12.6mm - ap=13,5mm - vc=78 m/min - f=0.25 mm/u Quelle: DC, Stuttgart, Gühring, Sigmaringen
České firmy zabývající se depozicí tenkých vrstev Depozice se v praxi neřídí jen podle jasných výsledků, ale velký vliv má i odběratel, značnou roli hraje čas, kterého se na konci výrobního procesu nedostává, ale také konzervativní přístup neumožňující rychlé prosazení nových trendů. 66/121
Podle jakých kritérií rychle a levně poznat špatnou vrstvu? Testování vzorků zkušební vzorek Stanovení tloušťky vrstev Tribologické analýzy Analýza GD-OES hloubkové koncentrační profily Mikrotvrdost systému tenká vrstva-substrát Adhezivně-kohezivní chování systému tenká vrstva-substrát a) vnikací metoda b) scratch test Zkoušky o vyšší teplotě Povrchové kontaktní zkoušky Impact test 67/121
Jaká zkouška dává důvěryhodné poznatky? 20,381 hmax- maximální hloubka proniknutí indentoru 18,381 16,381 Zatížení (N) 14,381 Lmax- maximální zatížení indentoru hf - hloubka proniknutí indentoru po odlehčení S- sklon (směrnice) počátečního úseku odlehčovací křivky 12,381 Odlehčení S Lmax 10,381 8,381 Zatížení hmax 6,381 4,381 hf 2,381 0,381 0,009 0,019 0,029 0,039 0,049 0,059 0,069 0,079 0,089 0,099 0,109 0,119 0,129 0,139 0,149 Ta, která se nejvíce přiblíží praxi a odhalí nejrychleji závadu a příčinu nefunkčnosti popř. další využití systému. Hloubka průniku (µ m)
Spojitost mezi laboratorními analýzami a technologickou zkouškou trvanlivosti ostří při obráběcím procesu 69/121
S ohledem na široké uplatnění tenkých vrstev na řezných nástrojích mají doposud zkoušky trvanlivosti nezastupitelné místo v oblasti jejich hodnocení. Nevýhodou těchto technologických experimentů je vysoká časová a finanční náročnost. Proto se hledají možnosti, jak nahradit tyto technologické zkoušky jednoduššími a rychlejšími laboratorními testy, které odhalí užitné vlastnosti použitých systémů tenká vrstva-substrát. 70/121 3
Tenké vrstvy mají za úkol zabránit předčasnému poškození břitu Z tohoto důvodu se požadují specifické vlastnosti tenkých vrstev, jejichž projevy je nutné ohodnotit právě v souvislosti s požadavky kladenými na systém tenká vrstva-substrát. 71/121
Stanovení tloušťky vrstev xy a 2R 72/121
Ze stavu kaloty lze také rozpoznat adhezivně-kohezivní vlastnosti Kalota - vrstva TiN Kalota - vrstva TiAlN (naco) Kalota - vrstva TiAlSiN 73/121
Fraktografické sledování systému tenká vrstva-substrát -196 C 74/121
Vrstva TiAlSiN 75/121
Analýza GD-OES hloubkové koncentrační profily Kráterový jev iniciovaný nerovnoměrným rozložením doutnavého výboje 76/121
Ovlivnění výsledků kráterovým jevem Hloubkový koncentrační profil 77/121 Multivrstva TiAlSiN
Degradace substrátu odhalená metodou GD-OES W Ti N Al 78/121 C Co
Nanoindentační měření S ohledem na tloušťku tenkých vrstev je nutné volit zátěž v desítkách mn. Hloubka průniku indentoru musí být max. 7krát menší než je tloušťka vrstvy. Tento poměr zajistí, že hodnota nanotvrdosti nebude ovlivněna podkladovým materiálem substrátem. Při malých zátěžných silách se negativně projevuje drsnost povrchu popř. nečistoty a makročástice. Z tohoto důvodu je doporučeno měřit mikrotvrdost na pokraji kaloty. 79/121
Další vlastnosti zjištěné měřením nanotvrdosti systému tenká vrstva - substrát L Hf > Hs F Vrstva Hf h Podložka Hs Ovlivněná oblast t Oblast přetvoření plastického Elastická deformace Plastická deformace Plastická Elastická h Zdroj: Ladislav PEŠEK, NOVÁ ISO NORMA NA STANOVENIE MECHANICKÝCH VLASTNOSTÍ POVLAKOV POMOCOU INŠTRUMENTOVANEJ INDENTAČNEJ SKÚŠKY TVRDOSTI, Vrstvy a Povlaky 2005. Místo vhodné pro umístění vtisků 80/121
12 Elas tická energie [nj] Energie spotřebovaná na deformace Plas tická energie [nj] 10 HIT [GPa] 45 4,52 4,616 3,777 3,666 3,145 3,656 3,004 39,3 40 34,4 35 6 30 [GPa] Energie [nj] 8 Indentační mikrotvrdost 4 5,48 5,265 5,304 5,375 5,81 5,898 5,762 26,1 35,3 32,3 35,2 24,8 25 20 15 2 10 5 0 0 TiN (20 C) TiN (400 C) TiAlSiN (20 C) TiAlSiN (400 C) naco (20 C) naco (400 C) naco (800 C) TiN (20 C) 100 90 87,7 TiN (400 C) TiAlSiN (20 C) TiAlSiN (400 C) naco (20 C) naco (400 C) naco (800 C) Podíl Wr/We 82,5 80 71,2 70 68,2 63,4 54,1 60 50,9 50 40 30 20 10 0 81/121 TiN (20 C) TiN (400 C) TiAlSiN (20 C) TiAlSiN (400 C) naco (20 C) naco (400 C) naco (800 C)
Adhezivně-kohezivní chování systému tenká vrstva-substrát Vnikací metoda Původní hodnocení Upravené hodnocení 82/121
Využití obrazové analýzy ke kvantifikaci adhezivně-kohezivních vlastností F = 1492 N hloubka vtisku = 92,5 μm K5/A3 83/121
Vrstva TiN K1/A6 Vrstva TiN II K1/A1 Vrstva TiAlSiN K5/A3 84/121 Vrstva TiAlN K2/A5 Vrstva TiAlSiN multivrstva K2/A4
Scratch test vrypová zkouška 85/121
Druhy porušení, které jsou pozorovány při vrypové zkoušce závisí na vlastnostech jak samotného substrátu tak i vrstvy. Pokud je vrstva velmi měkká v porovnání se substrátem, dojde v rámci vrstvy ke značné plastické deformaci a kritické zatížení Lc může být definováno jako zatížení, při kterém byla vrstva odtržena a došlo k odhalení substrátu. Pro tvrdé vrstvy na měkčím substrátu porušení odlupováním a vrásněním vyplývá z odtržení rozhraní, ale může být pozorována oblast dalších trhlin a deformovaných oblastí. U tvrdých vrstev na tvrdých substrátech může být pozorováno vylamování (štěpení). Jen několik z mnoha typů porušení, která se objevují během vrypové zkoušky, má přímou souvislost s kvalitou adhezního spojení. Ostatní typy porušení jsou výsledkem plastické deformace substrátu či štěpení vrstvy v sobě samé. Totální odhalení substrátu Ls ~ 56N 86/121
Hlavním problémem metody scratch test je nalezení vztahu mezi naměřeným kritickým zatížením a skutečnou hodnotou adheze, tj. energií nutnou k vytvoření trhliny na rozhraní vrstva substrát. Proto nelze přímo srovnávat velikost adheze pro vrstvy různého složení s různou tloušťkou deponovaných na různých substrátech. Kritické zatížení většinou vzrůstá s rostoucí tvrdostí vrstvy, s rostoucí tvrdostí substrátu a poklesem modulu pružnosti, s poklesem koeficientu tření, s růstem napětí ve vrstvě, se snižováním drsnosti substrátu a s růstem tloušťky vrstvy. Tuto hodnotu lze určit vyhodnocením zaznamenaných závislostí signálů akustické emise a frikčního koeficientu na hodnotě působící normálové síly. Hlavní typy porušení v závislosti na vlastnostech substrátu a vrstvy 87/121
Vliv předdepoziční úpravy substrátu Vrstva TiAlN + DLC Otryskání Porušení při kritickém zatížení LC2 ~ 36N Substrát - beze změny Omletí ve speciálním brusném médiu Porušení při zatížení ~ 30N Porušení při zatížení ~ 28N 88/121
Tribologické vlastnosti Pin-on-Disc Metoda: Pin-on-Disc Zatížení: 1-10N Poloměr: Rychlost otáčení 10 až 500 ot./min. Materiál kuličky: ocel, Si3N4, ZrO2, Al2O3,WC.. 05 0 0, 631 11 8 0, 263 16 6 0, 895 22 3 0, 527 28 1 0, 158 33 9 0, 790 39 7 4 0, 22 45 5 0 0, 543 5 0, 068 56 6 0, 317 61 8 0, 949 67 6 0, 581 73 4 2 0, 132 7 0, 884 84 5 47 67 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 0, Koeficient tření Tribologický záznam Vzdálenost [km] 89/121
Jaký je v publikacích uváděn koeficient tření? S 90/121 ký c ti a t Dynamický
Měření koeficientu tření Prudké změny v třecí síle mohou být způsobeny změnami reálné kontaktní síly Fn Změny v třecí síle? 1,0 0,9 Koeficient tření 0,8 0,7 0,6 0,5 0,4 0,3 0,2 Jaká hodnota koeficientu tření je ta správná? 0,1 0,0 0,00 0,01 0,01 0,02 Dráha 91/121 0,02 0,03 0,03
Měření koeficientu tření Kontaktní síla Reálný vztah mezi kontaktní silou a silou frikční Frikční síla (koreluje s kontaktní silou) Koeficient tření založený na poměru třecí síly a skutečného zatížení Koeficient tření vycházející z poměru třecí síly a nominálního zatížení μ= okamžitá frikční síla/okamžité zatížení μ= okamžitá frikční síla/nominální zatížení Rozdíl mezi okamžitou a nominální zátěžnou silou při výpočtu μ 92/121
Vliv drsnosti na koeficient tření Kine tick ý k. tř e ní př i r ůzné dr s nos ti 0,62 0,62 0,61 Koef. tření 0,61 0,60 0,60 0,59 0,59 0,58 0,58 Ra = 6,23 Ra = 4,53 Vliv drsnosti povrchu na kinetický koef. tření. V obou případech byly nastaveny shodné parametry včetně zvoleného materiálu. Vzorky se lišily pouze v drsnosti povrchu. 93/121
Měření opotřebení Pro výpočet některých veličin charakterizujících odolnost vrstvy vůči opotřebení, jako je např. koeficient opotřebení, je nutné znát hloubku a reálný reliéf stopy opotřebení. Nejčastěji se hloubka stopy určuje pomocí dotykového profiloměru. Profily se měří v několika místech stopy. Snadno může dojít ke zkreslení výsledků 0,81µm Záznam z profiloměru neodpovídá skutečnému opotřebení Patrné odhalení substrátu, tloušťka tenké vrstvy 4µm Z těchto důvodů bylo potřeba vybrat metodu jinou než-li konvenční dotykový profilometr 94/121
Měření opotřebení Metoda Výhody Váhy Levné a jednoduché Dotyková profilometrie Jednoduché, relativně rychlé Dostáváme informace pouze z jednotlivých úseček, malá přesnost Laser scanning profilometry Velmi přesné a relativně rychlé Nákladné Optická profilometrie Jednoduché, rychlé Nelze pro složité tvary On-line měření vzdálenosti mezi ramenem a vzorkem Umožňuje souvisle zaznamenávat změny Nevýhody Data jsou ovlivněna transferovým materiálem Změna nemusí vždy odpovídat změně opotřebení Ve spolupráci s výzkumným centrem FORTECH využíváme k měření tribologické stopy laserový konfokální mikroskop Olympus LEXT3000. 95/121
Metodika měření opotřebení Důležité je správné nastavení tzv. zlomku měřené délky. Čím kratší bude zlomek délky, tím se bude celková měřící délka prodlužovat a blížit se ke skutečnému profilu. 96/121
Další možnost využití přístroje PIN-on-DISC Pro co nejvěrnější přiblížení se k procesu obrábění byla odzkoušena metodika, kdy DICC představuje obráběný materiál a přitlačované PIN tělísko má funkci nástroje a smýká se po materiálu. Pomocí této konfigurace je možné dosáhnout podmínek obdobných jako na hřbetu nástroje. Testovaný systém Smýkající se hrana Stopy na obrobené ploše 97/121
Fretting test Frikční vlastnosti mohou také být ověřovány tzv. fretting metodou. Principem metody je prolešťování vrstvy kuličkou nebo hrotem pohybujícími se nízkofrekvenčními kmity. Přímým výstupem měření je průběh koeficientu tření (tzv. fretting koeficientu) v závislosti na počtu cyklů. Úkolem tenkých vrstev u fretting kontaktů je zvýšení povrchové elasticity a/nebo snížení tření, snížení povrchového pnutí, zvýšení povrchové tvrdosti, snížení iniciace trhlin a jejich šíření nebo zvýšení inertnosti povrchu a tím snížení možnosti nežádoucích chemických reakcí. 98/121
Fretting tester 99/121
Praktický příklad TiN 500 cyklů, zatížení 1N, PIN 14 109 1000 cyklů, zatížení 2N, PIN Si3N4 test Materiál PIN tělíska Zatížení počet cyklů 1 ocel 14 109 1N 500 2 Si3N4 2N 1000 3 Si3N4 10N 1000 4 Si3N4 10N 2500 Parametry Fretting testu 100/121 1000 cyklů, zatížení 10N, PIN Si3N4 2500 cyklů, zatížení 10N, PIN Si3N4
Fretting test 5000 cyklů; zatížení 11,4N; PIN tělísko - karbid wolframu 0,7 0,6 koeficient tření 0,5 TiAlSiN 0,4 TiAlN+DLC 0,3 TiALN 0,2 0,1 0 0 500 1000 1500 2000 2500 cykly 101/121 3000 3500 4000 4500 5000
Vrstva TiAlSiN 102/121 PIN tělísko - karbid wolframu Vrstva TiAlN + DLC Vrstva TiAlN
Porovnání fretting testu s PIN-on-DISC testem 5000 cyklů, PIN karbid wolframu Fretting test PIN-on-DISC Vrstva Zatížení [N] - F Koef. tření F Zatížení [N] - T Koef. Tření T Odhalení substrátu F Odhalení substrátut TiAlSiN 11,4 0,55 10 0,56 lokální lokální TiAlN 11,4 0,4-0,6 10 0,6 totální nenastalo TiAlN +DLC 11,4 0,12 10 0,11 nenastalo nenastalo 103/121
Impact test Pro testování je nejčastěji zvoleno při zátěžných silách F= 2 N a F= 5 N (při dopadové výšce 10 mm odpovídá dopadové energii E= 0,044 J a E= 0,074 J). Počet úderů je nastaven jednak dle zátežné síly a také dle procesu, který sledujeme. Nejčastěji je voleno 1000; 25000; 5000; 10 000. S ohledem na frekvenci jeden úder za sekundu je na tomto přístroji volen menší počet úderů. 104/121
Impact tester nové konstrukce Indukční impact tester řízený programem z počítače (autor Ing. J. Šimeček). Frekvence úderů až 40 Hz, prozatím testováno 14 Hz. Síla úderu od 10N do 1500N. V současné době probíhá další inovace přístroje tak, aby bylo možné získat data umožňující zjistit kontaktní únavu, zpevnění materiálu a identifikovat rozvoj trhlinek. 105/121
U impactových kráterů se vyhodnocuje nejen jejich povrchová morfologie, ale i materiálové informace získané z příčných výbrusů provedených impactovým kráterem, jako je průběh zpevnění pod kráterem, či strukturní změny vyvolané v materiálu v důsledku lokální deformace. V ideálním případě lze u impactových kráterů vytvořených ve vrstvách rozeznat 3 oblasti lišící se mechanismem porušení. 106/121 Impactový kráter u TiAlN multivrstvy 25 000 úderů, zatížení 30N.
Morfologický vývoj impactního kráteru u Cr-DLC vrstvy v závislosti na počtu úderů d5000=1,6 µm, d10000=1,8 µm, d13000=3,2 µm, d14000=10,2µm [Ing. Šimeček] 107/121
Sklon úhlu, který svírá vzorek se směrem dopadající kuličky umožňuje vyvodit dva druhy sil normálovou a tečnou. Impact tester umožňující naklopení vzorku může napodobovat zatížení řezného nástroje např. frézy, která zajíždí pod určitým úhlem do obráběného materiálu. 108/121
Impactové krátery Vrstva TiN 20 C, F= 10 N po: a) 1000, b) 2500, c) 5000 úderech Vrstva TiAlN, F= 10 N po: a) 1000, b) 2500, c) 5000 úderech 109/121
Speciální zkoušky odpovídající určité aplikaci Tribologická zkouška za rotace Rychlost rotace polypropylenového tělíska 3000 ot./min. Test byl rozdělen na několik časových úseků po 5.,15.,30.,60. a 90. minutě. 110/121 Detail stopy vzorku bez vrstvy s vyznačením jednotlivých druhů opotřebení po 30 minutách testu
Stopa opotřebení vzorku bez vrstvy po 90 min. testu. Záznam byl proveden pomocí konfokálního mikroskopu. Stopa opotřebení vzorku s vrstvou TiAlN+DLC po 90 min. testu. Záznam byl proveden pomocí konfokálního mikroskopu. Při tribologickém testu za rotace testu se potvrdil velmi důležitý poznatek: skleněná vlákna, která jsou chaoticky umístěna v polypropylenu, neovlivňují výrazně mechanismus poškození povrchu. V žádném sledovaném případě nebyly shledány výrazně degradující stopy po abrazivním opotřebení. 111/121
Sledování poškození vrstvy, jejíž celistvost je narušena sítí definovaně vytvořených rýh, v důsledku odtrhnutí navařené vrstvy polypropylenu. F Vzorek s vrstvou Mřížka tvořená vrypy (pomocí scratch testu) 112/121
Teplotní zatížení nástroje v peci s oxidační atmosférou a při teplotě 800 C. 113/121
Speciální zkoušky vycházející z technologických zkoušek Vyhodnocení řezných sil, chvění, akustického signálu a teplot při soustružení Termovizní systém ThermaCAM SC2000 Spektrální hlukoměr CNC soustruh Dynamometr Kistler 114/121 Měřicí aparatura pro sledování vibrací
Vzájemná korelace výsledků z měření při obrábění umožňuje získat další poznatky o chování a vlastnostech systému tenká vrstva-substrát 50 0,00 0:050:06 0:300:31 0:580:59 1:051:06 1:301:31 1:581:59 2:052:06 2:302:31 2:282:59 3:053:06 3:303:31 3:583:59 f [Hz] Multispektrální analýza hluku Čas soustružení [min:sek] Průběh řezných sil 800 Vrstva č. 4 0,3 700 0,25 600 0,2 500 0,15 T ( C) Intenzita U [V] 20000 200,00 16000 400,00 8000 40 16 600,00 60 4000 Fy 70 2000 Fz 80 1000 Fx Síla [N] 800,00 90 500 1000,00 100 250 1200,00 110 125 1400,00 120 63 1600,00 31,5 Hodnota akustického tlaku [db] TiAlSiN 0,1 T brit max ( C) T brit avg ( C) T triska max ( C) 400 300 0,05 200 0 0 1 2 3 4 5 100 Měření Průběh intenzity vibrací 115/121 0 0 0.5 1 1.5 2 2.5 3 3.5 t (min) Teplotní průběh na povrchu ostří a v třísce 4
Další hodnocené faktory při technologických zkouškách Jakost obrobené plochy Tvar třísek Složky řezného odporu 3000 14 Kroutící moment Řezná síla 2500 12 2000 295 děr 8 Fx[N] Mk [Nm] 10 1500 1000 6 4 500 2 0 10 0 10 30 100 205 293 Počet děr 295 297 330 30 100 205 293 295 297 330 Počet děr 293 děr 116/121
Využití konfokálního scanovacího laserového mikroskopu Konfokální mikroskop Olympus LEXT OLS3000 Stav povrchu s tenkou vrstvou vytvořený metodou ARC - PVD 117/121 Lomová plocha poškozeného nástroje
Měření hloubky tribologické stopy a sledování stavu poškozeného povrchu 118/121
Využití konfokálního mikroskopu při dokumentaci opotřebení nástroje ŘEM Konfokální mikroskop 119/121
Stále jsme na startovní čáře a stále nějaký závod začíná. Mnohdy jsme v pozici malého dítěte, který jde cestou pokus omyl. 120/121
Závěr Tenkou vrstvu ve spojení s nástrojem lze považovat za citlivý systém, kdy mnoho faktorů spolurozhoduje o konečných užitných vlastnostech. Aby vše správně fungovalo je třeba hledat vzájemné vazby. Tyto vazby lze vytvořit pouze za předpokladu, že je profesionální přístup dodavatele polotovaru, výrobce nástrojů, zkušebních laboratoří, výrobců tenké vrstvy a konečného uživatele. Mnohdy se společné zájmy těchto subjektů vytváří dlouhou dobu a musí být založeny na profesionalitě, důvěře a komunikaci. Depozice vrstvy 121/121 Vývoj vrstvy a její testování Uživatel nástroje Výrobce nástroje