ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění budov Otopné soustavy 109 Systémy vytápění Energonositel Zdroj tepla Přenos tepla Vytápění prostoru Paliva Uhlí Zemní plyn Bioplyn Biomasa Topný olej Energie prostředí Solární energie Geotermální energie Energie vody, země, vzduchu Elekřina Topidla Kotle Kogenerační jednotky Fototermické kolektory Tepelná čerpadla Přímo zdrojem Teplovodní otopná soustava Horkovodní otopná soustava Parní otopná soustava Teplovzdušné vytápění 125TBA1 - prof. Karel Kabele Otopná tělesa Desková Článková Trubková Konvektory Sálavé panely Otopné plochy Podlahové vytápění Stropní vytápění Stěnové vytápění Přímé sdílení Kamna Krby Plynová topidla Elektrická topidla Zářiče Vzduch 110 1
Základní části teplovodních otopných soustav 111 Navrhování OS Vstupní informace Umístění stavby Účel objektu (obytná budova, občanská vybavenost, průmysl, sportovní stavby) Provoz objektu (přerušovaný, nepřetržitý, počet provozních jednotek) Konstrukce budovy z hlediska tepelně technických vlastností Konstrukce budovy z hlediska uložení potrubí Rozmístění a typ otopných těles a ploch 112 2
Navrhování OS Funkční požadavky Propojení otopných těles se zdrojem Odvzdušnění Možnost vypouštění Integrace do stavby 113 Návrhové parametry teplovodních OS geometrické, teplotní, tlakové a materiálové parametry (1) Způsob oběhu otopné vody (2) Prostorové uspořádání otopné soustavy (3) Nejvyšší pracovní teplota otopné vody (4) Materiál na potrubní síť 114 3
1. Oběh otopné vody Přirozený Expanzní p 1 =h.ρ 1.g p 2 =h.ρ 2.g Vztlak Δp c =Δp ρ =p 2 -p 1 =H.(ρ 2 - ρ 1 ).g Nucený Δp c =Δp č + Δp ρ H P1 P2 θ 1, 1 Přívodní potrubí Kotel nádoba θ 2, 2 Vratné potrubí Otopné těleso H 115 2. Prostorové uspořádání OS 2.1 Vzájemné propojení těles 2.1.1 Dvoutrubkové soustavy 2.1.2 Jednotrubkové soustavy 116 4
2.1.1 Dvoutrubkové soustavy Protiproudé zapojení Souproudé zapojení Tichelmann 117 2.2 Umístění ležatého rozvodu Spodní rozvod Horní rozvod Kombinovaný rozvod 119 5
2.3 Vedení přípojek k tělesům Vertikální Horizontální Hvězdicová 120 www.revel.cz 121 6
3. Teplotní parametry Pracovní teploty v OS Výpočtová teplota otopné vody na vstupu do otopné soustavy θ 1 na výstupu z otopné soustavy θ 2 Expanzní nádoba θ w1 θ Tp,max Otopné těleso na vstupu do otopného tělesa θ w1 na výstupu z otopného tělesa θ w2 Střední teplota otopného tělesa θ w Přívodní potrubí θ 1 Kotel θ w2 Vratné potrubí θ 2 θ w Nejvyšší teplota povrchu otopných těles θ Tp max Teplotní spád otopného tělesa = θ w1 - θ w2 Teplotní spád soustavy = θ 1 - θ 2 122 3. Teplotní parametry OS Výkon přenášený soustavou Q M c 1 2 Expanzní nádoba θ w1 θ p1,max Otopné těleso θ i Výkon přenášený tělesem Q t f A ) ( w i Přívodní potrubí θ 1 Kotel θ w2 Vratné potrubí θ 2 θ w 123 7
3. Teplotní parametry OS kritéria pro volbu parametrů Ekonomické faktory (minimalizace nákladů na realizaci i provoz soustavy); Fyzikální vlastnosti pracovní látky (pro teplovodní soustavy maximální teplota 110 C); Hygienické požadavky na otopnou soustavu resp. na tělesa; Technické možnosti zdroje tepla (např. nízkoteplotní zdroje určují maximální teplotu otopné vody v soustavě) Legislativní požadavky např. vyhláška 193/2007 Sb. omezuje teplotu otopné vody na vstupu do OT na 75 C 124 3. Teplotní parametry OS volba parametrů Teplota otopné vody u soustavy Teplovodní nízkoteplotní θ 1 <=65 C Teplovodní otevřené 65 C < θ 1 <= 95 C Teplovodní uzavřené 65 C < θ 1 <= 110 C Horkovodní θ 1 > 110 C Teplotní spád OS 10 K až 25 K, u horkovodních soustav 40 K až 50 K. 75/65 C, 70/50 C, 70/60 C, 50/40 C 125 8
4. Materiál rozvodu O materiálu nutno rozhodnout na počátku projektu - různé mechanické vlastnosti mají vliv na koncepci řešení Používané materiály ocel měď plasty 127 4.Materiál rozvodu 4.1 Ocel Tradiční materiál, dobré mechanické vlastnosti ocel třídy 11.353.0. do DN 50 se používá trubek ocelových závitových běžných, pro větší průměry se používá hladkých bezešvých trubek Nerezové potrubí Svařování Lisování Viega Prestabo 128 9
4. Materiál rozvodu 4.2 Měď Menší spotřeba materiálu Citlivá na chem.složení vody ph min7 Nebezpečí vzniku elektrochemické koroze (Al) pájení měkké a tvrdé Lisování Viega Profipress S 129 Materiály 4. Materiál rozvodu 4.3 Plasty síťovaný polyetylén (PEX, VPE), polybuten (polybutylen, polybuten-1,pb), statistický polypropylen (PP-R, PP-RC,PP-3), chlorované PVC (C-PVC, PVC-C) vrstvená potrubí s kovovou vložkou. Uložení potrubí Životnost!!! Kyslíková bariéra? 130 10
Návrhové parametry OS Shrnutí Návrhové parametry vodních otopných soustav Prostorové uspořádání soustavy Nejvyšší pracovní teplota Oběh otopné vody Materiál rozvodu Vzájemné propojení těles Umístění ležatého rozvodu Vedení přípojek k tělesům Nízkoteplotní do 65 C Přirozený Ocel Jednotrubkové Dvoutrubkové Spodní Vertikální Teplovodní od 65 c do 110 C Nucený Měď Průtočná S obtokem Protiproud Souproud Horní Kombinovaná Horizontální Hvězdicová Horkovodní nad110 C Plasty 131 VÝPOČTY TEPLOVODNÍCH OTOPNÝCH SOUSTAV 132 11
Výpočet otopné soustavy Cíl: Dimenze potrubí Návrh čerpadla Nastavení regulačních armatur Vstupní údaje: Výkony otopných prvků, prostorové uspořádání soustavy, teplotní spád OS. Výpočet ve dvou krocích: A) Návrh dimenzí potrubí B) Návrh čerpadla a nastavení regulačních prvků 500 W 500 W 300 W 500 W 500 W 300 W 133 A. Návrh dimenzí potrubí Přenášený výkon, teplotní spád, rychlost Hmotnostní průtok M (kg/s) Objemový průtok V (m 3 /s) Q M c Rovnice kontinuity V S v Plocha kruhu d S 4 2 V M d 125TBA1 - prof. Karel Kabele Q : Tepelný výkon přenášený úsekem soustavy (W=J/s) C : Měrná tepelná kapacita teplonosné látky (J/kg.K) θ: Teplotní spád (K) ρ : Hustota vody (kg/m 3 ) S: Průřez potrubí (m 2 ) d: průměr potrubí (m) v: Rychlost proudění vody (m/s) Průměr potrubí 4 Q c v 134 12
A. Návrh dimenzí potrubí 1. Volba teplotního spádu 2. Stanovení přenášeného výkonu 3. Výpočet hmotnostního průtoku v jednotlivých úsecích 4. Volba rychlosti/měrné tlakové ztráty 5. Výpočet průměru potrubí Potrubní síť uvnitř obytných budov pro přípojky k otopným tělesům a stoupací potrubí uvnitř obytných budov pro horizontální rozvodné potrubí ve sklepě vně obytných budov u CZT uvnitř průmyslových objektů pro přípojky k otopným tělesům a stoupací potrubí vně průmyslových objektů u CZT rychlost w m/s 0,3 až 0,7 0,8 až 1,5 2,0 až 3,0 0,8 až 2,0 2,0 až 3,0 měrná tlak. ztráta R Pa/m 60 až 100 110 až 200 200 až 400 110 až 250 200 až 400 135 B. Návrh oběhového čerpadla 1. Nalezení okruhu nejnepříznivěji položeného tělesa 2. Stanovení přenášených výkonů a hmotnostního průtoku v úsecích okruhu 3. Výpočet tlakové ztráty prouděním otopné vody v okruhu tření a místní odpory, přídavek na regulační armaturu 500 W 500 W 300 W 800 W 34 kg/h 500 W 500 W 1600 W 69 kg/h 2600 W 111 kg/h 300 W 12 kg/h 300 W 136 13
Výpočet tlakových ztrát Tlaková ztráta třením vřazenými odpory 2 v pzt l R. l d 2 2 v pzm Z 2 p 1 p 2 p1 p2 pzt pzm R l Z 137 Stanovení součinitele tření λ 138 14
Stanovení součinitele tlakové ztráty vřazenými (místními) odpory Experimentálně Tabulka vřazených odporů 139 Návrh oběhového čerpadla Dopravní množství M (kg/h) = hmotnostní průtok prvního úseku sítě Dopravní výška (měrná energie, dopravní tlak) (m, Pa, J/kg) = tlaková ztráta nejnepříznivějšího okruhu 500 W 500 W 300 W 500 W 500 W 300 W 2600 W 111 kg/h 7400 Pa Pracovní bod soustavy 7400 Pa 2600 W 111 kg/h 140 15
B. Návrh oběhového čerpadla a regulačních armatur Výpočet tlakové ztráty nejnepříznivějšího okruhu tělesa Charakteristika čerpadla Dopravní množství m (kg/h) Dopravní výška (měrná energie, dopravní tlak) 500 W 500 W 300 W 500 W 500 W 300 W Pracovní bod soustavy 141 16