TRANSFORMÁTORY Ing. Eva Navrátilová



Podobné dokumenty
Transformátor trojfázový

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, transformátory a jejich vlastnosti

Transformátory. Teorie - přehled

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory

Integrovaná střední škola, Sokolnice 496

Základy elektrotechniky

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

Transformátory. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

6 Měření transformátoru naprázdno

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Ing. Drahomíra Picmausová. Transformátory

Měření na 3fázovém transformátoru

Energetická bilance elektrických strojů

21ZEL2 Transformátory

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru

1.1 Měření hodinového úhlu transformátorů

7 Měření transformátoru nakrátko

Základy elektrotechniky

Měření hodinového úhlu transformátoru (Distribuce elektrické energie - BDEE)

Měření transformátoru naprázdno a nakrátko

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU.

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

1.1 Měření parametrů transformátorů

2 Teoretický úvod 3. 4 Schéma zapojení Měření třemi wattmetry (Aronovo zapojení) Tabulka hodnot pro měření dvěmi wattmetry...

ELEKTRICKÉ STROJE Ing. Eva Navrátilová

1 primární vinutí 2 sekundární vinutí 3 magnetický obvod (jádro)

Určeno pro posluchače bakalářských studijních programů FS

20ZEKT: přednáška č. 10. Elektrické zdroje a stroje: výpočetní příklady

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

Elektrický výkon v obvodu se střídavým proudem. Účinnost, účinník, činný a jalový proud

Ele 1 asynchronní stroje, rozdělení, princip činnosti, trojfázový a jednofázový asynchronní motor

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

Měření závislosti indukčnosti cívky (Distribuce elektrické energie - BDEE)

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE

Asynchronní stroje. Fakulta elektrotechniky a informatiky VŠB TUO. Ing. Tomáš Mlčák, Ph.D. Katedra elektrotechniky.

ZÁKLADY ELEKTROTECHNIKY

Digitální učební materiál

9 Měření na jednofázovém transformátoru při různé činné zátěži

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

2.6. Vedení pro střídavý proud

Trojfázový transformátor

Pracovní sešit. Školní rok : 2005 / Transformátory

A B C. 3-F TRAFO dává z každé fáze stejný výkon, takže každá cívka je dimenzovaná na P sv = 630/3 = 210 kva = VA

Výkon střídavého proudu, účiník

Identifikátor materiálu: VY_32_INOVACE_355

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Střídavý proud, trojfázový proud, transformátory

Ele 1 Synchronní stroje, rozdělení, význam, princip činnosti

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

u = = B. l = B. l. v [V; T, m, m. s -1 ]

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:

3-f Transformátor Laboratorní cvičení č. V-3

Úvod. Rozdělení podle toku energie: Rozdělení podle počtu fází: Rozdělení podle konstrukce rotoru: Rozdělení podle pohybu motoru:

Měření výkonu jednofázového proudu

1 ELEKTRICKÉ STROJE - ZÁKLADNÍ POJMY. 1.1 Vytvoření točivého magnetického pole

19. Elektromagnetická indukce

Laboratorní cvičení Elektrotechnika a elektronika

Studijní opory předmětu Elektrotechnika

princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním generátorem,

Základy elektrotechniky

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

Elektroenergetika 1. Elektrické části elektrárenských bloků

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

1.1 Trojfázové asynchronní motory s kotvou nakrátko

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Měření indukčnosti. 1. Zadání

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

1 JEDNOFÁZOVÝ INDUKČNÍ MOTOR

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

Korekční křivka měřícího transformátoru proudu

VY_32_INOVACE_EM_1.06_měření činného, zdánlivého a jalového výkonu v jednofázové soustavě

3. Střídavé třífázové obvody

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-4

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice

Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí

Transformátory. Mění napětí, frekvence zůstává

AS jako asynchronní generátor má Výkonový ýštítek stroje ojedinělé použití, jako typický je použití ve větrných elektrárnách, apod.

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Návrh toroidního generátoru

E L E K T R I C K Á M Ě Ř E N Í

Elektroenergetika 1. Elektrické části elektrárenských bloků

Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

ELEKTRICKÉ STROJE - POHONY

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

Interakce ve výuce základů elektrotechniky

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje. Pracovní list - příklad vytvořil: Ing.

Zdroje napětí - usměrňovače

ELEKTRICKÉ STROJE. Laboratorní cvičení LS 2013/2014. Měření ztrát 3f transformátoru

Pokusy s transformátorem. Věra Koudelková, KDF MFF UK, Praha

Transkript:

STŘEDNÍ ŠOLA, HAVÍŘOV-ŠUMBAR, SÝOROVA 1/613 příspěvková organizace TRANSFORMÁTORY Ing. Eva Navrátilová - 1 -

Transformátor jednofázový = netočivý elektrický stroj, který využívá elektromagnetickou indukci = mění parametry elektrické energie napětí a proud, nemění frekvenci = chová se jako spotřebič odebírá energii ze zdroje, ale také jako zdroj dodává energii do dalšího obvodu Hlavní části 1. Magnetický obvod elektrotechnické plechy navzájem izolované a naskládané na sebe (omezení ztrát vířivými proudy), matriál je magneticky měkký (menší hysterezní ztráty). Elektrický obvod primární a sekundární vinutí měděný izolovaný vodič navinutý na nevodivé kostře 3. Nádoba 4. Chlazení 5. Vývodky Rozdělení 1. Podle počtu fází o Jednofázové (obr. 1) o Trojfázové (obr. ). Podle provedení magnetického obvodu o Jádrové (obr. 1) o Plášťové (obr. ) 3. Podle uspořádaní vinutí o Souosé (obr. 1, ) o Prostřídané (obr. 3) 4. podle tvaru cívek o válcové (obr. 1, ) o kotoučové (obr. 3) Princip činnosti Primární vinutí se připojí ke zdroji střídavého napětí U 1, vinutím začne procházet střídavý proud I 1, který vybudí v jádru transformátoru střídavý magnetický tok Φ. Změnou magnetického toku se na sekundárním vinutí indukuje napětí U. Po připojení zátěže začne sekundárním vinutím procházet proud I. Velikost indukovaného napětí závisí na časové změně magnetického toku a na počtu závitů. ΔΦ ΔΦ U i1 = N 1 U i = N Δt Δt - -

Časová změna magnetického toku souvisí s proudem a magnetickým obvodem. Převod transformátoru = číslo, které udává, v jakém poměru se mění napětí N1 U1 I p = = = N U I 1 Napětí U 1 a U je přímo úměrné počtu závitů příslušného vinutí, proudy jsou v opačném poměru. olikrát se zvětší (zmenší) napětí, tolikrát se zmenší (zvětší) proud. Náhradní schéma transformátoru = představuje chování transformátoru při zatížení Obr. 5: Náhradní schéma transformátoru Paralelní obvod představuje magnetický obvod transformátoru, který spotřebuje část proudu na vytvoření magnetického pole a na krytí ztrát v železe: R Fe - ztráty v železe jsou způsobeny vířivými proudy a hysterezí X µ - magnetizační reaktance magnetické pole jádra se chová jako cívka, magnetický tok, který je vyvolán proudem je zpožděn za napětím o 90 o Sériový obvod představuje primární a sekundární vinutí, na vinutí vznikají úbytky napětí: R 1, R 1 odpor primárního a sekundárního vinutí X 1σ, X 1σ rozptylová reaktance primárního a sekundárního vinutí, část magnetického toku se uzavírá vzduchovou mezerou a nepodílí se na elektromagnetické indukci vznikají úbytky napětí Indexy 1 na sekundární straně znamenají hodnoty přepočítané ze sekundární strany na primární stranu tak, že vznikne transformátor s převodem p=1: U 1 = p U R1 = R p 1 I1 = I X 1 = X p p - 3 -

Transformátor naprázdno = primární vinutí je připojené ke zdroji napětí, sekundární vinutí je nezatížené Obr. 6: Náhradní schéma transformátoru naprázdno Obr. 7: Fázorový diagram transformátoru naprázdno V náhradním schématu neuvažujeme sekundární vinutí (neprochází jím proud), primární vinutí zanedbáváme (odebírá malý proud naprázdno, vliv vinutí je zanedbatelný, úbytky napětí jsou malé) Proud naprázdno I o je malý, vytváří magnetické pole jádra a kryje ztráty v železe Složky: I Fe činná složka proudu na krytí ztrát v železe I = I Fe 0 cosϕ I I µ indukční jalová složka proudu, vytváří magnetické pole μ = I 0 sinϕ Indukční (jalová) složka proudu je větší než činná složka, vzniká velký fázový posun mezi napětím a proudem, zhoršuje se účiník P účiník = poměr činného a zdánlivého výkonu cos ϕ = S Hodnota účiníku se pohybuje se od 0 do 1, ideální hodnota je 0,9 u transformátoru naprázdno bývá do 0,5 Ztráty naprázdno P Fe činný výkon transformátoru odebíraný ze zdroje ve stavu naprázdno, kryje pouze ztráty v železe = S cosϕ P Fe Zdánlivý výkon - celkový výkon dodávaný zdrojem S = U 10 I0, Jalový výkon vytváří magnetické pole Q = S sinϕ S = P + Transformátor nakrátko = primární vinutí je připojeno ke zdroji napětí, sekundární vinutí je vyzkratováno (spojeno bezodporovou spojkou), napětí U =0 Q Obr. 8: Náhradní schéma transformátoru nakrátko - 4 -

Magnetický obvod transformátoru odebírá malý proud I 0, který je vzhledem ke zkratovému proudu zanedbatelný a proto neuvažujeme paralelní obvod. Pro další zjednodušení zavádíme: R = R + R X 1 = X 1 + X σ 1σ 1σ a náhradní schéma transformátoru nakrátko se zjednoduší na sériové spojení jednoho rezistoru a cívky. Obr. 9: Zjednodušené náhradní schéma transformátoru nakrátko Obr. 10: Fázorový diagram transformátoru nakrátko Proud nakrátko (zkratový proud) je velký, jeho velikost závisí na napětí zdroje a impedanci U N vinutí I = Z Impedance vinutí Z = R + X σ Napětí nakrátko U je taková hodnota napětí zdroje, kdy zkratovaným transformátorem prochází jmenovitý proud I N. Napětí nakrátko se udává na štítku transformátoru v procentní U hodnotě jako poměrné napětí nakrátko u = 100 U N Poměrné napětí nakrátko u výkonových transformátorů je 3 6% P P Účiník nakrátko cos ϕ = =, jeho hodnota se blíží k 1, téměř celý příkon ze zdroje S U I se spotřebuje na krytí ztrát nakrátko. Indukční jalová složka, která vytváří magnetické pole v jádru transformátoru je malá. Ztráty nakrátko = činný příkon, který se spotřebuje na krytí ztrát ve vinutí P = R. I Transformátor trojfázový (obr. ) vznikne spojením tří jednofázových transformátorů. V praxi lze použít: 1. 3 jednofázové transformátory větší spotřeba materiálu, ale v záloze stačí jeden transformátor menšího výkonu. 1 trojfázový transformátor menší spotřeba materiálu, ale v záloze musí být jeden velký transformátor stejného výkonu Vinutí označujeme primární a sekundární, nebo vstupní a výstupní, nebo strana vyššího a nižšího napětí. Spojování vinutí Cívky primárního a sekundárního vinutí mohou být navinuty dvojím způsobem souhlasně (obr. 11a, c) nebo nesouhlasně (obr.11b). - 5 -

Obr. 11: Způsoby navinutí cívek Při souhlasném vinutí cívek mají indukovaná napětí stejný směr, při nesouhlasném vinutí mají indukovaná napětí opačný směr. Cívky mohou být rovněž různým způsobem spojeny: a) Vinutí spojená do hvězdy značí se Y, cívky všech tří fází jsou spojeny paralelně. Vyvedením středního vodiče ze společného uzlu získáváme soustavu dvou napětí sdružené (mez fázemi) a fázové (mezi fázovým a středním vodičem) b) Vinutí spojená do trojúhelníku značí se D, cívky všech tří fází jsou spojeny do série získáváme pouze sdružené napětí. - 6 -

c) Vinutí spojená do lomené hvězdy značí se z. Cívky každé fáze jsou rozděleny na polovinu a jedna polovina je posunuta na následující sloupek magnetického obvodu. Používá se pouze na výstupní straně transformátoru pro vyrovnání nerovnoměrného zatížení jednotlivých fází. U skutečných transformátorů může být primární i sekundární vinutí zapojeno různě. Velká písmena (D,Y) znamenají stranu vyššího napětí. Malá písmena (d,y,z) znamenají stranu nižšího napětí. V praxi se používají tato zapojení Yy, Dy, Yz, Yd. Dd se používá zřídka. Hodinový úhel Označení zapojení vinutí transformátorů bývá doplněno číslem (např. Yy0, Dy1 apod.). Číslice, uvedená za označením zapojení primárního a sekundárního vinutí, udává fázový posun mezi fázorem primárního napětí a odpovídajícím fázorem sekundárního napětí. Tento fázový posun se udává v hodinách, přičemž úhel 30 o odpovídá jedné hodině a měří se ve směru pohybu hodinových ručiček. Zapojení Yy0 Zapojení Yd5 d) a) svorkovnice b) fázorový diagram strany vyššího napětí zapojené do hvězdy c) fázorový diagram strany nižšího napětí zapojené do trojúhelníku d) celkový fázorový digram hvězda je umístěna do těžiště trojúhelníku, hodinový úhel je mezi příslušným fázorem a spojnicí těžiště s vrcholem trojúhelníku - 7 -

Paralelní chod transformátorů V praxi se musí často v jedné rozvodně zapojovat transformátory do paralelního chodu. Z provozního hlediska je výhodnější používat několik transformátorů s menším výkonem než jeden transformátor s velkým výkonem: a) Při větším počtu transformátoru se zvyšuje spolehlivost dodávky elektrické energie - při poruše jednoho transformátoru musí být v záloze další velký transformátor b) v době menšího zatížení se muže jeden transformátor odpojit, tím se zmenší ztráty naprázdno Obr. 1: Paralelní chod transformátorů Obr. 13: Náhradní schéma pro paralelní chod V náhradním schématu (obr. 13) představují impedance Z A a Z B transformátory. Pro správný paralelní chod musí být splněny tyto podmínky: 1. Stejný převod a stejná jmenovitá napětí. Stejná napětí nakrátko 3. Stejný hodinový úhel ontrolní otázky 1. Vysvětli, co je to transformátor. Co je to elektromagnetická indukce? (ZE 1. ročník) 3. Popiš dva způsoby vzniku indukovaného napětí. (ZE 1. ročník) 4. Popiš hlavní části transformátoru. 5. Co to jsou vířivé proudy, proč vznikají?(ze1. ročník nebo MaT 1. ročník) 6. Co to jsou hysterezní ztráty, jak je lze zmenšit? (MaT 1. ročník) 7. Popiš princip činnosti transformátoru. 8. Proč nemůže transformátor fungovat na stejnosměrný proud? 9. Co je to převod transformátoru vysvětli slovně, napiš vzorec. 10. Proč se proudy v transformátoru mění v opačném poměru než napětí? 11. Vysvětli význam jednotlivých prvků v náhradím schématu transformátoru. 1. Definuj transformátor ve stavu naprázdno a vysvětli jeho náhradní schéma. 13. Proč transformátor naprázdno odebírá ze zdroje výkon? - 8 -

14. Co to jsou ztráty naprázdno? 15. Co je to účiník? 16. Jaký je účiník u transformátoru naprázdno a proč? 17. Jaký je proud naprázdno a které jsou jeho složky? 18. Definuj stav transformátoru nakrátko,co to znamená v praxi? 19. Vysvětli náhradní schéma transformátoru nakrátko. 0. Jaký je proud nakrátko, na čem závisí jeho velikost? 1. Jaký je účiník nakrátko a proč?. Co jsou ztráty nakrátko, co způsobují? 3. Popiš třífázový transformátor. 4. Jak se spojuje vinutí třífázového transformátoru, charakterizuj jednotlivá zapojení. 5. Co je to hodinový úhel? 6. Co znamená označení Yy0, Yy6,Yd5? 7. Vysvětli, co je to paralelní chod transformátorů a jaký je jeho význam, 8. Jaké jsou podmínky paralelního chodu? Učební materiál určený studentům SŠ Havířov - slouží pouze pro vnitřní potřebu školy. Neprodejné. Použitá literatura a obrázky: Ing. Josef Říha: Elektrické stroje a přístroje, SNTL Praha 1986 Verze 1//009, zpracovala: Ing. Eva Navrátilová - 9 -