Přehled nejpoužívanějších metod

Rozměr: px
Začít zobrazení ze stránky:

Download "Přehled nejpoužívanějších metod"

Transkript

1 Termická analýza - teorie Fázové přeměny tuhých látek jsou doprovázeny pohlcováním nebo uvolňováním tepla, změnou rozměrů, změnou magnetických, elektrických, mechanických a případně ještě dalších vlastností. Proto lze na základě změn průběhu zmíněných vlastností usuzovat na fázové přeměny probíhající v materiálu. Byla vyvinuta celá řada metod, které lze rozdělit do základních třech skupin: a) metody studia krystalizace b) metody studia fázových přeměn v tuhém stavu c) další metody (např. metody studia rozkladných reakcí tuhých látek za vývinu plynné fáze, metody studia fázových přeměn pomocí studia difúze, atd.) Základním úkolem těchto metod je získat informace pro vypracování technologických postupů pro lití, ochlazování, tepelné zpracování, tváření a další výrobní procesy. Tyto postupy se mohou optimalizovat na základě rovnovážných diagramů či nerovnovážných diagramů (ARA, IRA, popouštěcí diagramy, kinetické diagramy eutektické krystalizace atd.). Vedle toho slouží uvedené metody studia fázových přeměn také pro stanovení některých fyzikálních vlastností, např. teplot tání čistých látek, stanovení Curieova bodu, teplot likvidu a solidu, koeficientu délkové teplotní roztažnosti, tepelné a elektrické vodivosti, pomáhají při studiu kinetiky a termodynamiky různých procesů a reakcí. Své místo našly metody termické analýzy také při kontrole výroby a při ověřování jakosti výrobků. Podle povahy studovaného problému se metody termické analýzy často kombinují nebo doplňují měřeními jinými metodikami, např. mikrostrukturní a chemickou analýzou. Interpretace výsledků může být usnadněna a množství získaných poznatků podstatně rozšířeno využitím kombinace několika metod termické analýzy v jediném experimentu. Přehled nejpoužívanějších metod KLASICKÁ TERMICKÁ ANALÝZA (TA) představuje nejstarší a nejjednodušší metodu používanou pro stanovení teploty tání a tuhnutí u čistých látek, resp. teplot likvidu a dalších charakteristických teplot u slitin či složitějších nekovových soustav. Je založena na registraci uvolňovaného nebo pohlcovaného tepla při fázové přeměně. Měří se teplota systému v závislosti na čase. Probíhající fázové přeměny se na křivkách závislosti T = f (t) projevují typickými anomáliemi. V případě čisté látky, binárního eutektika, resp. peritektika se na křivce projeví izotermická prodleva, počátek a konec krystalizace tuhého roztoku se projeví zlomem, odpovídajícím změně rychlosti ochlazování resp. ohřevu, viz obr.1.

2 Obr.1: Typické anomálie na ochlazovací křivce Metoda je vhodná pro sledování krystalizace kovů a slitin, které jsou doprovázeny výrazným tepelným efektem. Nehodí se proto pro sledování fázových přeměn v tuhém stavu, které jsou málo tepelně zabarveny a tato metoda je v takových případech nepříliš citlivá. Křivka ochlazování vynesená v souřadnicích T = f (t) podává nejméně zřetelný obraz přeměn. Proto se často křivky ochlazování vynášejí v jiných souřadnicích, nejčastěji dt/dt = f (t), T = f (dt/dt) a T= f (dt/dt). Na obr.2 je příklad idealizované křivky ochlazování a její časové derivace. V běžné slévárenské praxi se klasická termická analýza pro svoji jednoduchost a rychlost například používá k průběžné kontrole stavu tavenin (očkování, modifikace) před odléváním. Obr.2: Křivka ochlazování a její derivace Mnohem významnější a citlivější metodou však je diferenční termická analýza.

3 DIFERENČNÍ TERMICKÁ ANALÝZA (DTA) je založena na měření rozdílu teplot zkoumaného vzorku a srovnávacího vzorku (etalonu). Základní požadavky kladené na referenční vzorek jsou: inertnost a stabilita (nesmí prodělávat fázovou přeměnu) v měřeném intervalu teplot, etalon a zkoumaný vzorek musí mít co nejpodobnější tepelnou kapacitu a tepelnou vodivost, případně stejnou velikost částic, jsou-li vzorky práškové. Jako etalony se nejčastěji se používají Al 2 O 3, MgO a SiO 2 či některé čisté kovy. Rozdíly teplot se registrují současně s teplotou referenčního vzorku jako závislosti T = f (T), resp. T = f ( T) nebo ve formě časové závislosti T = f (t). Schéma zapojení termočlánků u DTA je na obr.3. Termoelektrické napětí mv (1) je úměrné teplotě etalonu a napětí mv (2) je úměrné rozdílu teplot. Obr.3: Schéma zapojení termočlánků u DTA Obr.4 schematicky zachycuje křivky ochlazování etalonu, resp. vzorku a příslušnou časovou závislost rozdílu teplot těchto materiálů. Obr.4: Odvození průběhu křivek DTA Polohy extrémů na křivkách DTA (maxim nebo minim charakterizujících exoprocesy nebo endoprocesy), umožňují látku nebo aktivní součást vzorku identifikovat a množství uvolněného nebo spotřebovaného tepla dovoluje činit kvantitativní závěry. Tato metoda je ve srovnání s klasickou termickou analýzou mnohem citlivější na probíhající fázové změny a lze ji použít i při studiu fázových přeměn v tuhém stavu. Moderní modifikaci této metody představuje DERIVAČNÍ DIFERENČNÍ TERMICKÁ ANALÝZA (DDTA). Její princip je shodný jako u předchozí metody, pouze se registruje časová derivace křivky DTA, tedy d( T)/dt = f (T) resp. d( T)/dt = f (t).

4 Některé procesy, například rozkladné reakce neprobíhají při konstantních teplotách a křivky DTA jsou charakterizovány postupným odkláněním od základní nulové linie, což ztěžuje přesné změření plochy píků a kvantitativní vyhodnocení. Na křivkách DDTA jsou i malé změny zřetelnější ve srovnání se záznamem DTA. Další dvě uváděné metodiky vychází z původního principu DTA. DVOJITÁ DIFERENČNÍ TERMICKÁ ANALÝZA (ddta) se používá spíše ojediněle a spočívá v tom, že se studovaný vzorek srovnává podobně jako při DTA s referenční látkou, která je ovšem částečně reaktivní. Účelem je kompenzace některých shodných procesů probíhajících při identických teplotách a tedy získání hladké základní linie, resp. eliminace některých efektů, čímž se zvýší rozlišovací schopnost pro jiné efekty, které jsou předmětem studia. Problémem je nalezení vhodné referenční látky, takže metoda vyžaduje náročné předběžné experimenty. DIFERENČNÍ KOMPENZAČNÍ KALORIMETRIE (DSC) vychází z původního principu DTA (obrácená DTA, entalpická TA, diferenční snímací analýza, diferenční výkonová analýza). Neměří se však diference teplot T, ale elektrická energie přídavného zdroje, potřebná k vyrovnání teplotních rozdílů mezi zahřívaným vzorkem a referenční látkou, tedy k udržení izotermních podmínek. V dalším textu následuje popis metod, které již nevycházejí z principu diferenční termické analýzy. TERMOGRAVIMETRIE (TG) je metoda, která umožňuje sledovat procesy spojené se změnou hmotnosti navážky vzorku buď při kontinuálním zvyšování teploty (dynamický způsob) nebo v izotermickém režimu (statický způsob). V prvním případě se sledují závislosti aktuální hmotnosti na teplotě nebo čase, tedy m = m (T), resp.m = m (t), tzv. termogravimetrické křivky. Příklad křivky ohřevu šťavelanu vápenatého je na obr.5. Z něj vyplývá možnost zjišťování teplot, resp. teplotních intervalů v nichž dochází k rozkladným reakcím. Obr.5: Termogram šťavelanu vápenatého Z velikosti hmotnostních změn m a příslušných teplotních intervalů lze opět soudit na složení, případně kvantitativní zastoupení určitých složek ve vzorku. V případě těsně následujících změn hmotnosti je výhodnější, analogicky jako u DTA, registrovat derivaci TG křivky, tedy dm/dt = f (T), čili derivační termogravimetrickou křivku (DTG) a tím docílit lepšího rozlišení. Izotermická gravimetrie sleduje závislost hmotnosti v čase při konstantní teplotě a umožňuje tak přímo sledovat kinetiku různých pochodů a reakcí. Další informace o množství a

5 vlastnostech plynných složek unikajících při rozkladu lze získat metodikou tzv. FRAKČNÍ TERMOGRAVIMETRIE. Plynné složky se nechají selektivně zkondenzovat nebo absorbovat a zahřívaný vzorek se váží spolu s kondenzačními a absorpčními nádobkami. Úbytek hmotnosti odpovídá jen nezkondenzovaným nebo neabsorbovaným součástem vzorku, jejichž množství lze po připojení dalšího zařízení určit jiným způsobem. TERMICKÁ DILATOMETRICKÁ ANALÝZA (TDA), dilatometrie je metodou pomocí které se sledují některé fyzikální nebo i chemické procesy, probíhající v rovnoměrně vyhřívaném vzorku, které jsou spojené se změnou délkové či objemové roztažnosti. Teploty charakteristické pro různé efekty lze odečítat na termodilatometrických křivkách, reprezentovaných závislostmi l/l = f (T), resp. V/V = f (T). Stejně jako v předchozích případech je názornější využití derivační termodilatometrické křivky (DTD), představující derivaci termodilatometrické křivky. EKLEKTROTERMICKÁ ANALÝZA (ETA) je velmi důležitou metodou, použitelnou i při studiu krystalizace. Elektrotermická analýza je založena na sledování závislosti elektrické vodivosti (nebo elektrického odporu) vzorku na teplotě. Tuhá a kapalná fáze mají různou elektrickou vodivost. Proto také dochází ke změně elektrické vodivosti systému při jeho krystalizaci, protože se mění podíl tuhé a kapalné fáze. Tuto metodu lze však použít i pro sledování změn ve struktuře tuhých látek (zjemňování struktury očkováním, modifikováním). Poslední uváděnou metodou je emanační termická analýza. EMANAČNÍ TERMICKÁ ANALÝZA (ETA) je založena na měření množství inertního plynu uvolňovaného při zahřívání tuhých látek, značených těmito plyny (Rn, Ne, Kr, Ar, Xe). Jejich atomy slouží jako stopové indikátory, které ovšem s látkou nereagují. Uvolňování z matrice je řízeno převážně difúzí. Metoda umožňuje sledovat procesy nedoprovázené změnou hmotnosti nebo entalpie a tedy nezjistitelné metodami uvedenými v předchozím textu. Interpretace křivek ochlazování Tvar křivky ochlazování závisí na celé řadě faktorů. Nejvýznamnější je chemické složení daného systému a tomu odpovídající tepelná kapacita, resp. tepelná vodivost daného materiálu a jeho okolí (kelímek, kokila), charakter slitiny vzhledem k stavovému diagramu soustavy, a dále rychlost ochlazování slitiny. V našich úvahách se omezíme pouze na binární diagram s nonvariantní eutektickou rovnováhou a idealizované průběhy ochlazovacích křivek. Na obr.6 je schematicky znázorněn stavový diagram s eutektickou rovnováhou. Jsou vyznačeny oblasti existence fází a barevně odlišeny charakteristické teploty slitin.

6 Obr.6: Binární stavový diagram s eutektickou rovnováhou Čistý kov, binární eutektikum či peritektikum krystalizuje při konstantní teplotě. To se na křivce ochlazování projeví tak, že se na ní objeví izotermická prodleva. U binárních slitin už je situace komplikovanější. Teplota počátku krystalizace binární slitiny se nazývá teplota likvidu (likvidus slitiny), teplota konce krystalizace se nazývá teplota solidu (solidus), viz obr.6. Závislost tvaru ochlazovací křivky na chemickém složení je patrná z obr.7. Obr.7: Vliv chemického složení systému na tvar ochlazovací křivky Křivka ochlazování kovu v teplotním intervalu bez fázové přeměny má přibližně exponenciální průběh. Počátek krystalizace slitiny se na křivce ochlazování projeví zlomem. Dosáhne-li teplota systému hodnoty odpovídající teplotě krystalizace binárního eutektika, na křivce ochlazování se to projeví izotermickou prodlevou. Z uvedených křivek ochlazování také vyplývá skutečnost, že čím více se přibližujeme eutektickému složení, tím delší eutektická prodleva se na křivce ochlazování projeví. Z pohledu na stavový diagram také vyplývá skutečnost, že existují dvojice slitin (jedna podeutektická a druhá nadeutektická) mající podobnou křivku ochlazování z hlediska polohy zlomu. Nelze tedy pouze na základě znalosti jedné křivky ochlazování určit složení slitiny. Je tedy nezbytné znát další doplňující údaje. Lze využít tzv. tempa krystalizace, které představuje závislost přírůstku hmotnosti vylučujících se krystalů při poklesu teploty o jeden stupeň. Stanovení tempa krystalizace je přístrojově i časově náročné a proto je mnohem snadnější využít některých jiných závislostí, např. hustoty slitin na složení. To je zvláště výhodné u binárních systémů, jejichž složky mají výrazně odlišnou hustotu. Závislost hustoty na složení není lineární (zpravidla dochází k objemové kontrakci), příklad je na obr.8.

7 Obr.8: Závislost hustoty slitin SnPb na obsahu olova (matematické vyjádření závislosti) Křivky ochlazování lze také výhodně interpretovat pomocí Gibbsova fázového pravidla. V našem případě se počet stupňů volnosti bude určovat podle vztahu: V = S - F + 1 (1) V...počet stupňů volnosti S...počet složek systému F...počet fází Obr.9: Určení stupňů volnosti systému Vztah (1) platí pro kondenzované systémy (neuvažuje se vliv tlaku) bez probíhajících chemických reakcí. V následující tabulce jsou obsaženy údaje pro výpočet počtu stupňů volnosti. Jednotlivé fázové oblasti jsou vyznačeny ve stavovém diagramu. Oblast čistý kov Počet složek 1 Počet fází 2 Počet stupňů volnosti 0 binární eutektikum či peritektikum I II III IV

8 Z uvedeného plyne, že čistý kov, binární eutektikum, resp. binární peritektikum má při teplotě fázové přeměny nula stupňů volnosti, což se projeví již zmiňovanou izotermickou prodlevou. V oblastech II dochází ke krystalizaci, slitiny mají jeden stupeň volnosti a nezávisle se tudíž může měnit pouze jeden intenzívní parametr, kterým je teplota. Proto probíhá primární krystalizace v určitém intervalu teplot. Dále se ještě zmíníme o Tammanově a Sauvernově diagramu, viz obr.10. Sauvernův diagram udává závislost podílu strukturních složek na chemickém složení. Diagramy se konstruují pro určitou teplotu a lze podle nich zjišťovat podíl eutektika či primárních krystalů ve struktuře slitiny. Tammanův diagram se konstruuje pro zjištění přesné polohy eutektického bodu. Vynáší se délka eutektické prodlevy slitin s různým složením v závislosti na složení. Tuto závislost reprezentují na horním obr.10 modré úsečky. Obr.10: Tammanův a Sauvernův diagram pro eutektický systém Reálné křivky ochlazování se od teoretických křivek odlišují především přítomností anomálií souvisejících s reálnou krystalizací fází, kde se uplatňují efekty jako podchlazení či rekalescence. Další informace o krystalizaci v reálných podmínkách se dozvíte v laboratorní práci Slévárenství. Metody měření teploty Na teplotě závisejí buď explicitně či implicitně hodnoty všech fyzikálních veličin. Proto existuje velká řada metodik měření teploty. V následujícím textu se zaměříme na shrnutí těch nejběžnějších a nejzákladnějších metod. Na principu změny roztažnosti materiálu s teplotou pracují klasické teploměry a bimetaly. Klasické teploměry mohou využívat roztažnosti jak látek plynných a kapalných tak látek tuhých. Další možností měření teploty je využití změny elektrického odporu s teplotou (tzv. odporové teploměry). K měření vysokých teplot se požívají tzv. optické pyrometry, které k měření teploty využívají záření, které vydává zahřáté těleso.

9 Mezi nejvýznamnější a nejčastější způsoby měření teploty patří měření pomocí termočlánků. Princip termočlánku je založen na existenci Seebeckova termoelektrického jevu. Než se dostaneme k měření teploty pomocí termočlánků zmíníme se jen velice stručně o termoelektrických jevech. Termoelektrické jevy Rozdíly teplot mezi jednotlivými částmi elektrického obvodu mají vliv na rozložení elektrického potenciálu a průtoku proudu. A naopak průtok proudu může způsobit vznik rozdílu teplot mezi některými částmi obvodu. U obvodů vytvořených z izotropních těles lze pozorovat tři termoelektrické jevy. - Seebeckův jev se pozoruje tehdy, je-li obvod tvořen alespoň ze dvou různých materiálů, na jejichž styku jsou různé teploty. Pak se v obvodě objeví termoelektrická síla, která závisí na rozdílu teplot obou spojů a na druhu materiálů. Vznik termoelektrické síly se navenek projeví vznikem termoelektrického napětí. Termoelektrické napětí lze naměřit u každých dvou různých materiálů, např. u dvou odlišných čistých kovů, u čistého kovu a slitiny, u dvou různých slitin a také u analogických kombinací materiálů v kapalném stavu. To je však záležitost spíše teoretická, protože je problémem udržet fázové rozhraní mezi danými materiály. Na principu Seebeckova jevu jsou založeny termočlánky. - Peltiérův jev je opak předchozího jevu. Elektrický proud, procházející obvodem vytvořeným ze dvou různých materiálů, způsobuje ohřívání jednoho a chlazení druhého spoje. Změna směru proudu vyvolává ochlazení spoje, který se dříve ohříval, a ohřátí spoje, jenž se dříve ochlazoval. - Thomsonův jev nastane tehdy, když elektrický proud prochází homogenním vodičem s nerovnoměrně rozloženou teplotou. Vodičem potom teče současně elektrický proud a tepelný tok. V částech obvodu, kde je směr proudu a tepla souhlasný, je množství uvolňovaného tepla větší než v částech, v nichž tepelný tok má opačný směr než proud elektrický. Velikost efektu závisí na materiálu vodiče a je úměrná rozdílu teplot. Měření teploty termočlánky Při měření teplot fázových přeměn se pro měření teploty používají nejčastěji termočlánky. Schéma zapojení termočlánku je na obr. 11. Aktivní konec termočlánku se nazývá horký (měřící). Druhý konec termočlánku (studený) je nutné udržovat na stálé teplotě. Výsledné termoelektrické napětí je dáno rozdílem napětí na horkém a studeném konci. V případě udržování studeného konce na konstantní teplotě bude výsledné termoelektrické napětí úměrné pouze teplotě na měřícím konci. Teplota studeného konce termočlánku bývá obvykle udržována na 0 o C, 20 o C, 25 o C, případně 50 o C a to vhodným termostatem nebo elektronicky. Protože se často používají termočlánky z drahých kovů a bývá obvyklé měřit teploty "na dlouhou vzdálenost" od místa kde se měření vyhodnocuje, je nutné nahradit část drahých termočlánkových materiálů levnějšími. Od svorkovnice až k termostatu je vloženo tzv. kompenzační vedení, jak je patrné z obr.11. Na cestě od svorkovnice až k termostatu dlouhé někdy desítky metrů však nebývá konstantní teplota. Aby výsledné termoelektrické napětí termočlánku nebylo ovlivněno kolísáním teploty kompenzačního vedení je nutné, aby termoelektrické chování materiálu kompenzačního vedení bylo zhruba do teploty 100 C (za předpokladu, že po celé délce kompenzačního vedení nedojde k překročení této teploty) shodné s materiály termočlánku.

10 Obr.11: Schéma zapojení termočlánku Závislost termoelektrického napětí termočlánku však není lineární, obecně jí lze vyjádřit polynomickým rozvojem, a proto se jako termočlánky vybírají ty dvojice materiálů, které: mají závislost termoelektrického napětí na teplotě v daném intervalu teplot co nejlineárnější mají co nejvyšší termoelektrické napětí jsou fyzikálně stabilní a odolné v daném pracovním prostředí dají se zpracovat na drát potřebných rozměrů Obr.12 ukazuje závislost termoelektrického napětí na teplotě u nejběžněji využívaných termočlánků. Vyplývá z něj například, že nejlineárnějším průběhem se vyznačuje termočlánek NiCr10-Ni, nejvyšší termoelektrické napětí poskytuje termočlánek Fe-CuNi45, ale lze ho použít jen při nízkých teplotách. Termočlánek PtRh10-Pt poskytuje sice nejnižší termoelektrické napětí (k měření je nutné používat citlivější milivoltmetry), zato je však chemicky stabilní (neoxiduje se) a proto je použitelný i při vysokých teplotách.

11 Obr. 12: Přehled vybraných termočlánků Vzhledem k vedení tepla má být termočlánek co nejtenčí. Tloušťka termočlánkových drátů je však omezena jejich trvanlivostí - u ušlechtilých kovů bývá průměr drátů 0,1-0,6 mm, u neušlechtilých kovů 0,5-4,0 mm. S ohledem na vedení tepla má být také vhodně upravena délka termočlánku. Vodivé spojení (svar) měrného konce musí být provedeno pečlivě, protože na něm závisí kvalita vyrobeného termočlánku. Proti mechanickému a chemickému poškození je nutné termočlánek chránit keramickým nebo kovovým obalem, což má však za následek pomalejší odezvu termočlánku na změny teploty. Schematické znázornění chyb při měření termočlánkem je na obr.13. Po vložení termočlánku do místa měření dojde díky odvodu tepla termočlánkem k poklesu teploty v daném místě (modrá čára). Po vložení termočlánku do měřeného místa postupně dochází k jeho ohřevu z laboratorní teploty. Skutečné teplotě se také postupně přibližuje také údaj na ukazateli teploty (červená čára). Každý termočlánek je nutné cejchovat. To se provádí buď kontrolním měřením teplot fázových přeměn různých čistých kovů nebo některých sloučenin. Dále následuje uvedena stručná charakteristika vybraných termočlánků. Obr.13: Znázornění chyb při měření termočlánkem

12 Charakteristika nejdůležitějších termočlánků Rozdělení běžných typů termočlánků Termočlánek Cu - CuNi45 Ag - CuNi45 Použitelnost C C NiCr10 - CuNi45 do 800 C Fe - CuNi45 do 800 C NiCr10 - Ni do C Pt - PtRe8 do C Pt - PtRh10 do C Pt - PtRh30 do C AuPd46Pt2 - PtRh10 do C PtRh10 - PtRh6 do C WRe3 - WRe25 do C W - WMo25 do C CuNi45 NiCr10 AuPd46Pt2 Vysvětlivky konstantan niklchrom pallaplat V praxi se nejčastěji používají tyto tři typy termočlánků: T ermočlánek PtRh10 (platinarhodium) - Pt Je nejčastěji používaným termočlánkem. Je vysoce stálý. Dlouhodobě se používá do 1300 o C, krátkodobě až do 1600 o C. Produkuje nízké termoelektrické napětí, proto vyžaduje citlivější zařízení pro přesné měření, které nelze používat v provozním měřítku. Používá se jako laboratorní termočlánek nebo k cejchování jiných termočlánků. T ermočlánek NiCr10 (niklc hrom) - Ni Je nejčastěji používaným termočlánkem v průmyslu. Je levný, produkuje relativně vysoké termoelektrické napětí, a proto je možné použití méně citlivých přístrojů pro jeho měření. Trvale se používá do 900 o C, krátkodobě až do 1200 o C. Při teplotách nad 800 o C dochází v důsledku oxidace k trvalému zvýšení termoelektrického napětí asi o 1-2 % pro teploty o C.

13 T ermočlánek Fe-CuNi45 (konsta ntan) Tento termočlánek se v průmyslu rovněž velmi často používá, je ho však možno použít pouze do teploty 600 o C. Termoelektrické napětí je jen o málo větší než u termočlánku NiCr10 - Ni. Stanovení hustoty slitin - návod Hustota je jednou ze základních materiálových charakteristik. Její velikost je ovlivňována jednak chemickým složením, ale také vnitřními poruchami zejména makroskopickými (staženiny, vnitřní póry, plynové bubliny) běžně se využívá celá řada experimentálních metod stanovení hustoty, ale ve slévárenské praxi je nejvíce rozšířena metoda, založená na využití Archimédova zákona. Experimentální uspořádání Metoda je založena na trojím vážení, jak je patrné z obr.1. Nejprve se zváží systém tvořený kádinkou naplněnou vodou s ponořeným závěsným drátkem (stanoví se hmotnost M 1 ). Ve druhém kroku se do závěsného drátku uchytí vzorek a provede se 2. vážení (stanoví se hmotnost M 2 ). V posledním kroku je nutné vzorek opatrně uvolnit ze závěsného drátku a provést 3. vážení pro zjištění hmotnosti M 3. Obr.1 : Princip měření hustoty trojím vážením Cílem trojího vážení je stanovení objemu tělesa vzorku. Z tohoto údaje a ze znalosti hmotnosti vzorku lze již pak snadno určit relativní hustotu. Lze odvodit následující vztah pro výpočet relativní hustoty : kde rel. značí relativní hustotu tělesa vzorku, vzorku značí hustotu vzorku a analogicky kapaliny znamená hustotu kapaliny (vody). K určení absolutní hustoty tělesa vzorku je nyní už jen třeba zjištěnou relativní hustotu tělesa vynásobit hustotou kapaliny při dané pracovní teplotě podle vztahu:

14 Protože hustota kapaliny závisí na teplotě, je nutné na konci vážení změřit teplotu teploměrem a k výpočtu použít hustotu kapaliny pro tuto pracovní teplotu. V následující tabulce je uvedena hustota vody v závislosti na teplotě. Tabulka I.: Závislost hustoty vody na teplotě Teplota [ C] Hustota [g.cm -3 ] Teplota [ C] Hustota [g.cm- 3 ] Teplota [ C] Hustota [g.cm- 3 ] 0 0, , , , ,5 0, ,5 0, , , , ,5 0, ,5 0, ,5 0, , , , ,5 0, ,5 0, ,5 0, , , , ,5 0, ,5 0, ,5 0, , , , ,5 0, ,5 0, ,5 0, , , , ,5 0, ,5 0, , Ilustrační snímky:

15 první vážení druhé vážení třetí vážení Termická analýza - zadání Cíl práce Sestrojte zadanou část systému Sn - Pb a určete složení neznámého vzorku. Potřebná zařízení a materiál čisté Pb, čistý Sn, vzorky slitin SnPb s odstupňovaným obsahem Pb, grafitový kelímek, keramická tyčinka, laboratorní odporová kelímková pec, zapisovač, regulátor teploty, digitální ukazatel teploty, termočlánek NiCr10 - Ni, kovová forma pro odlévání, kádinka s vodou, teploměr, váhy,... Ilustrační snímky: grafitový kelímek kelímková pec zapisovač

16 regulátor teploty ukazatel teploty kovová odlévací forma kelímek s termočlánkem v kelímkové peci celkový pohled na pracovní plochu Postup práce 1. Proveďte kalibraci termočlánku NiCr-Ni pomocí zadaných standardů (čistý Sn, čisté Pb). 2. Zkontrolujte měřící zařízení (viz celkový pohled na pracovní plochu) a proveďte termickou analýzu zadaných slitin. 3. Na základě zjištěných ochlazovacích křivek sestrojte stavový diagram systému Sn-Pb. Vzorky použitých slitin odlejte do kovové formy. 4. Stanovte hustoty zadaných slitin a sestrojte graf závislosti hustoty slitin SnPb na obsahu Pb. 5. Proveďte termickou analýzu neznámého vzorku a pomocí experimentálně zjištěného stavového diagramu určete jeho složení. 6. Výsledek získaný na základě termické analýzy ověřte také změřením hustoty. Protokol obsahuje stručný popis zadání, stručný popis práce, výsledky experimentu ve formě přehledných tabulek, příklady výpočtů, závěr (stručné zhodnocení naměřených hodnot a charakteristika zhotovených grafů, složení neznámých vzorků, atd...) Poznámka Po skončení laboratorní práce, prosíme, uveďte laboratorní stůl do původního stavu, odevzdejte vzorky a vraťte zapůjčené pomůcky.

17

Experimentální metody

Experimentální metody Experimentální metody 05 Termická Analýza (TA) Termická analýza Fázové přeměny tuhých látek jsou doprovázeny pohlcováním nebo uvolňováním tepla, změnou rozměrů, změnou magnetických, elektrických, mechanických

Více

C5060 Metody chemického výzkumu

C5060 Metody chemického výzkumu C5060 Metody chemického výzkumu Audio test: Start P01 Termická analýza Přednášející: Doc. Jiří Sopoušek Moderátor: Doc. Pavel Brož Operátor STA: Bc.Ondřej Zobač Brno, prosinec 2011 1 Organizace přednášky

Více

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN 5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury

Více

Krása fázových diagramů jak je sestrojit a číst Silvie Mašková

Krása fázových diagramů jak je sestrojit a číst Silvie Mašková Krása fázových diagramů jak je sestrojit a číst Silvie Mašková Katedra fyziky kondenzovaných látek Matematicko-fyzikální fakulta Univerzita Karlova Praha Pár základích pojmů na začátek Co jsou fázové diagramy?

Více

Metody termické analýzy. 4. Diferenční termická analýza (DTA) a diferenční scanovací kalorimetrie (DSC)

Metody termické analýzy. 4. Diferenční termická analýza (DTA) a diferenční scanovací kalorimetrie (DSC) 4 Diferenční termická analýza (DTA) a diferenční scanovací kalorimetrie (DC) 41 Základní princip metody DTA Diferenční termická analýza (DTA) je dynamická tepelně analytická metoda, při níž se sledují

Více

Zapojení teploměrů. Zadání. Schéma zapojení

Zapojení teploměrů. Zadání. Schéma zapojení Zapojení teploměrů V této úloze je potřeba zapojit elektrickou pícku a zahřát na požadovanou teplotu, dále zapojit dané teploměry dle zadání a porovnávat jejich dynamické vlastnosti, tj. jejich přechodové

Více

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9.

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A: Cejchování

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

Sol gel metody, 3. část

Sol gel metody, 3. část Sol gel metody, 3. část Zdeněk Moravec (hugo@chemi.muni.cz) V posledním díle se podíváme na možnosti, jak připravené materiály charakterizovat a také na možnosti jejich využití v praxi. Metod umožňujících

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

METALOGRAFIE II. Oceli a litiny

METALOGRAFIE II. Oceli a litiny METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.

Více

HLINÍK A JEHO SLITINY

HLINÍK A JEHO SLITINY HLINÍK A JEHO SLITINY Označování hliníku a jeho slitin dle ČSN EN a) Označování hliníku a slitin hliníku pro tváření dle ČSN EN 573-1 až 3 Tyto normy platí pro tvářené výrobky a ingoty určené ke tváření

Více

4. Stanovení teplotního součinitele odporu kovů

4. Stanovení teplotního součinitele odporu kovů 4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. XXII Název: Diferenční skenovací kalorimetrie Pracoval: Jakub Michálek stud. skup. 15 dne: 15. května 2009 Odevzdal

Více

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu

Více

Teplota. fyzikální veličina značka t

Teplota. fyzikální veličina značka t Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor

Více

TECHNOLOGIE I (slévání a svařování)

TECHNOLOGIE I (slévání a svařování) TECHNOLOGIE I (slévání a svařování) Přednáška č. 3: Slévárenské slitiny pro výrobu odlitků, vlastnosti slévárenských slitin, faktory ovlivňující slévárenské vlastnosti, rovnovážné diagramy. Autoři přednášky:

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření MĚŘENÍ RELATIVNÍ VLHKOSTI - pro měření relativní vlhkosti se používají metody měření obsahu vlhkosti vplynech Psychrometrické metody Měření rosného bodu Sorpční metody Rovnovážné elektrolytické metody

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

T- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc.

T- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Podmínky názvy 1.c-pod. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. MĚŘENÍ praktická část OBECNÝ ÚVOD Veškerá měření mohou probíhat

Více

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty Snímače teploty Měření teploty patří k jednomu z nejdůležitějších oborů měření, protože je základem řízení řady technologických procesů. Pro měření teploty jsou stanoveny dvě stupnice: a) Termodynamická

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

Krystalizace ocelí a litin

Krystalizace ocelí a litin Moderní technologie ve studiu aplikované fyziky reg. č.: CZ.1.07/2.2.00/07.0018. Krystalizace ocelí a litin Hana Šebestová,, Petr Schovánek Společná laboratoř optiky Univerzity Palackého a Fyzikáln lního

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

Úloha 8. Termická analýza

Úloha 8. Termická analýza Úloha 8. Termická analýza Doc. RNDr. Jiří Pinkas, Ph.D. Ústav chemie, Přírodovědecká fakulta, MU Brno Doc. RNDr. Zdeněk Losos, CSc. Ústav věd o Zemi, Přírodovědecká fakulta, MU Brno Metody termické analýzy

Více

KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN

KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN Krystalická stavba kovových slitin 1. MECHANICKÉ SMĚSI SI Mech. směs s dvou a více v fází f (složek) vzniká tehdy, jestliže e složky se vzájemn jemně nerozpouští ani

Více

Metody termické analýzy

Metody termické analýzy Metody termické analýzy Termická analýza je soubor metod, při kterých je v definované atmosféře sledována některá vlastnost vzorku v závislosti na čase nebo teplotě, zatímco teplota vzorku je řízeným způsobem

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem

Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Speciální praktikum z abc Zpracoval: Jan Novák Naměřeno: 1. ledna 2001 Obor: F Ročník: IV Semestr: IX Testováno:

Více

MĚŘENÍ TEPLOTNÍHO POLE UVNITŘ SPALOVACÍ KOTLE

MĚŘENÍ TEPLOTNÍHO POLE UVNITŘ SPALOVACÍ KOTLE MĚŘENÍ TEPLOTNÍHO POLE UVNITŘ SPALOVACÍ KOTLE Rostislav Zbieg, Markéta Grycmanová Náš příspěvek se zabývá měřením teplotních polí uvnitř spalovací komory kotle termočlánky stíněným a nestíněným. Naměřené

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ

ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; platnost do r. 2016 v návaznosti na použité normy. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D. Kavková

Více

NÁZEV ZAŘÍZENÍ: EXPERIMENTÁLNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH

NÁZEV ZAŘÍZENÍ: EXPERIMENTÁLNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH NÁZEV ZAŘÍZENÍ: EXPERIMENTÁLNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ (ATMOSFÉRICKÝ STAND) ROK VZNIKU: 203 UMÍSTĚNÍ: VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ, FAKULTA STROJNÍHO INŽENÝRSTVÍ, TECHNICKÁ

Více

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin 2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při

Více

9. MĚŘENÍ TEPELNÉ VODIVOSTI

9. MĚŘENÍ TEPELNÉ VODIVOSTI Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Charakteristika předmětu:

Charakteristika předmětu: Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VIII Název: Kalibrace odporového teploměru a termočlánku fázové přechody Pracoval: Pavel Ševeček stud. skup.:

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným

Více

Vlastnosti technických materiálů

Vlastnosti technických materiálů Vlastnosti technických materiálů Kovy a jejich slitiny mají různé vlastnosti, které jsou dány především jejich chemickým složením a strukturou. Pro posouzení použitelnosti kovů v technické praxi je obvyklé

Více

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě. oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00

Více

Verze 2. Měření teploty - 1. Doplněná inovovaná přednáška. Pracoviště: Katedra textilních a jednoúčelových strojů TUL

Verze 2. Měření teploty - 1. Doplněná inovovaná přednáška. Pracoviště: Katedra textilních a jednoúčelových strojů TUL Verze 2 Měření teploty - 1 Doplněná inovovaná přednáška Pracoviště: Katedra textilních a jednoúčelových strojů TUL Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským

Více

Termická analýza. Pavel Štarha. Katedra anorganické chemie Přírodovědecká fakulta Univerzita Palackého v Olomouci

Termická analýza. Pavel Štarha. Katedra anorganické chemie Přírodovědecká fakulta Univerzita Palackého v Olomouci Termická analýza Pavel Štarha Katedra anorganické chemie Přírodovědecká fakulta Univerzita Palackého v Olomouci E-mail: pavel.starha@upol.cz http://agch.upol.cz 01/27 1. část: Rozdělení metod termické

Více

Měření měrné tepelné kapacity látek kalorimetrem

Měření měrné tepelné kapacity látek kalorimetrem Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací

Více

Stanovení korozní rychlosti elektrochemickými polarizačními metodami

Stanovení korozní rychlosti elektrochemickými polarizačními metodami Stanovení korozní rychlosti elektrochemickými polarizačními metodami Úvod Měření polarizačního odporu Dílčí děje elektrochemického korozního procesu anodická oxidace kovu a katodická redukce složky prostředí

Více

VÍŘIVÉ PROUDY DZM 2013 1

VÍŘIVÉ PROUDY DZM 2013 1 VÍŘIVÉ PROUDY DZM 2013 1 2 VÍŘIVÉ PROUDY ÚVOD Vířivé proudy tvoří druhou skupinu v metodách, které využívají ke zjišťování vad materiálu a výrobků působení elektromagnetického pole. Na rozdíl od metody

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY . MĚŘENÍ TEPLOTY TEMOČLÁNKY Úkol měření Ověření funkce dvoudrátového převodníku XT pro měření teploty termoelektrickými články (termočlánky) a kompenzace studeného konce polovodičovým přechodem PN.. Ověřte

Více

Rovnováha Tepelná - T všude stejná

Rovnováha Tepelná - T všude stejná Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -

Více

Fyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost

Fyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost www.projektsako.cz Fyzika Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti Lektor: Projekt: Reg. číslo: Mgr. Libor Lepík Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075

Více

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au Řada elektrochemických potenciálů (Beketova řada) v níž je napětí mezi dvojicí kovů tím větší, čím větší je jejich vzdálenost v této řadě. Prvek více vlevo vytěsní z roztoku kov nacházející se vpravo od

Více

U = E a - E k + IR Znamená to, že vložené napětí je vyrovnáváno

U = E a - E k + IR Znamená to, že vložené napětí je vyrovnáváno Voltametrie a polarografie Princip. Do roztoku vzorku (elektrolytu) jsou ponořeny dvě elektrody (na rozdíl od potenciometrie prochází obvodem el. proud) - je vytvořen elektrochemický článek. Na elektrody

Více

TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie =

TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie = TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie = Q = c m t Teplota je jednou z nejdůležitějších veličin jež provází všechny procesy ve výrobě.

Více

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev MĚŘENÍ TEPLOTY teplota je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě při měření teploty se měří obecně jiná veličina A, která je na teplotě závislá podle určitého

Více

Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů. Doc. Ing. Jiří Vondrák, DrSc

Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů. Doc. Ing. Jiří Vondrák, DrSc Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů Doc. Ing. Jiří Vondrák, DrSc 1. Obecný úvod Tato stať se zabývá stavem látek, a to ve skupenství kapalném či tuhém, a přechody mezi

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující

Více

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti Cíl práce: Cílem laboratorní úlohy Elektrochemické metody stanovení korozní rychlosti je stanovení korozní rychlosti oceli v prostředí

Více

ÚVOD DO TERMODYNAMIKY

ÚVOD DO TERMODYNAMIKY ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení 2010 Brno 06 - cvičení vnější parametry sušení strana 2 Proč určujeme parametry prostředí? správné řízení sušícího procesu odvislné na správném řízení naplánovaného sušícího procesu podle naměřených hodnot

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření hladiny 2 P-10b-hl ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Hladinoměry Principy, vlastnosti, použití Jedním ze základních

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD Jméno: Obor: Datum provedení: TEORETICKÝ ÚVOD Jednou ze základních operací v biochemické laboratoři je vážení. Ve většině případů právě přesnost a správnost navažovaného množství látky má vliv na výsledek

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava

Více

charakterizaci polymerů,, kopolymerů

charakterizaci polymerů,, kopolymerů Vysoká škola chemicko technologická v Praze Fakulta chemické technologie Ústav polymerů Využit ití HiRes-TGA a MDSC při p charakterizaci polymerů,, kopolymerů a polymerních směsí Jiří Brožek, Jana Kredatusová,

Více

Konstrukce a interpretace fázových diagramů

Konstrukce a interpretace fázových diagramů Konstrukce a interpretace fázových diagramů http://www.atilim.edu.tr/~ktur/ktur/images/chocolate%20phase%20diagram.gif J. Leitner Ústav inženýrství pevných látek VŠCHT Praha 1 O čem to bude? Co jsou FD

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Viz oskenovaný text ze skript Sprušil, Zieleniecová: Úvod do teorie fyzikálních měření http://physics.ujep.cz/~ehejnova/utm/materialy_studium/chyby_meridel.pdf

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 4 Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky Pracoval: Jakub Michálek

Více

Měření teploty v budovách

Měření teploty v budovách Měření teploty v budovách Zadání 1. Seznamte se s fyzikálními principy a funkčností předložených senzorů: odporový teploměr Pt100, termistor NCT, termočlánek typu K a bezdotykový úhrnný pyrometr 2. Proveďte

Více

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu Jsi chemikem ve farmaceutické společnosti, mezi jejíž činnosti, mimo jiné, patří analýza glycerolu pro kosmetické produkty. Dnešní

Více

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů.

Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů. 3. ermické metody všeobecně. Uspořádání experimentů. 3.1. vhodné pro polymery a vlákna ermická analýza je širší pojem pro metody, při nichž se měří fyzikální a chemické vlastnosti látky nebo směsi látek

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více