IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

Rozměr: px
Začít zobrazení ze stránky:

Download "IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze"

Transkript

1 IV. Fázové rovnováhy 1

2 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav Soustava tuhá složka tuhá složka Soustava tuhá složka kapalná složka Soustava kapalná složka plynná složka Soustava kapalná složka kapalná složka Ideální soustavy neomezeně mísitelných kapalin x Reálné soustavy neomezeně mísitelných kapalin A, y A [1] složka A t [ o C] t VA Oblast kapalné a plynné fáze Čistá x AI x BI Oblast plynné fáze t I II volená křivka l závislost g teploty kapaliny na složení kapalné fáze Oblast kapalné fáze x B, y B [1] y AII y BII l t VB Čistá složka B křivka g závislost teploty par na složení plynné fáze t VA, t VB -teploty varu čistých složek A, B 2

3 4. Fázové rovnováhy 4.1 Základní pojmy 1. Rovnovážný stav v soustavě neprobíhá za daných podmínek žádný samostatný děj s výměnou energie 2. Fázová rovnováha je li soustava tvořena dvěma nebo více fázemi a je ve stavu td. rovnováhy soustava zůstává v rovnováze, nezmění li se vnější podmínky spojený 3. Koexistující fáze označení pro fáze v soustavě, která je ve stavu fázové rovnováhy vlastnosti: - vždy stejné teploty - zpravidla stejné tlaky Proč zpravidla? Nemá smysl mluvit o tlaku v případě tuhé fáze - výjimečně stejné složení 3

4 4. Fázový přechod děj, při kterém přechází určité množství látky z jedné fáze do druhé ypy fázových přechodů v jednosložkové soustavě Kapalina Plyn (pára) Var teplota varu Plyn (pára) Kapalina Kondenzace teplota kondenzace uhá látka Kapalina ání teplota tání Kapalina uhá látka uhnutí teplota tuhnutí uhá látka Plyn (pára) Sublimace teplota sublimace Plyn uhá látka Desublimace teplota desublimace Krystalová forma Jiná krystalová forma Změna krystalové formy teplota změny k. f. 4

5 Lze nějak určit podmínky existence jednotlivých fází? Lze nějak určit počty fází? Lze nějak graficky vyjádřit podmínky existence jednotlivých fází? 5

6 Lze nějak určit podmínky existence jednotlivých fází? Lze nějak určit počty fází? 5. Gibbsův zákon fází termodynamický stav soustavy charakterizován nezávisle proměnnými, p, n i ostatní veličiny (např. V, H, ) závisle proměnné počet stupňů volnosti počet nezávisle proměnných veličin, které lze měnit tak, že jejich změnou nedojde ke změně počtu a druhu fází v soustavě. počet stupňů volnosti lze určit podle Gibbsova zákona fází Gibbsův zákon fází udává vztah mezi: počtem stupňů volnosti (v) počtem složek (s) počtem fází (f) v = s + 2 f zákon platí přesně a bez výjimek pouze v soustavách v rovnováze ; pro soustavy, které v rovnováze nejsou, zákon použít nelze!!!!!!!!! 6

7 Lze nějak graficky vyjádřit podmínky existence jednotlivých fází? 6. Fázový diagram grafické vyjádření podmínek existence jednotlivých fází jednosložkové soustavy s = 1 a f = 1 v = s + 2 f = = 2 vícesložkové soustavy max. 2 stupně volnosti dvě veličiny: p, fázový diagram: s > 1 a f = 1 v > 2 2D diagram nestačí fázový diagram: izobarický diagram p = konst. p 3D diagram nepřehledný xd diagram??????? izotermický diagram = konst. p složení složení 7

8 4.2 Fázové rovnováhy jednosložkové soustavy s = 1 jedna složka, která se však může vyskytovat v několika fázích mohou nastat tři případy: f = 1 v = = 2 soustava bivariantní f = 2 v = = 1 soustava univariantní f = 3 v = = 0 soustava invariantní maximální počet stupňů volnosti: v max = 2 2D diagram fázový diagram pára kapalina pára g, p g, y A = 1 pára g, p g, y A = 1 L, p L, x A = 1 kapalina L, p L, x A = 1 led kapalina g = L = p g = p L = p = p g = L = S = p g = p L = p = p 8

9 Fázový diagram jednosložkové soustavy konstrukce eplota p = konst. eplota varu eplota kondenzace Var Kondenzace eplota tání eplota tuhnutí ání uhnutí Skupenské teplo tání Skupenské teplo tuhnutí Skupenské teplo vypařování Skupenské teplo kondenzace Dodané teplo 9

10 Fázový diagram jednosložkové soustavy A. Každý bod v tomto diagramu udává svými souřadnicemi hodnoty stavových veličin (teplota, tlak) pro jeden stav soustavy B. Oblast pouze jedna fáze v = = 2 možno měnit nezávisle tlak a teplotu, aniž by došlo ke změně počtu a druhu fáze (tj. zůstává stále 1 fáze) C. Křivka dvě fáze současně v = = 1 koexistence 2 fází koexistenční křivky pokud nemá dojít ke změně počtu a druhu fází se musíme pohybovat přesně po dané koexistenční křivce nezávisle lze měnit pouze 1 veličinu, druhá stavová veličina musí být měněna tak, abychom se stále nacházeli přesně na dané koexistenční křivce D. rojný bod průsečík křivek tři fáze současně v = = 0 při jakékoliv změně jakékoliv stavové veličiny dojde ke snížení počtu fází v soustavě 10

11 Fázový diagram H 2 O p [Pa] Kritický bod K = 647,3 K p K = 22,06 MPa rojný bod H 2 O tlak p = 610,6 Pa teplota t = 0,01 C využívá se pro definici 1 K ; 1 K = 1/273,16 část teploty trojného bodu vody Standardní atmosférický tlak p = 101,325 kpa Led Voda Vodní pára lak trojného bodu vody 610,6 Pa rojný bod 0,00 o C 273,15 K 0,01 o C 273,16 K 100,00 o C 373,15 K t [ o C] [K] 11

12 A. Koexistenční křivka: závislost tlaku na teplotě při koexistenci fází A1. Experimentální závislost v souřadnicích log p i 0 1/ p i 0 [kpa] SO 2 izopentan aceton benzen voda oktan t [ o C] 0 log p i 2,5 [1] 2 SO 2 1,5 1 0,5 0-0, izopentan dietyléther dietyléther aceton benzen voda oktan / [K -1 ] 12

13 A2. Matematické vyjádření závislosti tlaku nasycených par na teplotě tlak nasycených par = tlak par, které jsou při dané teplotě v jednosložkové soustavě v rovnováze s kapalinou (var/kondenzace) nebo tuhou látkou (sublimace/desublimace) Augustova rovnice log 0 A p = + Antoineova rovnice Aplikace log p 0 = A B B t + C matematické vyjádření přímkové závislost A, B látkové konstanty A, B, C látkové konstanty var p = p 0 tlak = tlak nasycených par rosný bod podmínky, při kterých některá ze složek soustavy začne právě kondenzovat p i = p i 0 parciální tlak složky = tlak nasycených par složky 13

14 Příklad: V jakém skupenství je voda při teplotě 150 C a tlaku 0,6 MPa? Voda konstanty Antoineovy rovnice (kpa, C) A = 7,14258 B = 1715,70 C = 234,268 obor: C resp. p > 101,325 kpa 1. lak sytých par B 1715,70 log p = A = 7,14258 = t + C , , 6777 = p = 476, 1 kpa 2,6777 p [kpa] ,1 l g 2. Určení skupenství p zad = 600 kpa > p var = 476,1 kpa skupenství kapalné 150 C 14

15 Příklad Určete rosný bod spalin o složení 9,5 % obj. CO 2, 19 % obj. H 2 O, 71,5 % obj. N 2 při tlaku 105 kpa. Řešení: 1. Parciální tlak vody IP: c n H2O = c v H2O = 0,19 2. Rosný bod: p H2O = p H2O 0 n O p H O = c H p = 0, = 19, kpa Konstanty Antoineovy rovnice (H 2 O): A = 7,19621 B = 1730,63 C = 233,426 obor: C resp. p < 101,325 kpa 0 B log ph 2 O = A t + C t = B A log p 0 H 2 O C t = 1730,63 7,19621 log19,95 233,426 = o 60,1 C teplota rosného bodu spalin 60,1 C 15

16 B. Clapeyronova rovnice vztah mezi : teplota tlak p eplota eplota varu eplota kondenzace eplota tání eplota tuhnutí p = konst. ání Var Kondenzace dp d h objemová změna v skupenské teplo h = dp/d = směrnice koexistenční v křivky uhnutí Skupenské teplo tání Skupenské teplo tuhnutí Skupenské teplo vypařování Skupenské teplo kondenzace Dodané teplo h skupenské teplo fázové přeměny v změna molárního objemu látky při fázové přeměny teplota fázové přeměny s l tání h teplo tání v = v l v s l s tuhnutí h teplo tuhnutí v = v s v l > 0 led trhá l g var h výparné teplo v = v g v l g l kondenzace h kondenzační teplo v = v l v g s g sublimace h sublimační teplo v = v g v s g s desublimace h desublimační teplo v = v s v g 16

17 B1. Clausius - Clapeyronova rovnice závislost tlaku na teplotě při koexistenci fází v jednosložkové dvoufázové soustavě kapalina plyn a tuhá fáze plyn kapalina plyn tuhá fáze plyn v = v g v l =? v = v g v s =? Příklad: kapalina plyn v l 18 l/kmol = 0,018 m 3 /kmol 1 kmol H 2 O..18 kg v g >> v l v g 22,4 m 3 /kmol Pozn. s rostoucím tlakem v g 0 pak v g v l a objem kapalné fáze nelze zanedbat Předpoklady objem kapalné fáze zanedbatelný v = v g v l v g ideální chování plynné fáze pv g = R v = R/p nízké tlaky d ln p d = h R 2 17

18 d ln p d h R Aplikace Clausius Clapeyronovy rovnice = 2 Matematické odvození závislosti tlaku nasycených par na teplotě z C C rovnice 1. Předpoklad h výp = konst. ln 0 A p = + B Augustova rovnice 2. Předpoklad h výp = a + b. 3. Předpoklad h výp = a + b. + c. 2 A ln p 0 = + B ln + C A ln p 0 = + B ln + C + D 4. Předpoklad h výp = a + b. + c. 2 + d. 3 ln 0 A 2 p = + B ln + C + D + E 18

19 Odvození: za předpokladu teplotní závislosti h výp = konst. aplikace Clausius Clapeyronovy rovnice 1. Předpoklad h výp = konst. 2. Integrace d ln p d h výp p = 2 d ln p = R p 1 1 h výp R 2 d ln p ln výp výp výp h 1 h 1 h 1 p1 = = + + ln R R R 1 1 p 1 A B 3. Výsledek ln A p = + B Augustova rovnice předpoklad h výp = konst. 19

20 Odvození: za předpokladu teplotní závislosti h výp = a + b. aplikace Clausius Clapeyronovy rovnice 1. Předpoklad h výp = a + b. 2. Integrace d ln p d h R a + b výp = = = R a R + b R d a b a 1 b ln p = + d 2 ln p = + ln + C R R R R A B 3. Výsledek ln A p = + B ln + C 20

21 C. Výparné teplo h výp s rostoucí teplotou klesá h výp kritický bod: h výp ( K ) = 0 Příklad: Voda: t ( C) p (kpa) h výp (kj/kg) v (m 3 /kg) v pára (m 3 /kg) v kapalina (m 3 /kg) 0,01 0, , ,175 0, , ,047 12,048 0, , ,6728 1,6738 0, , , , , , , , , , , , K Pozn. Platnost Augustovy rovnice Augustova rovnice předpoklad h výp = konst. platí pouze v úzkém teplotním intervalu, v kterém lze předpokládat h výp konst. 21

22 echnická aplikace Odparka s klesajícím filmem Swenson echnology Odparka se šplhajícím filmem 22

23 Filmová odparka s klesajícím filmem Wellman 23

24 Filmová odparka Luwa (U12118) 24

25 Sublimační sušení (lyofilizace) Národní knihovna ČR Využití: konzervace potravin (sublimačně sušené potraviny lze skladovat několik let a i po této době se potravina snadno rekonstruuje do původního výživného jídla. Při sušení dochází ke sterilizaci potraviny). zpracování léčiv sušení vzácných dokumentů 25

26 Čerpadla kavitační rezerva sací tlak > p () vliv na sací výšku (pozitivní, negativní sací výška) nižší doporučené rychlosti v sacím potrubí čistá sací výška p s absolutní tlak v sacím hrdle čerpadla, h = (p h s p ) /ρ.g p tlak sytých par čerpané kapaliny, ρ hustota čerpané kapaliny, g tíhové zrychlení (NPSH - net positive suction head) maximální sací výška resp. rezerva tlaku v sacím potrubí čerpadla oproti tlaku sytých par čerpané kapaliny ( kavitační rezerva) čerpadlo bez kavitace: výrobci čerpadel doporučují: h > 1,15 h kr ; h kr (Q) pro N = konst. závislost h kr (Q) pro N = konst. měřena výrobci čerpadel pomocí tzv. kavitačních zkoušek oběžné kolo poškozené kavitací (Rhone Poulenc) 26

27 4.3 Fázové rovnováhy dvousložkových soustav s = 2 Gibbsův zákon fází f = 1 v = = 3 s. trivariantní s = 2 max v = 3 f = 2 v = = 2 s. bivariantní f = 3 v = = 1 s. univariantní f = 4 v = = 0 s. invariantní maximální počet stupňů volnosti: v = 3 3D diagram osy: teplota, tlak, složení Příklady Prakticky se používají 2D fázové diagramy při konstantní hodnotě třetí proměnné tuhá složka tuhá složka tuhá složka kapalná složka kapalná složka plynná složka kapalná složka kapalná složka izobarický diagram p = konst. složení izotermický diagram = konst. p složení!!!! látky přechází mezi fázemi tak, aby byla ustanovena rovnováha!!!! 27

28 4.3.1 Soustava tuhá složka tuhá složka většina kovů je v kapalném stavu dokonale mísitelná tzn. tvoří homogenní taveninu u některých slitin je úplná nebo částečná mísitelnost zachována i v tuhém stavu A. Neomezená mísitelnost C. Nemísitelnost 28

29 A. Neomezená mísitelnost atomy přísadového kovu mohou postupně obsadit všechna místa mřížky základového kovu tj. mezi dvěma čistými složkami můžeme získat nepřetržitou řadu tuhých roztoků (slitin) Kdy neomezená mísitelnost? mezi základním a přísadovým prvkem je příbuznost oba kovy mají stejný typ krystalické mřížky nepříliš odlišný počet valenčních elektronů co nejmenší rozdíl velikost atomů (pod 15%) Příklad: Au Ag, Au Cu, Cu Ni B. Omezená mísitelnost atomy přísadového kovu mohou postupně obsadit omezený počet mřížky základového kovu tj. mezi dvěma čistými složkami nelze získat nepřetržitou řadu tuhých roztoků (slitin) Příklad: Cu Ag C. Nemísitelnost atomy přísadového kovu nemohou obsadit žádné místo v mřížce základového kovu Příklad: úplná nerozpustnost je poměrně vzácná 29

30 Příklad 1: Soustava dokonale mísitelných složek tvořená taveninou cínu (Sn) a olova (Pb) a parami cínu a olova Kolik stupňů volnosti má tato soustava? Řešení: počet složek s = 2 (Pb, Sn) počet fází f = 2 (tavenina, páry) počet st.v. v = = 2 dokonale mísitelné složky atomy Sn a Pb v tavenině i v parách dokonale promíchány Příklad 2: Soustava dokonale mísitelných složek tvořená taveninou cínu (Sn) a olova (Pb) a parami cínu a olova Kolik stupňů volnosti má tato soustava při konstantním tlaku? Řešení: počet složek s = 2 (Pb, Sn) počet fází f = 2 (tavenina, páry) počet st.v. v = = 2 počet všech nezávisle proměnných p = konst. 1 nezávislá proměnná vyčerpána v = 2 1 = 1 30

31 A. Dvousložkové soustavy v tuhé fázi neomezeně mísitelné Křivky chladnutí Izobarický diagram p = konst. likvidus složení kapalné fáze l l + s s solidus složení tuhé fáze t 100% A c A c B 100% B 31

32 B. Dvousložkové soustavy v tuhé fázi nemísitelné Křivky chladnutí Izobarický diagram p = konst. t [ o C] t [ o C] 100 % A 0 % B 40 % A 60 % B 0 % A 100 % B t A avenina t B 60 % A 40 % B 20 % A 80 % B avenina a tuhé A Eutektická teplota Eutektický bod E avenina a tuhé B 80 % A 20 % B uhé A a tuhé B τ [s] 100 % A 0 % B 80 % A 20 % B 60 % A 40 % B 40 % A 60 % B 20 % A 0 % A 80 % B 100 % B c m A [1] c m B [1] Křivka 1, 6 chladnutí čisté složky : čistá složka ztuhne při konstantní teplotě Křivka 2, 3, 5 chladnutí složek A a B, které nemají eutektické složení: pokles do teploty, při které dojde k vyloučení prvního krystalu složky, která je v nadbytku oproti eutektické teplotě (2, 3 A, 5 B), teplota klesá pomaleji (uvolňuje se sk. teplo tuhnutí), po ochlazení na eutektickou teplotu má tavenina eutektické složení, při eutektické teplotě všechna zbylá tavenina ztuhne, aniž dojde k poklesu teploty (uvolňuje se sk. teplo) Křivka 4 eutektické složení: pokles teploty na eutektickou teplotu, při eutektické teplotě dochází k vylučování krystalů A a B střídavě tak, že tavenina má neustále eutektické složení, aniž dojde k poklesu teploty 32

33 C. Dvousložkové soustavy v tuhé fázi omezeně mísitelné Izobarický diagram p = konst. Cu Ag L α L + α L + β β Radek

34 Diagram Fe Fe 3 C 34

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace)

d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace) Fázové rovnováhy jednoložkový ytém Gibbův fázový zákon k f C Popi záviloti tlaku naycených par na teploě Clapeyronova rovnice: d p F P m n e b o F P d l np F P m F P z FP fázový přechod (tání, tuhnutí,

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Fázové diagramy a krystalizace slitin

Fázové diagramy a krystalizace slitin Fázové diagramy a krystalizace slitin KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN Základní pojmy Izotropní látka má ve všech krystalografických směrech stejné vlastnosti (plyn, kapalina). Anizotropní látka má v

Více

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu. Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3

Více

ROVNOVÁŽNÉ STAVY rovnovážném stavu.

ROVNOVÁŽNÉ STAVY rovnovážném stavu. ROVNOVÁŽNÉ STAVY Neprobíhá-li v soustavě za daných vnějších podmínek žádný samovolný děj spojený s výměnou látek nebo energie, je soustava v rovnovážném stavu. CHEMICKÝ POTENCIÁL GIBBSŮV ZÁKON FÁZÍ Máme-li

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN

KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN Krystalická stavba kovových slitin 1. MECHANICKÉ SMĚSI SI Mech. směs s dvou a více v fází f (složek) vzniká tehdy, jestliže e složky se vzájemn jemně nerozpouští ani

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

3.2 Látka a její skupenství

3.2 Látka a její skupenství 3.2 Látka a její skupenství Skupenství látky a jejich změny sublimace PEVNÁ LÁTKA tání desublimace tuhnutí PLYN vy pa řo vá ní KAPALINA zka pal ňo vá ní Látka a změna vnitřní energie Změna vnitřní energie

Více

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Magda Škvorová Ústí nad Labem 2013 Obor: Toxikologie a analýza škodlivin, Chemie (dvouoborová) Klíčová

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie) Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny

Více

Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů. Doc. Ing. Jiří Vondrák, DrSc

Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů. Doc. Ing. Jiří Vondrák, DrSc Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů Doc. Ing. Jiří Vondrák, DrSc 1. Obecný úvod Tato stať se zabývá stavem látek, a to ve skupenství kapalném či tuhém, a přechody mezi

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Fázové rovnováhy dvousložkové soustavy kapalina-kapalina

Fázové rovnováhy dvousložkové soustavy kapalina-kapalina Fázové rovnováhy dvousložkové soustavy kapalina-kapalina A) Neomezeně mísitelné kapaliny Za situace, kdy se v dvousložkové soustavě vyskytuje jediná kapalná fáze (neomezená mísitelnost obou kapalin), pak

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

bak-06=1/1 http://www.vscht.cz/fch/cz/pomucky/kolafa/n403011p.html

bak-06=1/1 http://www.vscht.cz/fch/cz/pomucky/kolafa/n403011p.html bak-06=1/1 pst=101325 = 1.013e+05 Pa R=8.314 = 8.314JK 1 mol 1 Gibbsovo fázové pravidlo v = k f + 2 C počet stupnů volnosti počet složek počet fází počet vazných podmínek 1. Gibbsovo fázové pravidlo Určete

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme

Více

Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, Název a adresa školy:

Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, Název a adresa školy: Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 IČO: 47813121 Projekt: OP VK 1.5 Název operačního programu: Typ šablony klíčové aktivity:

Více

Řešení: Fázový diagram vody

Řešení: Fázový diagram vody Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Název a adresa školy: Střední škola průmyslová a uměleká Opava příspěvková organizae Praskova 399/8 Opava 7460 Název operačního programu: OP Vzdělávání pro konkureneshopnost oblast podpory.5 Registrační

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

PROCESY V TECHNICE BUDOV 9

PROCESY V TECHNICE BUDOV 9 UNIVERZIA OMÁŠE BAI VE ZLÍNĚ FAKULA APLIKOVANÉ INFORMAIKY PROCESY V ECHNICE BUDOV 9 ermodynamika reálných plynů (2. část) Dagmar Janáčová, Hana Charvátová Zlín 2013 ento studijní materiál vznikl za finanční

Více

F - Změny skupenství látek

F - Změny skupenství látek F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin 2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Chemie - cvičení 2 - příklady

Chemie - cvičení 2 - příklady Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

část 6, díl 5, kapitola 1, str. 1 prosinec 2002

část 6, díl 5, kapitola 1, str. 1 prosinec 2002 S R O J N IC K Á P Ř ÍR U Č K A část 6, díl 5, kapitola 1, str 1 6/51 E M P IR IC K É Z Á K O N Y Předmětem zájmu termodynamiky jsou především děje probíhající v látkách ve skupenství plynném a děje související

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie)

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie) Joulův-homsonův jev volná aiabatická expanze nevratný proces (vzroste entropie) ieální plyn: teplota t se nezmění ě a bue platit: p p p reálný plyn: teplota se změní (buď vzroste nebo klesne) p p < p >

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický. Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,

Více

12 Fázové diagramy kondenzovaných systémů se třemi kapalnými složkami

12 Fázové diagramy kondenzovaných systémů se třemi kapalnými složkami 12 Fázové diagramy kondenzovaných systémů se třemi kapalnými složkami Kondenzovanými systémy se třemi kapalnými složkami jsou v této kapitole míněny roztoky, které vzniknou smísením tří čistých kapalin

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství. Teplotní vlastnosti

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství. Teplotní vlastnosti ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství Teplotní vlastnosti Student: Ondřej Rozinek květen 2009 1 Teplotní vlastnosti Vlastnosti materiálu závisí na skupenství. Skupenství

Více

1. Látkové soustavy, složení soustav

1. Látkové soustavy, složení soustav , složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Kalorimetrická rovnice, skupenské přeměny

Kalorimetrická rovnice, skupenské přeměny Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM

CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM Co to je vlhký vzduch? - vlhký vzduch je směsí suchého vzduchu a vodní páry okupující společný objem - vodní pára ve směsi může měnit formu z plynné na kapalnou

Více

Jak správně provést retrofit. Když se to dělá správně, potom všechno funguje 2014

Jak správně provést retrofit. Když se to dělá správně, potom všechno funguje 2014 Jak správně provést retrofit Když se to dělá správně, potom všechno funguje 2014 Výzva poslední doby-náhrada chladiv R404A Jako náhrada za R404a jsou preferována chladiva R407A a R407F Problém teploty

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Energie. Název sady DUM. Člověk a příroda. Vzdělávací oblast. Fyzika. Autor, datum vytvoření Mgr. Zbyněk Šostý, 2012. interaktivní tabule

Energie. Název sady DUM. Člověk a příroda. Vzdělávací oblast. Fyzika. Autor, datum vytvoření Mgr. Zbyněk Šostý, 2012. interaktivní tabule Název DUM: Skupenství látek Název sady DUM Číslo DUM Vzdělávací oblast Vzdělávací obor Energie VY_32_INOVACE_14_S1 12 Člověk a příroda Fyzika Ročník 8. Autor, datum vytvoření Mgr. Zbyněk Šostý, 2012 Doporučená

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Molekulová fyzika a termika

Molekulová fyzika a termika Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0215 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0215 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10 Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.

Více

Základy chemických technologií

Základy chemických technologií 8. Přednáška Extrakce Sušení Extrakce extrakce kapalina kapalina rovnováha kapalina kapalina pro dvousložkové systémy jednostupňová extrakce, opakovaná extrakce procesní zařízení extrakce kapalina pevná

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU

CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU Co to je Molliérův diagram? - grafický nástroj pro zpracování izobarických změn stavů vlhkého vzduchu - diagram je sestaven pro konstantní

Více

SKUPENSTVÍ LÁTEK Prima - Fyzika

SKUPENSTVÍ LÁTEK Prima - Fyzika SKUPENSTVÍ LÁTEK Prima - Fyzika Skupenství látek Pevné skupenství Skupenství látek Skupenství látek Pevné skupenství Kapalné skupenství Skupenství látek Pevné skupenství Kapalné skupenství Plynné skupenství

Více

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika

Více

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO.

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO. OBECNÁ CHEMIE Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO burda@karlov.mff.cuni.cz HMOTA, JEJÍ VLASTNOSTI A FORMY Definice: Každý hmotný objekt je charakterizován dvěmi vlastnostmi

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

11 Fázové diagramy dvousložkových kondenzovaných systémů

11 Fázové diagramy dvousložkových kondenzovaných systémů 11 Fázové diagramy dvousložkových kondenzovaných systémů Gibbsovo fázové pravidlo, křivky chladnutí, fázové diagramy Binární (dvousložkové) heterogenní systémy s kapalnými a pevnými fázemi patří mezi kondenzované

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

Přírodní vědy - Chemie vymezení zájmu

Přírodní vědy - Chemie vymezení zájmu Přírodní vědy - Chemie vymezení zájmu Hmota Hmota má dualistický, korpuskulárně (částicově) vlnový charakter. Převládající charakter: korpuskulární (částicový) - látku vlnový - pole. Látka se skládá z

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více