ÚVOD DO TERMODYNAMIKY
|
|
- Miroslav Navrátil
- před 6 lety
- Počet zobrazení:
Transkript
1 ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních pozorování. která jsou shrnuta do několika postulátů a axiomů. Pomocí těchto axiomů se pak odvozují další vlastnosti a vztahy. Souhrn VŠECH vnějších podmínek, v nichž se zkoumaný systém nachází určuje stav tohoto systému. V principu je stav sytému dán souhrnem vlastností částic (atomů. molekul, iontů,...) tvořících systém. V termodynamice se koukáme na systém jako celek a místo vlastností jednotlivých částic používáme jisté makroskopické veličiny, zvané vnější a vnitřní parametry. Vnější parametry daného systému jsou takové makroskopické veličiny, které jsou funkcemi pouze zobecněných souřadnic vnějších (vzhledem ke zkoumanému systému) těles, s nimiž je zkoumaný systém v interakci. Jsou to tedy různá silová pole působící na daný systém. Typickým příkladem je objem: Je to nekonečně silná potenciálová bariéra, která nedovolí molekulám systému opustit daný prostor (objem nádoby). Vnitřní parametry daného systému jsou takové makroskopické veličiny, které jsou pro daný systém při stejných vnějších parametrech charakteristické pouze pro daný systém. Vnitřními parametry jsou např. hustota, chemické složení, elektrická polarizace, tlak. Soubor nezávislých vnitřních a vnějších parametrů definuje stav systému. Počet těchto parametrů je nutno uřčit empiricky. Mezi vnitřními a vnějšími parametry existují jisté souvislosti (vztahy). Fenomenologická termodynamika neumožňuje tyto vztahy (např. stavovou rovnici) nalézt, je nutno je získat empiricky. Termodynamika však formuluje obecné rovnice, ze kterých je možné z těchto empirických vztahů získat/odvodit všechny další vlastnosti zkoumaného systému. Stav termodynamické rovnováhy. Ve stavu termodynamické rovnováhy mají VŠECHNY makroskopické stavové parametry časově konstantní hodnoty. 1. postulát termodynamiky Každý makroskopický systém, který se nachází v časově neměnných vnějších podmínkách, dospěje nutně do stavu termodynamické rovnováhy a tento stav se může změnit pouze následkem vnějšího zásahu (spontální nenarušitelnost termodynamické rovnováhy).
2 MAKROSKOPICKÁ PRÁCE A ADIABATICKÝ PROCES Práce je obecně dána součinem síly a posunutí. Posunutí nemusí být nutně mechanické, např. práce vykonaná při změně náboje, apod. V aplikacích velmi často vystupuje v roli síly tlak, P, kterým systém působí na své okolí (stěny nádoby). Příklad: Síla na povrchový element je P ds, kde ds je element plochy. Je-li po celou dobu konání práce systém v mechanické rovnováze a neexistují tečné složky, pak tlak je v každém okamžiku konstantní podél celého povrchu tělesa. Práce při posunutí o dl elemntu ds pak je Pds dl. Integrací přes celý povrch pak dostaneme pro práci vykonanou systémem (1) dw = Pds dl = P dv Obecně lze práci vyjádřit ve tvaru (2) dw = A i (a 1,...,a k ) da i kde a i jsou vnější parametry (zobecněné Lagrangeovy souřadnice vnějších těles) a A i příslušné zobecněné síly, jimiž systém působí na okolí. Závisí-li síly na vntřnich parametrech, NEMŮŽE být dw totálním diferenciálem. dw pouze představuje infinitezimální změnu energie systému v důsledku infinitezimální změny jeho vnějších parametrů. Důsledek: Při cyklickém procesu (systém se vrátí do počátečního stavu, tedy integrál po uzavřené křivce) není celková práce nulová; na tomto jsou založeny tepelné stroje (viz později). Adiabaticky izolovaný systém Systém, jehož stav není možno změnit jinak, než změnou jeho vnějších parametrů, nazýváme adiabaticky izolovaným. Všechna interakce adiabaticky izolovaného systému s jeho okolím se děje pouze prostřednictvím zobecněných sil, které přísluší určitým vnějším parametrům.
3 PRVNÍ VĚTA TERMODYNAMICKÁ V jednotlivých disciplinách fyziky se zabýváme pouze těmi druhy energie, které s danou disciplinou souvisejí. Např. v mechanice je to energie kinetická a potenciální, v elektrodynamice elektromagnetická energie apod. Ukazuje se, že celková energie se neztrácí, ale formy některé energie přecházejí na jinou. Platí tedy zákon zachování energie. V termodynamice je zákon zachování energie obsahem první věty termodynamické, která představuje univerzální zákon zachování energie pro makroskopické systémy. Máme-li adiabaticky uzavřený systém, pak při změně vnějších parametrů vykoná systém práci. Experimentální data ukazují, že v tomto případě vykonaná práce nezávisí na průběhu procesu, ale pouze na počátečním a koncovém stavu. Je tedy elementární práce, d d totální diferenciál. Pro adiabaticky uzavřený systém se jeho celková energie může změnit pouze tím, že systém vykoná práci. Platí tedy d Uvažujeme nyní systém S, který není adiabaticky izolován. Adiabaticky izolovaný systém si rozdělíme na dva podsystémy, zkoumaný S, a systém S se zafixovanými vnějšími parametry, takže systém S NEVYKONÁVÁ žádnou práci. Jejich energie nechť jsou E a E. Celková energie systémů S a S je E + E. Práci vykonává pouze systém S, která ale jde na úkor úbytku CELKOVÉ energie. Tedy dw = --d(e + E ) = --de de Protože systém S není adiabaticky izolován, NENÍ dw totální diferenciál. Rovnici přepíšeme, (3) de = -- de -- dw a vidíme, že energie adiabaticky neizolovaného systému se mění jednak změnou vnějších parametrů (tj. vykonaním práce) a také specifickou výměnou energie tohotro systému s okolními tělesy. Energii, kterou systém S získal v průběhu procesu od ostatních těles nazýveme teplem, dq de. 1. věta termodynamická: Množství tepla dq ( -- de ) dodané do systému z okolí se spotřebuje na (1) vzrůst energie systému a (2) vykonání práce tímto systémem; (4) dq = de + dw
4 Ekvivalentní formulace: Není možné sestrojit zařízení, které by trvale (nebo po jistou dobu) vykonávalo kladnou práci, aniž by se měnila energie tohoto zařízení, nebo jeho okolí (perpetum mobile 1. druhu).. INTERPRETACE A APLIKACE 1. První věta termodynamická UMOŽŇUJE existenci perpeta mobile 2. druhu, tj. zařízení, které by trvale vykonávalo kladnou mechanickou práci pouze následkem ochlazování jednoho tělesa. Důkaz: Energie E je stavová veličina, tudíž při cyklickém procesu je de=0 a tedy dq=dw. 2. Pro adiabaticky uzavřený systém je změna energie rovna práci a tedy z rov. (4) plyne, že dq=0. Adiabaticky uzavřený systém je tedy takový, ve kterém nedochází k výměně tepla s okolím. 3. V rov. (4) veličiny dq a dw nejsou totální diferenciály, jejich součet však ano. PROČ? Všechny experimenty ukazují, že energie vždy závisí POUZE na počátečním a koncovém stavu (tj., je to stavová veličina). Kdyby de nebyl totální diferenciál, pak by energie závisela i na průběhu procesu a to není pravda. 4. dq a de nejsou totální diferenciály a tudíž nelze mluvit o MNOŽSTVÍ tepla či práce. Celková energie je totální diferenciál a charakterizuje tedy STAV, a členy jejího rozkladu, teplo Q a práce W, charakterizují PROCES.
5 (EMPIRICKÁ) TEPLOTA Experiment ukazuje, že k popisu systému nestačí zadat pouze vnější parametry (dva různé systémy se ve stejných vnějších podmínkách chovají různě). 2. postulát termodynamiky Stav termodynamické rovnováhy termicky homogenního systému je určen jednoznačně souborem vnějších parametrů a alespoň jedním vnitřním parametrem. Za tento parametr bereme energii systému. Důsledek: Všechny zbývající vnitřní parametry lze vyjadřit jako funkci vnějších parametrů a energie. Uvažujeme rovnovážný termicky homogenní systém. Rozdělíme ho na tři části a pro jednoduchost předpokládáme, že každý podsystém je určen jedním vnějším parametrem, a i, a odpovdající energií U i. Je známo, z experimentu, že celková energie je rovnoměrně rozložena přes celý systém a tedy lze psát U 1 = f 1 (U,a 1,a 2 ) ; U 2 = f 2 (U,a 1,a 2 ) Tyto rovnice lze jednoznačně vyřešit pro celkovou energii U, U = U 1 + U 2 = F 1 (U 1,a 1,a 2 ) = F2(U 2,a 1,a 2 ) Ze čtyř proměnných jsou tedy pouze tři nezávislé; tedy např. (5) U 2 =ω(u 1, a 1,a 2 ). Lze sestrojit funkce φ 1 a φ 2 takové, které implicitně definují funkci ω, a platí (6) φ 1 (U 1,a 1 ) = φ 2 (U 2,a 2 ) Podobný postup uděláme i pro dvojice 1+3, 2+3 a vyplyne z toho tranzitivnost funkce φ. Výsledek: Je-li termicky homogenní systém složený z podsystémů 1, 2, a 3, ve stavu termodynamické rovnováhy, pak pro každý podsystém existuje funkce φ i (U i,a i ) závislá POUZE na parametrech příslušného podsystému, přičemž tato funkce má na všech podsystémech stejnou hodnotu, (7) φ 1 (U 1,a 1 ) = φ 2 (U 2,a 2 ) = φ 3 (U 3,a 3 ) Rov. (7) říká, že ve stavu termodynamické rovnováhy termicky homogenního systému existuje jistá intenzivní veličina τ, která má ve všech částech tohoto systému stejnou hodnotu. Tuto společnou intenzivní veličinu nazýváme teplotou. 2. postulát termodynamiky můžeme nyní přeformulovat následovně: Ve stavu termodynamické rovnováhy termicky homogenního systému jsou všechny vnitřní parametry určeny jednoznačně souborem vnějších parametrů a teplotou.
6 Výše uvedená forma 2. termodynamického postulátu umožňuje realizaci teplotních stupnic. K jednoznačnému určení EMPIRICKÉ teplotní stupnice (teploty) je potřeba -- určit dva pevné (referenční) body -- měřítko Mezinárodní dohoda (stupnice Celsiova): 1. 0 o C je teplota rovnovážného stavu chemicky čisté vody na 45 o severní šířky při hladině moře o C je teplota při níž je chemicky čistá voda (na 45 o...) v rovnováze se svojí nasycenou párou. Měření teploty: Založeno na různých vlastnostech látek, např. roztažnosti, elektrické vodivosti, atd. Rtuťová stupnice: Důsledek: Lineární roztažnost rtuti s teplotou Experiment: Většina plynů se vzhledem ke rtuťové teplotě roztahuje přibližně stejně. Je přesnější a jednodušší měřit tlak než objem. Plynová stupnice: kde γ je koeficient rozpínavosti plynu. Pro VŠECHNY řídké plyny (tj. v limitě ideálního plynu) je Důsledek: -- Nejnižší možná teplota plynové stupnice je o C. -- Budeme-li teplotu počítat od minimální hodnoty, pak plynová teplota je vždy nezáporná. Teplota má svůj přesný fyzikální smysl pouze pro (makroskopické) termicky homogenní systémy ve stavu termodynamické rovnováhy.
FYZIKÁLNÍ CHEMIE I: 2. ČÁST
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
SVOBODA, E., BAKULE, R.
Termodynamika 1. Termodynamika 2. Termodynamická soustava 3. Termodynamický stav 4. Veličiny: látkové množství, molární veličina, vnitřní energie, práce v termodynamice 5. Termodynamické principy: nultý
Molekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Molekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Teplo, práce a 1. věta termodynamiky
eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Parametrické rovnice křivky
Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
Fyzikální chemie Úvod do studia, základní pojmy
Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Vnitřní energie, práce a teplo
Přednáška 3 Vnitřní energie, práce a teplo Thermodynamics is a funny subject. The first time you go through it, you don t understand it at all. The second time you go through it, you think you understand
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
Termodynamické potenciály
Kapitola 1 Termodynamické potenciály 11 Vnitřní energie a U-formulace Fyzikání význam vnitřní energie: v průběhu adiabatického děje je vykonaná práce rovna úbytku vnitřní energie Platí pro vratné i pro
12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem
Energie, její formy a měření
Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
KINETICKÁ TEORIE LÁTEK
ZÁKLADNÍ POZNATKY V mechanice je pohled na tělesa makroskopický makros = veliký, na zákon zachování energie pohlížíme tak, že nás nezajímá částicová struktura, v molekulové fyzice se zajímáme o tom, co
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie
Lekce 4 Statistická termodynamika
Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty
Dynamika soustav hmotných bodů
Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy
LOGO. Molekulová fyzika
Molekulová fyzika Molekulová fyzika Molekulová fyzika vysvětluje fyzikální jevy na základě znalosti jejich částicové struktury. Jejím základem je kinetická teorie látek (KTL). KTL obsahuje tři tvrzení:
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
2.1 Empirická teplota
Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická
Základy molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
1 Statistická fyzika Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Cíl statistické fyziky: vysvětlit makroskopické vlastnosti látky na základě mikroskopických vlastností jejích elementů,
IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON
IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPELNÝ STROJ Tepelný stroj je stroj, který pracuje na základě prvního termodynamického
Maturitní otázky z předmětu FYZIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákony Klasifikace pohybů z hlediska trajektorie a závislosti rychlosti
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
Vnitřní energie, práce, teplo.
Vnitřní energie, práce, teplo. Vnitřní energie tělesa Částice uvnitř látek mají kinetickou a potenciální energii. Je to energie uvnitř tělesa, proto ji nazýváme vnitřní energie. Značíme ji písmenkem U
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
Cvičení z termodynamiky a statistické fyziky
Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce
soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy
Soustava soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Okolí Hraniční plocha Soustava Soustava Rozdělení podle vztahu
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole
Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita
Popis fyzikálního chování látek
Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna
FYZIKA II. Petr Praus 6. Přednáška elektrický proud
FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
h nadmořská výška [m]
Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za
CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.
CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
TERMIKA. (Petr Jizba) Doporučená literatura:
Doporučená literatura: TERMIKA (Petr Jizba) http://www.fjfi.cvut.cz/files/k402/pers_hpgs/jizba/ Z. Maršák, Termodynamika a statistická fyzika (ČVUT 2000) J. Kvasnica, Termodynamika, (SNTL 1965) K. Huang,
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
Chemická kinetika. Chemické změny probíhající na úrovni atomárně molekulové nazýváme reakční mechanismus.
Chemická kinetika Chemická reakce: děj mezi jednotlivými atomy a molekulami, při kterých zanikají některé vazby v molekulách výchozích látek a jsou nahrazovány vazbami v molekulách nově vznikajících látek.
Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů
Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Všeobecná rovnováha 1 Statistický pohled
Makroekonomická analýza přednáška 4 1 Všeobecná rovnováha 1 Statistický pohled Předpoklady Úspory (resp.spotřeba) a investice (resp.kapitál), kterými jsme se zabývali v minulých lekcích, jsou spolu s technologickým
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
Úvod do analytické mechaniky
Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
4 Viskoelasticita polymerů II - creep
4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita