KTE / PPEL Počítačová podpora v elektrotechnice

Rozměr: px
Začít zobrazení ze stránky:

Download "KTE / PPEL Počítačová podpora v elektrotechnice"

Transkript

1 KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. lsroubov@kte.zcu.cz Příklad: Obvod RLC v sérii R=200 Ω L=0,5 H C= F U 0 =100 V V čase t = 0s je připojen konstantní zdroj stejnosměrného napětí. Řeše pomocí výpočetních systémů - viz minulá přednáška, a příp. - diferenciální rovnice 1. řádu v m-file RLCobvod.m a její řešení v m-file RLC_reseni.m

2 A stejný obvod vyřešíme v LTSpice

3

4

5

6 140V V(N001,N002) V(N002,N003) V(n003) 120V 100V 80V 60V 40V 20V 0V -20V -40V -60V 210mA I(R) 180mA 150mA 120mA 90mA 60mA 30mA 0mA -30mA -60mA -90mA 0ms 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms 22ms 24ms 26ms 28ms 30ms

7 Příklad: Van der Poolova rovnice diferenciální rovnice 2. řádu d 2 dt y 1 2 µ dy 2 ( 1 y ) 1 + y 1 1 dt = 0 Převedeme na soustavu dvou rovnic prvního řádu: substitucí dodáme proměnnou y 2 dy = dt 1 y2 a dosadíme: dy dt 2 2 = a upravíme: dy dt µ ( 1 y1 ) y2 + y1 2 2 = µ 1 y1 ) ( y y 2 A mám soustavu rovnic, na levé straně derivace 1. řádu na pravé zbytek: dy 1 = y2 dt dy2 2 = µ ( 1 y1 ) y2 y dt 1 1 0

8 m-file: function dy=fce_vdp(t,y) mi=1; dy=[y(2);mi*(1-y(1)^2)*y(2)-y(1)]; %pozor sloupec Nebo totéž jinak: function dy=fce_vdp(t,y) mi=1; dy(1,1)= y(2); dy(2,1)= mi*(1-y(1)^2)*y(2)-y(1); Nebo totéž (asi nejlépe) takto: function dy=fce_vdp(t,y) mi=1; dy = zeros(2,1); dy(1)= y(2); dy(2)= mi*(1-y(1)^2)*y(2)-y(1); A vlastí výpočet a vykreslení grafu pro t od 0 do 20 a počáteční podmínky y 1 (0) = 2 a y 2 (0) = 0 (hodnoty y 1 a y 2 v čase t=0): [t,y] = ode45(@fce_vdp, [0, 20], [2, 0]); plot(t,y(:,1)) hold on plot(t,y(:,2), '--r') hold off

9 Řízení vzhledu textů v grafech příkazy LaTeXu dolní index t 1 se zapíše t_1 horní index t 2 se zapíše t^2 - má-li platit příkaz pro více znaků použijeme {} např. x_{23} vytiskne x 23 - speciální symboly (např. řecká písmena atp.) - \alpha, \beta atp. viz nápověda MATLABu pod heslem Text Properties tabulka ke konci. (platí pro MATLAB) - často užívané značky (platí pro MATLAB): \bf tučné písmo \it italika, kurzíva \sl -- Oblique font (rarely available) \rm normální font (tj. návrat k výchozímu fontu ruší příkazy \it, \bf atd.) 'FontName','jmeno_fontu' nastavení jiného fontu 'FontSize',velikost_fontu změna velikosti fontu Příklad: function sincos figure

10 x = 0:pi/50:2*pi; ys = sin(x); yc = cos(x); plot(x,ys) hold on plot(x,yc,'r') legend1 = legend({'y_{sin} = sin(x)','y_{cos} = cos(x)'},... 'FontAngle','italic',... 'FontName','Arial kurzíva',... 'FontSize',14,... 'FontWeight','bold'); xlabel('osa x') ylabel('osa y') title('graf \itsin(\alpha)\rm a cos(\beta)','fontname','times New Roman', 'FontSize',30) Tloušťka čáry: plot(x, y, 'LineWidth', 5); Nastavení na červenou barvu, značka trojúhelník vrcholem doprava, tloušťka čáry 3, velikost značky 16, barva vnitřku značky na červenou 'r', barva okraje značky na purpurová 'm':

11 plot(a, b, 'r>', 'LineWidth', 5, 'MarkerSize', 16, 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'm'); Ukládání proměnných na disk platí pro MATLAB save nazev uloží všechny proměnné ve Workspace MATLABu na disk do souboru nazev.mat load nazev nahraje proměnné zpet do paměti load moje_prace AHOJ nahraje ze souboru moje_prace do paměti proměnnou AHOJ load moje_prace A* nahraje ze souboru do paměti proměnné začínající od písmene A Např.: save prom_a A - je uložena proměnná A (samotinkou) do souboru prom_a.mat save prom_a append - append říká, že nemá děla nový soubor, ale připojit další data na konec již existujícího

12 Nahrání zpět do paměti: load prom_a save vypis.txt -ascii - uloženo do txt souboru v ASCII kódu save vypis.txt -ascii -tabs - uloženo do txt souboru, sloupce oddělí tabelátorem Vsuvka: Symbolická derivace (nutný Symbolic Math Toolbox) vysledek = diff('sin(x^2)*cos(x-sin(x))') vysledek = 2*cos(x^2)*x*cos(x-sin(x))-sin(x^2)*sin(x-sin(x))*(1-cos(x)) >> pretty(vysledek) cos(x ) x cos(x - sin(x)) - sin(x ) sin(x - sin(x)) (1 - cos(x)) >> latex(vysledek) 2\,\cos \left( {x}^{2} \right) x\cos \left( x-\sin \left( x \right) \right) -\sin \left( {x}^{2} \right) \sin \left( x-\sin \left( x \right) \right) \left( 1-\cos \left( x \right) \right) vysledek*vysledek ans = (2*cos(x^2)*x*cos(x-sin(x))-sin(x^2)*sin(xsin(x))*(1-cos(x)))^2 linsolve řešení lin. rovnic (numericky) solve řešení rovnic (symbolic)

13 dsolve řešení diferenciálních rovnic (symbolic) syms x y z vytvoří 3 symbolické proměnné x, y a z proměnné pro alg. výpočty int - integrál simplify(vysledek) zjednodušení výrazu (vytýkání atp.) simple(vysledek) zkusí všechny možné cesty ke zkrácení výrazu vysledek, včetně simplify a dalších

14 Řešení diferenciálních rovnic ve starších verzích programu Octave používá Hindmarshův ODE řešič LSODE. Funkce: lsode('jmenofunkce', x0, t, t_crit) vrací matici řešení x parametry: vektor osy t počáteční podmínky řešeného systému x0 parametr t_crit je volitelný slouží k ošetření časů (hodntot t) kde se projevují singularity a nespojitosti v derivacích. Příklad: function dx = nasefunkce(x, t) dx = zeros (3,1); dx(1) = * (x(2) - x(1)*x(2) + x(1) \ e-06*x(1)^2); dx(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27; dx(3) = 0.161*(x(1) - x(3)); endfunction Počáteční podmínky: x0 = [4; 1.1; 4] t = linspace (0, 500, 1000); y = lsode ('nasefunkce', x0, t); Při řešení této úlohy zjistíme, že průběh výsledné funkce se dramaticky mění v rozmezí t = 0 až 5, a také kolem hodnoty t = 305.

15 Proto provedeme výpočet znovu pro hodnoty t upravené v těchto zajímavých oblastech: t = [0, logspace (-1, log10(303), 150), \ logspace (log10(304), log10(500), 150)]; y = lsode ('nasefunkce', x0, t); Další nastavení řešiče lsode je možné pomocí funkce: lsode_options(volby, hodnoty) Pozn. Funkce ODE v systému Octave Pokud nechcete v Octave používat funkci lsode (standardne v Octavu), lze doinstalovat do Octave přídavný balíček "octave-odepkg" Na edisonu je naistalován, takže tam ODE funkce fungují ála Matlab. Pokud provozujete Octave na lokálním počítači, postup je následující: 1) Stáhnout balíček odepkg-cislo_verze zde: ases/odepkg tar.gz/download 2) Balíček např. "odepkg tar.gz" uložit někam na disk, třeba do D:\balicek 3) Pustit Octave (je to jedno jestli samostatný nebo s nadstavbou QtOctave apod.) 4) V Octave spustit příkaz: pkg install D:\balicek\odepkg tar.gz Počkat chvíli (může to být i pár minut) 5) A můžete začít používat ode45 a další "ODEčka". Stačí se přesvědčit zadáním "help ODE45"

Lineární algebra s Matlabem cvičení 3

Lineární algebra s Matlabem cvičení 3 Lineární algebra s Matlabem cvičení 3 Grafika v Matlabu Základní příkazy figure o vytvoří prázdné okno grafu hold on/hold off o zapne/vypne možnost kreslení více funkcí do jednoho grafu ezplot o slouží

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Práce se symbolickými proměnnými Práce s grafikou Přednáška 11 7. prosince 2009 Symbolické proměnné Zjednodušení aritmetických výrazů simplify (s) Příklady: >>syms

Více

Řešení diferenciálních rovnic v MATLABu

Řešení diferenciálních rovnic v MATLABu Řešení diferenciálních rovnic v MATLABu Základy algoritmizace a programování Přednáška 23. listopadu 2011 Co řešíme Obyčejné diferenciální rovnice prvního řádu: separovatelné lineární exaktní druhého řádu,

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice 24. 9. 2014 KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz ICQ: 361057825 http://home.zcu.cz/~lsroubov tel.: +420 377 634 623 Místnost: EK602 Katedra

Více

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 +

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 + Příklad: Řešte soustavu lineárních algebraických rovnic 1x 1 + 5x 2 +7x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 1 A * x = b 8x 1 + 9x 2 + x 3 +45x 4 +22x 5 = 319 3x 1 +12x 2 + 6x 3 + 8x

Více

% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X

% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X %------------------------------------- % 4. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------

Více

Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných

Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných jakési nádoby na hodnoty jsou různých typů při běžné

Více

Doňar B., Zaplatílek K.: MATLAB - tvorba uživatelských aplikací, BEN - technická literatura, Praha, (ISBN:

Doňar B., Zaplatílek K.: MATLAB - tvorba uživatelských aplikací, BEN - technická literatura, Praha, (ISBN: http://portal.zcu.cz > Portál ZČU > Courseware (sem lze i přímo: http://courseware.zcu.cz) > Předměty po fakultách > Fakulta elektrotechnická > Katedra teoretické elektrotechniky > PPEL Doňar B., Zaplatílek

Více

- transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' ans =

- transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' ans = '.' - transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' 1 4 2 5 3-6 {} - uzavírají (obklopují) struktury (složené proměnné) - v případě

Více

pi Ludolfovo číslo π = 3,14159 e Eulerovo číslo e = 2,71828 (lze spočítat jako exp(1)), např. je v Octave, v MATLABu tato konstanta e není

pi Ludolfovo číslo π = 3,14159 e Eulerovo číslo e = 2,71828 (lze spočítat jako exp(1)), např. je v Octave, v MATLABu tato konstanta e není realmax maximální použitelné reálné kladné číslo realmin minimální použitelné reálné kladné číslo (v absolutní hodnotě, tj. číslo nejblíž k nule které lze použít) 0 pi Ludolfovo číslo π = 3,14159 e Eulerovo

Více

Maple. Petr Kundrát. Ústav matematiky, FSI VUT v Brně. Maple a základní znalosti z oblasti obyčejných diferenciálních rovnic.

Maple. Petr Kundrát. Ústav matematiky, FSI VUT v Brně. Maple a základní znalosti z oblasti obyčejných diferenciálních rovnic. Obyčejné diferenciální rovnice s počítačovou podporou - Maple Petr Kundrát Ústav matematiky, FSI VUT v Brně Tento soubor vznikl za účelem ilustrace použití prostředí Maple k řešení a vizualizaci řešení

Více

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: přednáška 4 Numerické a analytické výpočty Zbyněk Koldovský Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace

Více

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 Obsah Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 KAPITOLA 1 Úvod 11 Dostupná rozšíření Matlabu 13 Alternativa zdarma GNU Octave 13 KAPITOLA 2 Popis prostředí

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y = Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení

Více

PPEL_3_cviceni_MATLAB.txt. % zadat 6 hodnot mezi cisly 2 a 8 % linspace (pocatek, konec, pocet bodu)

PPEL_3_cviceni_MATLAB.txt. % zadat 6 hodnot mezi cisly 2 a 8 % linspace (pocatek, konec, pocet bodu) %------------------------------------- % 3. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Práce s maticemi Přednáška 9 23. listopadu 2009 Pole: vektory a matice Vektor (jednorozměrné pole) deklarace statická int v1[5]; dynamická int * v2; + přidělení paměti:

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice 3. 12. 2014 Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Grafy, úprava, popisky, vizualizace výsledků výpočtů opakování

Více

Diferenciální rovnice II

Diferenciální rovnice II Diferenciální rovnice II Cílem tohoto kurzu je ukázat si různé příklady použití počítačového algebraického systému Maple při řešení obyčejných diferenciálních rovnic. řádu a soustav obyčejných diferenciálních

Více

Stručný návod k programu Octave

Stručný návod k programu Octave Stručný návod k programu Octave Octave je interaktivní program vhodný pro technické výpočty. Je nápadně podobný programu MATLAB, na rozdíl od něho je zcela zadarmo. Jeho domovská vebová stránka je http://www.octave.org/,

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

Základy programování: Algoritmizace v systému MATLAB

Základy programování: Algoritmizace v systému MATLAB Základy programování: Algoritmizace v systému MATLAB Magda Francová magda.francova@ujep.cz CN 463 23. února 2010 Úvodní hodina Podmínky pro zápočet 80% účast na hodinách (můžete 3x chybět). Úvodní hodina

Více

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1)

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1) ZKOUŠKA ČÍSLO 1 x=linspace(0,100,20); y=sqrt(x); A=[x;y]'; save('data.txt','a','-ascii'); polyn = polyfit(x,y,3); polyv = polyval(polyn,x); plot(x,y,'r*') plot(x,polyv,'b') p1=[1 0 0 0 0 0 0-1]; k=roots(p1);

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Diferenciální rovnice separace proměnných verze 1.1

Diferenciální rovnice separace proměnných verze 1.1 Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na

Více

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?

Více

Grafické výstupy v Octave/Matlabu a GnuPlotu

Grafické výstupy v Octave/Matlabu a GnuPlotu co byste měli umět po dnešní lekci: nakreslit xy graf s popisky os nakreslit graf s více závislostmi, pro každou z nich vybrat symbol/barvu linie nakreslit více grafů do jednoho vykreslit 3D graf v různých

Více

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici 7. ODE a SIMULINK Jednou z často používaných aplikací v Matlabu je modelování a simulace dynamických systémů. V zásadě můžeme postupovat buď klasicky inženýrsky (popíšeme systém diferenciálními rovnicemi

Více

je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0

je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0 Příklad 1 Vypočtěte trojné integrály transformací do cylindrických souřadnic a) b) c) d), + + +,,, je omezena + =1,++=3,=0 je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + Řešení 1a,

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Fakulta elektrotechnická

Fakulta elektrotechnická České vysoké učení technické v Praze Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Název diplomové práce Praha, 2002 Autor: Jirka Roubal Prohlášení Prohlašuji, že jsem svou diplomovou (bakalářskou) práci vypracoval

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice 19. 11. 2014 KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Příklad řešení soustavy rovnic s komplexními čísly Stanovení

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Interpolace a aproximace dat.

Interpolace a aproximace dat. Numerické metody Interpolace a aproximace dat. Interpolace dat křivkou (funkcí) - křivka (graf funkce) prochází daty (body) přesně. Aproximace dat křivkou (funkcí) - křivka (graf funkce) prochází daty

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

E+034 = ; = e E+034

E+034 = ; = e E+034 Formátovaný textový výstup fprintf Příklad: m = 123.3456; fprintf('%f\n', m); 123.345600 fprintf('%e\n', m); 1.233456e+002 fprintf('%e\n', m); 1.23456E+002 fprintf('%g\n', m); 123.346 fprintf('%g\n', m);

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a . Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

PPEL Ing. Petr Kropík email: pkropik@kte.zcu.cz ICQ: 228540585 http://home.zcu.cz/~pkropik tel.: +420 377 634 639 +420 377 634 606 (odd.

PPEL Ing. Petr Kropík email: pkropik@kte.zcu.cz ICQ: 228540585 http://home.zcu.cz/~pkropik tel.: +420 377 634 639 +420 377 634 606 (odd. PPEL Ing. Petr Kropík email: pkropik@kte.zcu.cz ICQ: 228540585 http://home.zcu.cz/~pkropik tel.: +420 377 634 639 +420 377 634 606 (odd. informatiky) 22.9.2009 Místnost: EK602 Katedra teoretické elektrotechniky

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Řešení diferenciálních rovnic I.

Řešení diferenciálních rovnic I. co byste měli umět po dnešní lekci: vyřešit dif.rovnici Eulerovou metodou vyřešit dif.rovnici metodou prediktor-korektor vyřešit dif.rovnici metodou Runge-Kutta vyřešit soustavu diferenciálních rovnic

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12 Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků

Více

NMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019

NMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019 Jméno: Příklad 2 3 4 5 Celkem bodů Bodů 20 20 20 20 20 00 Získáno Zápočtová písemná práce určená k domácímu vypracování. Nutnou podmínkou pro získání zápočtu je zisk více jak 50 bodů. Pravidla jsou následující:.

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice 25. 9. 2013 KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz ICQ: 361057825 http://home.zcu.cz/~lsroubov tel.: +420 377 634 623 Místnost: EK602 Katedra

Více

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

Vizualizace. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Vizualizace. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: přednáška 3 Vizualizace Zbyněk Koldovský Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod

Více

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Příklad elektrický obvod se stejnosměrným zdrojem napětí

Příklad elektrický obvod se stejnosměrným zdrojem napětí Příklad elektrický obvod se stejnosměrným zdrojem napětí Určete proudy 18, 23, 4, 5, 67 v obvodu na obr., je-li dáno: 1 = 1 Ω, 2 = 2 Ω, 3 = 3 Ω, 4 = 5 Ω, 5 = 3 Ω, 6 = 2 Ω, 7 = 4 Ω, 8 = 4,5 Ω, U = 6 V.

Více

9.3. Úplná lineární rovnice s konstantními koeficienty

9.3. Úplná lineární rovnice s konstantními koeficienty Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

X37SGS Signály a systémy

X37SGS Signály a systémy X7SGS Signály a systémy Matlab minihelp (poslední změna: 0. září 2008) 1 Základní maticové operace Vytvoření matice (vektoru) a výběr konkrétního prvku matice vytvoření matice (vektoru) oddělovač sloupců

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Integrální počet. Substituce v určitém integrálu VY_32_INOVACE_M0311

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Integrální počet. Substituce v určitém integrálu VY_32_INOVACE_M0311 Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..7/.5./. Zlepšení podmínek pro výuku

Více

MATLAB základy. Roman Stanec 27.9.2007 PEF MZLU

MATLAB základy. Roman Stanec 27.9.2007 PEF MZLU MATLAB základy Roman Stanec 27.9.2007 PEF MZLU Náplň cvičení Matlab představení a motivace Seznámení s prostředím Proměnné a výrazy Řídící struktury Funkce Základní úpravy matic Import dat z tabulkového

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off

více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off vypnutí, konec možnosti kreslit více grafů do jednoho grafického

Více

Grafy, úprava, popisky, vizualizace výsledk výpo - pokra ování Další typy graf plot semilogx semilogy loglog Více graf

Grafy, úprava, popisky, vizualizace výsledk výpo - pokra ování Další typy graf plot semilogx semilogy loglog Více graf 25.11.2008 Grafy, úprava, popisky, vizualizace výsledků výpočtů - pokračování Další typy grafů - plot - obdobou jsou: semilogx použití log. osy x semilogy použití log. osy y loglog obě osy jsou log. Více

Více

Předzpracování dat. Cvičení 2: Import a příprava dat v Matlabu MI-PDD, 09/2011. Pavel Kordík MI-POA

Předzpracování dat. Cvičení 2: Import a příprava dat v Matlabu MI-PDD, 09/2011. Pavel Kordík MI-POA Pavel Kordík(ČVUT FIT) Předzpracování dat MI-PDD, 2012, Cvičení 2 1/29 Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

PPEL_4_cviceni_MATLAB.txt. % 4. cvičení z předmětu PPEL - MATLAB. % Lenka Šroubová, ZČU, FEL, KTE %

PPEL_4_cviceni_MATLAB.txt. % 4. cvičení z předmětu PPEL - MATLAB. % Lenka Šroubová, ZČU, FEL, KTE % %------------------------------------- % 4. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------

Více

KMS cvičení 9. Ondřej Marek

KMS cvičení 9. Ondřej Marek KMS cvičení 9 Ondřej Marek SYSTÉM S n DOF ŘEŠENÍ V MODÁLNÍCH SOUŘADNICÍCH Pohybové rovnice lineárního systému: U je modální matice, vlastní vektory u 1, u 2,..., u n jsou sloupce v matici U x - vektor

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1 ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální

Více

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se

Více

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2. Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8

Více

CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka

Více

Kreslení grafů v Matlabu

Kreslení grafů v Matlabu Kreslení grafů v Matlabu Pavel Provinský 3. října 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu

Více

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

MATLAB HRAVĚ Zdeněk Jančík, FIT VUT Brno

MATLAB HRAVĚ Zdeněk Jančík, FIT VUT Brno MATLAB HRAVĚ Zdeněk Jančík, FIT VUT Brno MATLAB (MATrix LABoratory) software pro vědecké výpočty a zobrazování. 1 Několik praktických rad po startu Windows spusťte Matlab z adresáře Q:\MATLAB dvojitým

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více