vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1)"

Transkript

1 ZKOUŠKA ČÍSLO 1 x=linspace(0,100,20); y=sqrt(x); A=[x;y]'; save('data.txt','a','-ascii'); polyn = polyfit(x,y,3); polyv = polyval(polyn,x); plot(x,y,'r*') plot(x,polyv,'b') p1=[ ]; k=roots(p1); plot(real(k),imag(k),'o') title('kořeny polynomu') xlabel('reálná osa') ylabel('imaginární osa') a) (x.^6+1).*exp(-x.^2)-1.2; x=linspace(-3,2.5); y=g(x); subplot(1,2,1); plot(x,y); k1 = fzero(g, -2); plot(k1,g(k1),'o'); k2 = fzero(g, -1); plot(k2,g(k2),'o'); k3 = fzero(g, 2); plot(k3,g(k3),'o'); k4 = fzero(g, 1); plot(k4,g(k4),'o'); b) x.^5-7*x.^3+5*x.^2-2.*x-1; ax=linspace(-3,2.5); ay=ag(ax); subplot(1,2,2); plot(ax,ay) ak1 = fzero(ag,-3); plot(ak1,ag(ak1),'o'); ak2 = fzero(ag,0); plot(ak2,ag(ak2),'o'); ak3 = fzero(ag,3); plot(ak3,ag(ak3),'o');

2 a) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1) k=(1:1:75); a=1/2.*k.*sqrt(k); b=linspace(1,1,75)'; A=a*b b) vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) k=(1:1:50); a=k.*(100-k); b=linspace(1,1,50)'; A=a*b A=[-3 7 0;3 0 7;0 3 7]; B=[1;2;3]; vysledek = A\B x=linspace(-1,1,100); (1./sqrt(1-x.^2)); vysledek = quadl(f,-1,1) x=linspace(-pi,pi,100); y=x; [X,Y]=meshgrid(x,y); z = cos(x.*y)./(1+(x+1).^2+(y+1).^2); mesh(x,y,z)

3 >> edit function z=fce8(p) x=p(1); y=p(2); z=-cos(x.*y)./(1+(x+1).^2+(y+1).^2); end >> max=fminsearch('fce8',[-1 1]); >> edit function dy=priklad9(x,y) y=y(1); v=y(2); u=y(3); du=10-u-v*y^2; dy=[v;u;du]; end >> Y0=[1;-1;2]; >> [x,y]=ode45('priklad9',[0,10],y0) syms t; % Vytvoření symbolické proměnné x = diff(t.^2.* sin(t)); % Spočítání derivací y = diff(t.* cos(t)); z = diff(t+1); f sqrt( ((t.^(3/2).* cos(t) + (3*t.^(1/2).* sin(t))/2).^2) + (cos(t) - t.*sin(t)).^2 + 1^2); % Vytvoření funkce pro integrál (jsou to jen přepsané proměnné x,y a z jen jsou doplněné tečky) tmin = 0; % Meze tmax = 4*pi; v = quadl(f,tmin,tmax) % Výpočet

4 ZKOUŠKA ČÍSLO 2 DODĚLAT p1=[ ]; k=roots(p1); plot(real(k),imag(k),'o') title('kořeny polynomu') xlabel('reálná osa') ylabel('imaginární osa') a) (x.*sin(2.*x)-exp(-x)+1.2); x=linspace(-2,4); y=g(x); subplot(1,2,1); plot(x,y); k1 = fzero(g, -2); plot(k1,g(k1),'o'); k2 = fzero(g, -1); plot(k2,g(k2),'o'); k3 = fzero(g, 2); plot(k3,g(k3),'o'); k4 = fzero(g, 1); plot(k4,g(k4),'o'); b) ax=linspace(-1,1); ay=ag(ax); subplot(1,2,2); plot(ax,ay) ak1 = fzero(ag,-3); plot(ak1,ag(ak1),'o'); ak2 = fzero(ag,0); plot(ak2,ag(ak2),'o'); ak3 = fzero(ag,3); plot(ak3,ag(ak3),'o'); a) vysl = ((1:1:50).*sqrt(1:1:50)) *ones(50,1) b) vysl = ((log10((1:1:50)+1)./(1:1:50)) *ones(50,1)

5 k=(1:1:50); a=k.*sqrt(k); b=linspace(1,1,50)'; A=a*b k=(1:1:50); a=log10(k+1)./k; b=linspace(1,1,50)'; A=a*b A=[3 3 0;-7 0 8;0-1 2]; B=[-4;57;9]; vysledek = A\B x=linspace(-1,1,100); ((1+x.^2)./sqrt(1-x.^2)); vysledek = quadl(f,-1,1) x=-5:0.05:5; y=x; [X,Y]=meshgrid(x,y); z = (sin((1/2).*x.^2+y).*cos(x.*y))./ (sqrt(1+x.^2+y.^2)); mesh(x,y,z); >> edit function z=fce8(p) x=p(1); y=p(2); z=-(sin((1/2).*x.^2+y).*cos(x.*y))./ (sqrt(1+x.^2+y.^2)); end >> max=fminsearch('fce8',[0 1]); DODĚLAT

6 DODĚLAT

7 ZKOUŠKA ČÍSLO 3 x=linspace(200,-200,20); y=x.^3; A=[x,y]; save('a.txt','a','-ascii'); pol = polyfit(x,y,3); polyv = polyval(pol,x); plot(x,y,'*') plot(x,polyv) legend('příklad 01','Aproximace','Location','NorthWest'); p=[ ]; k=roots(p); plot(real(k),imag(k),'o') title('kořeny polynomu'); xlabel('real'); ylabel('imag'); a) x=linspace(-1.2,1.3); (x.^5 + 5).*exp(-1.3) - 1.8; y=g(x); subplot(1,2,1) plot(x,y); k=fzero(g,0); plot(k,g(k),'o'); b) x=linspace(-1.2,1.3); 3*x.^5 + 2*x.^3-2*x-5; y1=h(x); subplot(1,2,2) plot(x,y1); k1=fzero(h,1); plot(k1,h(k1),'o');

8 a) vysledek = (3*(1:1:62)) *ones(62,1) x=linspace(1,62,62); b=linspace(1,1,62)'; a=3*x; A=a*b b) vysledek = 3*((1:1:100)./((1:1:100)+5))) *ones(100,1) k=linspace(1,100,100); b=linspace(1,1,100)'; a=(3*k./(k+5)); A=a*b A=[-4 7;4 7;4-7] b=[1;2;8] vysledek=a\b x=linspace(0,0.5); log(1./sqrt(1-x.^2)); vysl = quadl(g,0,0.5) x=linspace(-4,4,200); y=linspace(-3,3,150); [X,Y]=meshgrid(x,y); g=(x.*y.*(x.^2-y.^2))./(x.^2+y.^2); mesh(x,y,g) f [sin(x(1)^2) + exp(3*x(1)) - 8; 1 - cos(x(2)) - sqrt(x(1))]; x = fsolve(f, [0;0])

9 >> edit function dy=priklad9(x,y) y=y(1); v=y(2); u=y(3); du=10-u-v*y^2; dy=[v;u;du]; end >> Y0=[0;-0.2;3]; >> [x,y]=ode45('priklad9',[0,10],y0) syms t; % Vytvoření symbolické proměnné x = diff(t.^2.* sin(t)); % Spočítání derivací y = diff(t.* cos(t)); z = diff(t+0.5); f sqrt( ((t.^(3/2).* cos(t) + (3*t.^(1/2).* sin(t))/2).^2) + (cos(t) - t.*sin(t)).^2 + 1^2); % Vytvoření funkce pro integrál (jsou to jen přepsané proměnné x,y a z jen jsou doplněné tečky) tmin = 0; % Meze tmax = 3*pi; v = quadl(f,tmin,tmax) % Výpočet

10 ZKOUŠKA ČÍSLO 4 data=importdata('data.txt'); x=data(:,1); y=data(:,2); polyn=polyfit(x,y,4); xx=linspace(x(1),x(end),100); polyv=polyval(polyn,xx); plot(xx,polyv,x,y,'*'); legend('příklad 01','Priklad 01','Location','NorthWest'); f (1/6) * (x(1)^2) + exp(-x(1)^2); x = fsolve(f, 0.05) A=[3 2 0; 1 1 2; 1 3 3]; B=[5;0;1]; vysledek=a\b x=linspace(-1,1); (1 + cos(x.^5-3.*x.^4 + 3.*x.^3-2*x)); vysl = quadl(g,-1,1)

11 x=linspace(-pi,pi,100); y=x; [X,Y]=meshgrid(x,y); z=cos(0.2 + (X.^2)./6 + (Y.^2)./8 - X./3 - Y./5); mesh(x,y,z) >> edit function z=fce5(p) x=p(1); y=p(2); z=-cos(0.2 + (x.^2)./6 + (y.^2)./8 - x./3 - y./5); end >> max=fminsearch('fce5',[-pi pi]); function dy=fce07(x,y) %Pocatecni podminky: %y(0)=1 %y'(0)=-1 %y''(0)=2 %Rovnice: %y'''+(y')^2+y''+sin(x)*y=1 %dy/dx=v %dv/dx=u %du/dx=1-sin(x)*y-v^2*u y=y(1); v=y(2); u=y(3); dy=v; dv=u; du=1-sin(x)*y-v^2*u; dy=[dy;dv;du];

12 ZKOUŠKA ČÍSLO 5 x1=linspace(0,60,30); x2=linspace(0,-80,30); x3=x1+x2; a=[x1' x2' x3']; a(:,:,2)=a.^3; save('maticec.txt','a','-ascii') DODĚLAT s = ((1:1:18)./(2+(1:1:18)))*ones(18,1) -((1:1:6).*(log(1:1:6)-3))*ones(6,1) A=[6 2-3;1 1 3;sqrt(2) -1 1]; B=[5*sin(pi/3) log(3/2) cos(pi/2)]; C=A/B function dy = difrov(t,y) y = Y(1); v = Y(2); dy = [v; (5-2*v)/3]; end

13 >> Y0 = [2; -1]; >> [t,y] = ode45('difrov',[0 5],Y0); >> plot(t,y(:,1)) >> plot(t,y) t=1:1000; z=0.01.*t; y=(0.01.*t).*sin(((2*pi)/100).*t); x=(0.01.*t).*cos(((2*pi)/100).*t); plot3 (x,y,z); DODĚLAT syms t; % Vytvoření symbolické proměnné x = diff(t.^(3/2).* sin(t)); % Spočítání derivací y = diff(t.* cos(t)); z = diff(t+1); f sqrt( ((t.^(3/2).* cos(t) + (3*t.^(1/2).* sin(t))/2).^2) + (cos(t) - t.*sin(t)).^2 + 1^2); % Vytvoření funkce pro integrál (jsou to jen přepsané proměnné x,y a z jen jsou doplněné tečky) tmin = 0; % Meze tmax = 4*pi; v = quadl(f,tmin,tmax) % Výpočet

14 OSTATNÍ max(vysky) mean(vysky) % Průměr std(vysky) % Směrodatná odchylka hist(vysky) a) x = linspace(-3,3,1000); fce 2.*x.*cos(x)-0.5.*exp(- x)+2.2; y = fce(x); plot(x,y); ; ; x0 = fzero(fce,-2.5); y0 = fce(x0); plot(x0,y0,'ro'); x1 = fzero(fce,-2); y1 = fce(x1); plot(x1,y1,'ro'); x2 = fzero(fce,-1); y2 = fce(x2); plot(x2,y2,'ro'); b) x.^4-7*x.^3-4*x.^2-28*x; x=linspace(-3,3); y=g(x); plot(x,y) k1 = fzero(g,0); plot(k1,g(k1),'o'); x=linspace(-3,3); fce x.^4-7*x.^3-4*x.^2-28*x; y = fce(x); plot(x,y) p = [ ]; k=roots(p); plot(real(k),imag(k),'o') x3 = fzero(fce,2); y3 = fce(x3); plot(x3,y3,'ro');

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Škola matematického modelování 2015. Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal

Škola matematického modelování 2015. Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal Počítačová cvičení Škola matematického modelování 2015 Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

Smart Counter 2 Systém počítačové algebry

Smart Counter 2 Systém počítačové algebry SOČ 2005 2006 Středoškolská odborná činnost Matematika a matematická informatika Softwarové zpracování úloh matematiky a matematické informatiky Smart Counter 2 Systém počítačové algebry Štěpán Kozák 3.

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

BAKALÁŘSKÁ PRÁCE. Aplikace diferenciálních rovnic v praxi UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA

BAKALÁŘSKÁ PRÁCE. Aplikace diferenciálních rovnic v praxi UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Aplikace diferenciálních rovnic v praxi Vedoucí bakalářské práce: RNDr. Jan Tomeček,

Více

Návod k programu Graph, verze 4.3

Návod k programu Graph, verze 4.3 Návod k programu Graph, verze 4.3 Obsah 1 Úvod 2 2 Popis pracovní lišty a nápovědy 2 2.1 Nastavení os...................................... 2 2.2 Nápověda....................................... 3 3 Jak

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

abuď ftaková T periodickáfunkce,žeplatí: Projekt1. Buď T= π 2 { cos(3t), je-li t 0, ... Projekt3. Buď T=4abuď ftaková T periodickáfunkce,žeplatí:

abuď ftaková T periodickáfunkce,žeplatí: Projekt1. Buď T= π 2 { cos(3t), je-li t 0, ... Projekt3. Buď T=4abuď ftaková T periodickáfunkce,žeplatí: Projekt1. Buď T= 2 abuď ftaková T periodickáfunkce,žeplatí: { cos(3t je-li t 0, 6 2, je-li t 6, 2 ). Projekt2. Buď T=3abuď ftaková T periodickáfunkce,žeplatí: { 1+e t, je-li t 0,1 2, je-li t 1,3). Projekt3.

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1.

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1. 4 4 = 8 8 8 = 5 + 19 1 = 4 = 11 : 1 k > 0 k 4k x 1 x x k + (1 x) 4k = k x + 4 4x = x = x 1 x = 1 = : 1. v h h s 75 v 50 h s v v 50 s h 75 180 v h 90 v 50 h 180 90 50 = 40 s 65 v 80 60 80 80 65 v 50 s 50

Více

ť Ě š ň ý ú Á ů ď š ý ý š ýď ý ď É ď Á ú ď Ž ň ň ů ú ú ý ť ý ů šš É ť ý ý ý ů ň ů ť Ň ť ť š ú Ž š ý Ů Á Áú ú Ť Ť ý ý ý ý š š ú ň ú ý š ť ú ň ú š š Éú Ě Í ť Ů Č ů ů ů Ý ú ů ý ů ý ů ď ů ý ď ď ý ů ú ý ý ú

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 9. srpna 05 Materiál je v aktuální

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Diferenciální a integrální počet funkcí více proměnných

Diferenciální a integrální počet funkcí více proměnných Fakulta strojního inženýrství VUT v Brně 5. června 9 Diferenciální a integrální počet funkcí více proměnných RNDr. Jiří Klaška, Dr. Sbírka řešených příkladů k předmětu Matematika II pro profesní a kombinovanou

Více

Funkcionální rovnice

Funkcionální rovnice Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent

Více

Příloha 1. 1. Jazyk Coach

Příloha 1. 1. Jazyk Coach Příloha 1 1. Jazyk Coach 1.1 Úvod Součástí integrovaného prostředí Coach jsou programy Modelování a Řídicí prostředí, ve kterých je možno navrhovat, zapisovat, ladit a provádět modelové výpočty a řídicí

Více

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí Numerické algoritmy KAPITOLA 11 V této kapitole: Vyhledávání nulových bodů funkcí Iterativní výpočet hodnot funkce Interpolace funkcí Lagrangeovou metodou Derivování funkcí Integrování funkcí Simpsonovou

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Derivace a průběh funkce příklady z písemných prací

Derivace a průběh funkce příklady z písemných prací Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz Seminář z MATLABU Jiří Krejsa A2/710 krejsa@fme.vutbr.cz Obsah kurzu Posluchači se seznámí se základy systému Matlab, vědeckotechnickými výpočty, programováním v Matlabu včetně pokročilých technik, vizualizací

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Č É Ú č Ť É á Ú é ť á ť á ž á á á ť Ů ď Ř ó š é č Ů Ě ť Ě ť ý ď ď Ě á á ť É é á á Ě á á ů ť ý ť é á ťó ď á á ů Ť ó á š É É áó á ď ú á ů Š ť Ý Ž Ž Ý É ů É ú ď ů ď á ó á á Ž áó á Ň ť ďť ó Ť á ý áá é ú á

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

ě á Ř ú ó Á ý á á ú ú ú š ý á ě á á ú á á á á ž ě ě š ů á á á á ý ž á ž á á ě á á ž á ě Á ě á ó ó á ú ěš á ý úě ú ý ň ý ý á ň ň á ň ý ý á É ý á ý á ě á ú Č Š ÝŤ ú ú ú š ý á á á ú á á á á ě ě š ů á á á

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Programování v Matlabu

Programování v Matlabu Programování v Matlabu Tomáš Kozubek Katedra aplikované matematiky VŠB Technická univerzita Ostrava 17. listopadu 15, 70800 Ostrava Poruba E mail: tomas.kozubek@vsb.cz Část 1. m soubory Programování v

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Vlastnosti Fourierovy transformace

Vlastnosti Fourierovy transformace Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy

Více

MATLAB. Ing. Jitka Nováková, KTM Katedra textilních materiálů tel. 485353280

MATLAB. Ing. Jitka Nováková, KTM Katedra textilních materiálů tel. 485353280 MATLAB Ing. Jitka Nováková, KTM Katedra textilních materiálů tel. 485353280 Zápočet Organizace předmětu Osobní prezentace zadané semestrální práce, jejíž řešení bylo předem (nejpozději 48 hod před obhajobou)

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Č š ý Š š šš é é š ý š ů š ů Á é ď ů š ů š š Ž ó Ú Č ó ý Ž š š Í é ží ů ý ó š šš é é š ý š ů ý ý ů ž ý Ú š é ů š ů š ý š é š ž š é š š š Ž š ď éš Š š é š ý Ž Ž š Š š Ž é Ž ž ů Š ý š é ý ý ú é éš š é ž

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Ť É Á í ý ý ě í í š ě í ý č ě í í ě ý é é ě ě í ý ý ý í ď é ť é é Ú í ř í Ž Ž ý ý í Ž ý í é ý Ž é í š í Ů é í í č ý ý í í ž ý í í í ě ž č í í ě ší č ě ší é í č čí ý ý í Ú č ž í Úč ř í í ší č ý Ú í ř é

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

É Ě ů Č ú Č ň ň Č Ť Ý ň ú ň ť ů ú ů ů ů ú ů ň Ě ú ň ů É Ň ú Ť ŤÁŇ ť ť Ť Ý Áň Ť Ý Ď Ď Á Ň Ť ů ň ú Ň ň ů ň ů ú Ý ú ů ú ť ů ů Á ť ú ň ů ů Ů ů Ý Ú ň ť Á Č Č ň É ť Á ť ť ň Ť Č Č Č ú É Ť ť ť Á Ť Ť ů ň Ú ů ť

Více

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE Obsah JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE...2 Co je to funkce?...2 Existuje snadnější definice funkce?...2 Dobře, pořád se mi to zdá trochu moc komplikonavané. Můžeme se na základní pojmy

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY. RNDr. Karel Hasík, Ph.D.

Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY. RNDr. Karel Hasík, Ph.D. Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY RNDr. Karel Hasík, Ph.D. Obsah 2 ÚVOD DO NUMERICKÉ MATEMATIKY 7 2.1 Rozdělení chyb........................... 7 2.2 Zaokrouhlovací chyby.......................

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

é ý á ŮÝ ť Ž á ý č ý ě Ýý é ž č á á é éč ř ě ý á Č é ý ě ý á č ň Ú ř Ú ý ě ů ů ů ž ý ů ť ů ě á ů řá ý ě á ů ů ů é ž é ů ř č ž č ů Ú Č ě ě ž ý ý á ž á š ě é á ť á š á á Ť á š č á š ě ě š á ň á č áž á ý

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

BAKALÁŘSKÁ PRÁCE Kreslení grafů elementárních funkcí Metapostem

BAKALÁŘSKÁ PRÁCE Kreslení grafů elementárních funkcí Metapostem UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Kreslení grafů elementárních funkcí Metapostem Vedoucí bakalářské práce: RNDr.

Více

Úvod do programování. Lekce 5

Úvod do programování. Lekce 5 I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Inovace a zvýšení atraktivity studia optiky reg. č.: CZ.1.07/2.2.00/07.0289 Úvod do programování Lekce 5 Tento projekt je spolufinancován Evropským

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Odborné texty. Zpracoval Doc. Kreidl

Odborné texty. Zpracoval Doc. Kreidl Odborné texty aneb jaké chyby děláme při psaní odborných textů, jak si ulehčit vkládání rovnic, tabulek a obrázků včetně titulků do textu ve Wordu, a nabídka užitečného makra ve Wordu. Zpracoval Doc. Kreidl

Více

1.Výrazy a jejich využití

1.Výrazy a jejich využití 1.Výrazy a jejich využití Výrazy, které obsahují proměnnou - buď samostatně, nebo v matematických operacích 1.1 Jednočlen Výraz obsahující jen číslo, proměnnou nebo jejich součin, podíl nebo mocninu Jednočlen

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů

Více

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná ZŠ Souhrnné výsledky za školu OSP celkový průměrný výsledek za části testu za dovednosti v testu třída počet žáků skupinový čistá úspěšnost průměrné skóre směrodatná odchylka skóre verbální analytická

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou Algebraické výrazy výrazy s promnnou S výrazy jsme se setkali v matematice a fyzice již mnohokrát. Pomocí výraz zapisujeme napíklad matematické vzorce. Vyskytují se v nich jednak ísla, kterým íkáme konstanty

Více

Základy zpracování obrazu

Základy zpracování obrazu Základy zpracování obrazu Tomáš Mikolov, FIT VUT Brno V tomto cvičení si ukážeme základní techniky používané pro digitální zpracování obrazu. Pro jednoduchost budeme pracovat s obrázky ve stupních šedi

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Á É ě ú Á Í ě Í ú ě ú Í Á ž é Íé ě ž ú Ú ú ú Ú Č Č ě š ň š šú ě Á ú ě Í ě ď ě úě ú ň Í ú ď ěď š ě ě š é ž Č ě Í ž é ě ž é ů ů ú ě ěť ů ú ť é ť ú ů ů é ě Ú ž ů é š Ú ž ú ě ú ě é é ú ě Ž é ú ě ú Í ě ú ě

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Á É ěř ř é ú ě ú Á ýě ř Ú úš ř ň ú úýě ě ú ť Á ž é ř é ú ýě ú ř ěž ď ř é ř é ú ě ž ý ý ý ú šý ýě ř ú ť ě ů ú ý ú é é ř ý ř ě ěř ý ů Ú ř ě ý Ý ý š ň ýú ý ý š ř ě šú Ú ý ř ř é ú ě Á ý ú ř ě ěř ř ú ýě ú ýě

Více

Rejstřík - A - - B - - E - - C - - F - - D - Rejst ík

Rejstřík - A - - B - - E - - C - - F - - D - Rejst ík - 137 Rejst ík - A - aktualizace spojení s datovým souborem, 38; 39 aktualizace symbolických výpočtů, 70 animace, 51 Auto, 92 automatická změna typu rovnítka, 10 automatické obnovení výsledků, 7; 92 automatické

Více

Výdaje 2007 - návrh 14.12. list č.1 - financování

Výdaje 2007 - návrh 14.12. list č.1 - financování Výdaje 2007 - návrh 14.12. list č.1 - financování Pol. Popis 2007 úroky soc. dávky vš.pokl. 6310 4180 6409 11 340 000 5021 Ostatní osobní výdaje 648 060 1 292 250 5031 Sociální pojištění 3 116 696 5032

Více

Á Á Ú Ž Í ý ú ů ů Ú ů ý ů ň é ý ý ň é é ž é ý ý ý ý é ú ů ú ů ý Ú ů ý ů é é ž é ú ů ý ů ů ů ý ú ů ú Ž ý ú Ž ý ý ý ú é ú Ú ů ý ů é é ž é ú ý ů ý ů é ý Š Ž ž ý ý ž ý ý ý é ý ů ý ý ů é ž ů é ý ů é ý ú ú ú

Více

Organic Search Traffic

Organic Search Traffic http://forum.matweb.cz http://forum.matweb.cz Matematické forum [DEFAULT] Organic Search Traffic Jan 1, 2012 Dec 31, 2012 % of visits: 86.15% Explorer Site Usage Visits 10,000 5,000 April 2012 July 2012

Více

Jak nejrychleji napsat svůj první dokument v L A TEXu

Jak nejrychleji napsat svůj první dokument v L A TEXu Jak nejrychleji napsat svůj první dokument v L A TEXu Petr Sadovský a kolektiv Obsah 1 První dokument 2 1.1 Předdefinované styly dokumentu................ 3 1.2 Nadpisy.............................. 3

Více

VUT v Brně, Fakulta strojního inženýrství, Ústav strojírenské technologie, Odbor tváření kovů a plastů TVÁŘENÍ TECHNOLOGICKÉ VÝPOČTY.

VUT v Brně, Fakulta strojního inženýrství, Ústav strojírenské technologie, Odbor tváření kovů a plastů TVÁŘENÍ TECHNOLOGICKÉ VÝPOČTY. TVÁŘENÍ TECHNOLOGICKÉ VÝPOČTY Manuál 1 Prof.Milan Forejt 2004 ÚVODEM V rámci počítačové podpory teorie tváření a projektování tvářecích technologií na Ústavu strojírenské technologie, odboru tváření kovů

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Rozhodování v podnikatelství za podpory fuzzy logiky a neuronových sítí

Rozhodování v podnikatelství za podpory fuzzy logiky a neuronových sítí Rozhodování v podnikatelství za podpory fuzzy logiky a neuronových sítí Dostál Petr Vysoké učení technické v Brně Mezinárodní letní škola SoftProcessing SoftCop reg. č. CZ.1.07/2.3.00/20.0072 Fuzzy logika

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7. Najděte rovnici tečny ke křivce y x v bodě a. x Tečna je přímka. Přímka se zapisuje jako lineární

Více