Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Rozměr: px
Začít zobrazení ze stránky:

Download "Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0."

Transkript

1 Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin + >, + a, neboli < Definiční obor funkce f = f = cos cosh + 3 a nalezněte rovnici tečen ke grafu této funkce v bodech [;? a [ π 3 ;? Funkce f je definována předpisem f = e cosh lncos + 3 Proto je její definiční obor určen vztahem cos > Tedy D f = 4k π, 4k + π k Z Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Pro naší funkce je f = cos cosh sinh lncos cosh tg + 3 Pro bod = je y = a f = 3 Tedy rovnice tečny je v tomto případě y = 3, neboli 3 y + = Bod = π 3 není prvkem definičního oboru funkce f Určete definiční obor funkce f = sin + 3 cos [ π a nalezněte rovnici normál ke grafu této funkce v bodech ;? a [ 4π 3 ;? Funkce f je definována předpisem f = e lnsin + 3 cos Proto je její definiční obor určen vztahem sin > Tedy D f = kπ, k + π k Z Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Pro naší funkce je f = sin lnsin + cotg 3 sin Pro bod = π π je y = a f = 3 Tedy rovnice normály je v tomto případě 3y = π, neboli 3y + 3 π = Bod = 4π 3 není prvkem definičního oboru funkce f Určete definiční obor funkce f = sin + Typeset by AMS-TEX

2 [ π [ 7 a nalezněte rovnici tečen ke grafu této funkce v bodech ;? a 4 π;? Funkce f je definována předpisem f = e lnsin + vztahem sin > Tedy D f = kπ, k + π k Z Proto je její definiční obor určen Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Pro naší funkce je f = sin lnsin + cotg + Pro bod = π je y = + π π 4 a f π π, neboli π y + π 4 = Bod = 7 π není prvkem definičního oboru funkce f 4 = π Tedy rovnice tečny je v tomto případě y π 4 = Určete definiční obor funkce f = sin + [ π [ 6 a nalezněte její diferenciál v bodech ;? a 5 π;? Funkce f je definována předpisem f = e lnsin + vztahem sin > Tedy D f = kπ, k + π k Z Proto je její definiční obor určen Diferenciál funkce y = f v bodě =, ve kterém má funkce f derivaci f, je lineární funkce proměnné h definovaná vztahem df ; h = f h Pro naší funkce je f = sin lnsin + cotg + Pro bod = π π π je f = Tedy diferenciál je v tomto případě df ; h = h Bod = 6 π není prvkem definičního oboru funkce f 5 Nalezněte rovnice tečen ke grafu funkce v jejích infleních bodech f = ln + Definiční obor funkce f je celá množina R První dvě derivace této funkce jsou f = + a f = + Protože f > pro, a f < pro,, +, je funkce f konvení na intervalu, a konkávní na intervalech, a, + tedy její inflení body jsou = ± Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Protože pro = je y = ln a f =, má rovnice tečny v bodě [; ln rovnici y ln =, neboli y + ln = Protože pro = je y = ln a f =, má rovnice tečny v bodě [ ; ln rovnici y ln = +, neboli + y + ln =

3 Určete definiční obor funkce f = sin + [ π [ 5 a nalezněte její diferenciál v bodech ;? a 3 π;? Protože je funkce f definována předpisem f = e lnsin +, je její definiční obor určen podmínkou sin > Je to tedy množina D f = k Z kπ, k + π Diferenciál funkce f, která má v bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = sin lnsin + cotg + π π Protože f = je df ; h = h Bod = 5 π není prvkem definičního oboru funkce f 3 Určete definiční obor funkce f = ln [ a nalezněte rovnici tečen ke grafu této funkce v bodech ;? a [ ;? Definiční obor D f funkce f = ln je určen nerovnostmi > a > Tedy D f =, Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Derivace funkce f v obecném bodě je f = + = V bodě = je y = ln 3 a f 8 = 3 Rovnice tečny ke grafu funkce f = ln v [ bodě ; ln 3 je y + ln 3 = 8, neboli 8 3y 4 3 ln 3 = 3 Bod = Určete definiční obor funkce není prvkem definičního oboru funkce f f = ln a nalezněte rovnice tečen ke grafu této funkce v bodech [;?, [;? Definiční obor funkce f je určen nerovností > Tedy D f =, 3, 3 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f = 9 3 Bod = není prvkem definičního oboru funkce f Pro = je y = ln 3 a f = 4 Tedy v tomto případě má tečna rovnici y ln = 4, 3 neboli 4 + y 4 ln 3 = 3

4 Určete definiční obor funkce f = ln [ a nalezněte rovnice tečen ke grafu této funkce v bodech ;?, [;? Definiční obor D f funkce f = ln je určen nerovnostmi > a > Tedy D f =, Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Derivace funkce f v obecném bodě je f = + = V bodě = je y = ln 3 a f 8 = 3 Rovnice tečny ke grafu funkce f = ln v [ bodě ; ln 3 je y + ln 3 = 8, neboli 8 3y 4 3 ln 3 = 3 Bod = není prvkem definičního oboru funkce f Určete definiční obor funkce f = sin + 3 cos [ π a nalezněte rovnice tečen ke grafu této funkce v bodech,?, [π,? Funkce f je definována předpisem f = e lnsin + 3 cos Proto je její definiční obor určen nerovností sin > Tedy D f = k Z kπ, k + π Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Derivace funkce f v obecném bodě jejího definičního oboru je f = sin lnsin + cotg 3 sin Pro = π π π je y = f = a f = 3 Tedy rovnice tečny v bodě 3 π, neboli 3 + y 3 π = Bod = π není prvkem definičního oboru funkce f [ π ; je y = Určete definiční obor funkce f = cos cosh + 3 a nalezněte rovnici normál ke grafu této funkce v bodech [;? a [π;? Protože je funkce f definována předpisem f = e cosh lncos +3, je definiční obor této funkce určen vztahem cos > Tedy D f = k Z 4k π, 4k + π 4

5 Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě V našem případě je derivace funkce f v obecném bodě definičního oboru rovna f = cos cosh sinh lncos cosh tg + 3 V bodě =, je y = a f = 3 Tedy rovnice normály ke grafu funkce f v bodě [ ; je 3y =, neboli + 3y 3 = Bod = π není prvkem D f Nalezněte definiční obor funkce a její diferenciál v bodech = a = 3 f = e cosh + e 4 Funkce je definována předpisem f = e cosh ln e + e 4 Proto je definiční obor D f této funkce určen nerovností e > Tedy D f = e, e Diferenciál funkce f v bodě, která má v tomto bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = e cosh sinh ln e + V bodě = je f = 4 Tedy df; h = 4h Bod = 3 není prvkem definičního oboru funkce f Určete definiční obor funkce f = 4 sin a nalezněte rovnice tečen ke grafu této funkce v bodech [ 3;?, [;? cosh e + 4e 4, Protože funkce f je definována předpisem f = e sin ln4, je její definiční obor určen nerovností 4 >, tj, Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě V našem případě je f = 4 sin cos ln4 sin 4 Bod = 3 není prvkem definičního oboru funkce f Pro bod = je y = f = a f = ln 4 Tedy rovnice tečny ke grafu funkce f v bodě [; je y = ln 4, neboli ln 4 y + = Nalezněte ity v krajních bodech definičního oboru funkce f = ln4 9 Definiční obor funkce f je určen vztahy 4 > a 9 Tedy D f =, 3 3, 3 3, 4 Čili máme najít ity v bodech = 4, = ±3 a = 5

6 ln4 4 9 = + Pro 3 se jedná o itu typu K jejímu výpočtu použijeme l Hospitalovo pravidlo To dává ln4 3 9 = 3 4 = 6 ln4 ln4 Protože = + a 3 9 =, ita v bodě = 3 neeistuje Pro se jedná o itu typu proto můžeme pro výpočet této ity použít l Hospitalovo pravidlo Z něj plyne ln4 9 = 4 = Nalezněte asymptoty ke grafu funkce f = ln Definiční obor funkce f je D f =,, + Proto budeme hledat asymptoty v bodech =, = a = + Protože =, nemá funkce f v bodě = svislou asymptotu + ln Protože = je přímka = svislou asymptotou ke grafu funkce f f = ln + + Protože Protože + + ln = f = + = +, nemá funkce f v bodě = + vodorovnou asymptotu + =, nemá funkce f v bodě = + ani šikmou asymptotu ln Nalezněte ity v krajních bodech definičního oboru funkce f = ln + Definiční obor funkce f je určen vztahy + > a Tedy D f =,,, + Čili máme najít ity v bodech =, = ± a = + ln + + = Pro se jedná o itu typu K jejímu výpočtu použijeme l Hospitalovo pravidlo To dává ln + = + = ln + ln + Protože + = + a =, ita v bodě = neeistuje Pro + se jedná o itu typu proto můžeme pro výpočet této ity použít l Hospitalovo pravidlo Z něj plyne ln + + = + Dokažte, že derivace sudé funkce je funkce lichá + = 6

7 Nechť f je sudá funkce To znamená, že pro každé D f je f = f Nechť je bod D f, f + h f ve kterém eistuje derivace funkce f, tj eistuje konečná ita = f h h Protože je funkce f sudá, platí pro takové vztah f f + h f f h f = = = h h h h f h f = = f h h Tedy pro každý bod D f je f = f, což znamená, že funkce f je lichá Napište rovnici normály ke grafu funkce f = ln rovnoběžné s přímkou p y + 3 = Definiční obor funkce f je interval D f =, + Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Tedy normála má směrnici k = f V našem případě je f = ln + Protože přímka p má směrnici k p = a normála má být rovnoběžná s touto přímkou, musí pro ovou souřadnici průsečíku normály s grafem funkce platit vztah f = ln + = Tedy souřadnice tohoto bodu jsou = e a y = e Proto je rovnice hledané normály y + e = e, neboli y 3e = Určete rovnici tečen k parabole y = +, které prochází bodem B = [; Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f = Tedy rovnice tečny, která prochází bodem [ ; y, kde y = + je y = Protože hledáme tečnu, která prochází bodem [;, musí splňovat rovnici = Její řešení jsou = + 6 a = 6 Tedy body dotyku jsou [ + 6; nebo [ 6; 7 6 Dostali jsme tedy dvě řešení Tečna, která prochází bodem [ + 6; 7+ 6, má rovnici y 7 6 = + 6 6, neboli + 6 y 3 6 = a tečna, která prochází bodem [ 6; 7 6, má rovnici y 7+ 6 = 6 + 6, neboli 6 +y +3 6 = Je dána funkce f = sin Vypočtěte f K výpočtu této derivace je výhodné použít Leibnizův vzorec n n n f g = f k g n k, k k= kde f a g jsou funkce, které mají derivace do řádu n včetně Jestliže zvolíme f = a g = sin, platí: f =, f = a f k = pro k > a pro každé k N je g 4k = g 4k+ = sin a g 4k+ = g 4k+3 = cos Z Leibnizova vzorce tedy dostáváme sin = sin 7 cos sin =

8 = 38 sin 4 cos Dokažte, že derivace liché funkce je funkce sudá Nechť f je lichá funkce To znamená, že pro každé D f je f = f Nechť je bod D f, f + h f ve kterém eistuje derivace funkce f, tj eistuje konečná ita = f h h Protože je funkce f lichá, platí pro takové vztah f f + h f f h + f = = = h h h h f h f = = f h h Tedy pro každý bod D f je f = f, což znamená, že funkce f je sudá Ve kterých bodech má graf funkce f = + 3 sin tečny rovnoběžné s osou y? Definiční obor funkce f je celá množina R Naším úkolem je najít body R, ve kterých je f + h f = ± Protože derivace funkce f, f = + h h 3 cos je pro kπ, sin /3 k Z konečná, stačí zkoumat pouze body = kπ V těchto bodech je h + 3 sinkπ + h = + k 3 sin h h h h h = + k h /3 h h /3 Protože tato ita je pro sudá k rovna + a pro lichá k rovna, jsou tečny ke grafu funkce f = + 3 sin v bodech = kπ, k Z, rovny = kπ, a tedy rovnoběžné s osou Oy Určete rovnici tečny ke grafu funkce y = 3 +, která je rovnoběžná s přímkou p y = 4 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě a je rovna směrnici této tečny V našem případě je f = 3 + Protože směrnice přímky p je k p = 4 a tato přímka má být rovnoběžná s tečnou, budeme hledat na grafu funkce y = 3 + body, pro které je f = 3 + = 4 Takto získáme dva body dotyku [; a [ ; 4 Tedy v bodě [; je rovnice tečny y = 4, neboli 4 y 4 =, a v bodě [ ; 4 je rovnice tečny y + 4 = 4 +, čili 4 y = Určete rovnici tečny ke grafu funkce y =, která je rovnoběžná s přímkou p y = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny Protože směrnice přímky y = je rovna nule, máme na grafu funkce y = f = najít body, ve kterých je f = Protože f = 4, jsou to body =, = a = Protože f = f = a f =, eistují dvě tečny s danými vlastnostmi Jejich rovnice jsou y = a y = 8

9 Určete rovnici tečny ke grafu funkce y = , která je kolmá k přímce p 6y + = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny V našem případě je derivace funkce rovna f = Protože přímka p má směrnici k = 3 a má být kolmá na hledanou tečnu, musí v bodě platit rovnost = 3 tedy = Pro toto je y = 3 a f = 3 Tedy rovnice hledané tečny je y + 3 = 3 +, neboli 3 + y + 6 = Určete rovnici tečny ke grafu funkce y = + 5, která je kolmá k dané přímce p y = + 3 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny V našem případě je f = Protože směrnice přímky p je k p = a tato přímka má být kolmá na tečnu, budeme hledat na grafu funkce y = +5 body, pro které je f = = Takto získáme bod dotyku [ 3 ; 7 4 Tedy rovnice tečny je y 7 4 = 3, neboli 4 4y + = Určete rovnici tečny ke grafu funkce y = ln, která je kolmá k přímce p y = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny V našem případě je derivace funkce rovna f = Protože přímka p má směrnici k p = a má být kolmá na hledanou tečnu, musí v bodě platit rovnost = tedy = Pro toto je y = ln a f = Tedy rovnice hledané tečny je y ln =, neboli y + ln = Napište rovnice tečen hyperboly 7 y = 4, které jsou kolmé na přímku + 4y 3 = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny Protože přímka má směrnici k p = a hledáme tečnu kolmou na tuto přímku, musí být směrnice tečny rovna k = Označme y = f Na dané hyperbole máme najít najít bod, ve které je y = f = Protože funkce f splňuje rovnici 7 f = 4, dostaneme jejím derivováním rovnici 4 4ff = Tedy v bodě dotyku [ ; y musí být splněny rovnice 7 4y = a 7 y = 4 Řešení této soustavy rovnic nám dá dva body dotyku [4; 7 a [ 4; 7 Tedy eistují dvě tečny s danou vlastností Je-li bod dotyku [4; 7 je rovnice tečny y 7 = 4, tj y =, a je-li bod dotyku [ 4; 7 je rovnice tečny y + 7 = + 4, tj y + = Veďte tečny ke grafu funkce y = tak, aby procházely bodem B = [; 3 9

10 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, y = f, ve kterém je funkce f diferencovatelná, má tvar y y = f, kde f je derivace funkce f v bodě V našem případě je pro, y = a f = 4 Rovnice tečny tedy je y + = 4 Protože tečna má procházet bodem [; 3, musí splňovat rovnici 4 = 4 Tato rovnice má dvě řešení = ± Pro = + je y = + 8 a f + = 4 + Rovnice tečny, která se dotýká grafu funkce v tomto bodě je y 8 = 4 +, neboli 4 + y 3 8 = Pro = je y = 8 a f = 4 Rovnice tečny, která se dotýká grafu funkce v tomto bodě je y +8 = 4 +, neboli 4 y 3+8 = Určete rovnici normály ke grafu funkce y = 4 + 5, která je rovnoběžná s přímkou p + 4y 4 = Normála ke grafu funkce = f v bodě [ ; y, kde y = f, která je v tomto bodě diferencovatelná, má rovnici f y y =, kde f je derivace funkce f v bodě Její směrnice je tedy k n = f Protože přímka p má směrnici k p =, máme na grafu 4 funkce y = najít body, pro které je f = 4 Protože f = 4, eistuje pouze jeden takový bod Jeho souřadnice jsou = 4 a y = 5 Tedy rovnice hledané normály je 4y 5 = 4, neboli + 4y 4 = Určete rovnici normály ke grafu funkce y = 6 + 6, která je kolmá k dané přímce p y = Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Tedy normála má směrnici k = f V našem případě je f = 6 Protože přímka p má směrnici k p = a normála má být kolmá na tuto přímku, musí pro ovou souřadnici průsečíku normály s grafem funkce platit vztah f = 6 = Tedy souřadnice tohoto bodu jsou = 5 a y = Proto je rovnice 4 hledané normály y + 4 = 5, neboli y 4 = Určete rovnici normály ke grafu funkce y = +, která je kolmá k přímce p y = + Definiční obor funkce f je D f =, + Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Tedy normála má směrnici k = f Směrnice přímky p je k p = Protože má být normála kolmá na přímku p, musí mít směrnici k = = Protože f = k p máme na grafu funkce y = + najít bod [ ; y, ve kterém je = To je bod [; tedy rovnice hledané normály je y =, neboli y = Veďte tečny ke grafu funkce y = tak, aby procházely bodem B = [;

11 Definiční obor funkce f je D f =, 5 5, + Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f 4 = + 5 Tedy rovnice tečný, která prochází bodem [ ; y, kde y = je y = Protože hledáme tečnu, která prochází bodem [;, musí splňovat rovnici = Její řešení jsou = 3 a = 5 Tedy [ body dotyku jsou [ 3; 3 nebo 5; 3 5 Dostali jsme tedy dvě řešení Tečna, která prochází bodem [ 3; 3, má rovnici y 3 = + 3 neboli + y = a tečna, která prochází bodem + 5y = [ 5; 3 5, má rovnici y 3 5 = + 5, neboli 5 Veďte tečny ke grafu funkce y = tak, aby procházely bodem B = [ ; Definiční obor funkce f je D f =,, + Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f = Tedy rovnice tečny v bodě [ ; y, kde y =, je y = Protože hledáme tečnu, která prochází bodem [ ;, musí splňovat rovnici = Tato rovnice má dvě řešení = ± Tedy body dotyku jsou [ + ; a [, Tečna, která prochází bodem [ + ;, má rovnici y + = 3 a tečna, která prochází bodem [ + ;, má rovnici y + + = Vypočtěte itu arctg 3 Protože se jedná o itu typu, lze k jejímu výpočtu použít l Hospitalova pravidla To dává arctg 3 = 3 + = 3 Vypočtěte itu π arctg +

12 Jedná se o itu typu l Hospitalova pravidla To dává Proto výraz nejprve upravíme na itu typu a použijeme π arctg = + π arctg + = + + = Vypočtěte itu + cotg Jedná se o itu typu proto výraz nejprve upravíme na podíl Platí cos sin cos = sin sin l Hospitalovo pravidlo Pomocí něj dostaneme cotg = Protože nyní již jde o itu typu, lze k jejímu výpočtu použít + cotg sin cos = = + sin sin cos = + + sin = sin = + Vypočtěte itu + e Jedná se o itu typu Ale protože + e = + e = =, je + e e e = + + Vypočtěte itu cos + Jedná se o itu typu Protože cos = ep ln cos a funkce y = e je spojitá na celém R, stačí najít itu ln cos To je ita typu proto ji upravíme na itu typu Tedy + a použijeme l Hospitalovo pravidlo Takto dostaneme ln cos ln cos y sin y = + y + y = y + y cos y = cos = e / +

13 Vypočtěte itu cotg sin + Jedná se o itu typu sin Protože cotg = e sin ln cotg a funkce y = e je spojitá na celém R, stačí najít itu sin ln cotg, což je ita typu Tu převedeme na itu + typu a použijeme l Hospitalovo pravidlo Tak dostaneme sin ln cotg ln cotg = + = + sin + tg cos = Tedy + cotg sin = e = Dokažte, že polynom P s reálnými koeficienty má tuto vlastnost: Mezi každými dvěma reálnými kořeny polynomu P leží kořen polynomu P Nechť a, <, jsou nulové body polynomu P Protože každý polynom má na celé reálné ose derivace všech řádů a P = P =, jsou na intervalu, splněny předpoklady Rollovy věty o střední hodnotě Podle ní eistuje bod, takový, že P = Nalezněte hodnotu k a interval, ve kterém platí uvedená rovnost arctg + arccotg = k Definiční obor funkce f = arctg + arccotg je celá reálná osa Protože je funkce f diferencovatelná v celém R a její derivace je f = + =, je funkce f na celém R + konstantní Protože f = arctg + arccotg = π, je arctg + arccotg = π pro každé R Nalezněte hodnotu k a interval, ve kterém platí rovnosti arctg + arctg + = k Označme f = arctg + arctg + Definiční obor této funkce je D f =,, + Diferencovatelná funkce y = f se konstantní na intervalu právě tehdy, když je na tomto intervalu f = Protože je f + = =, je funkce f konstantní na + intervalech, a, + Konstantu určíme pomocí funkční hodnoty v libovolném bodě každého z těchto intervalů Protože f = π, platí na intervalu, + rovnost arctg + arctg 4 + = π 4 Protože arctg + arctg = π, 3

14 je na intervalu, funkce arctg + arctg + = 3 4 π Nalezněte hodnotu k a interval, ve kterém platí rovnost arctg + arcsin + = k Uvažujme funkci f = arctg + arcsin Definiční obor této funkce je dán nerovností +, a tedy je to celá množina R + Diferencovatelná funkce je na intervalu konstantní právě tehdy, když je na tomto intervalu f = Derivace funkce f je f = = + + Tedy f = pro <, tj pro,, + Tedy funkce f = arctg + arcsin je na intervalech, a, + konstantní + Tuto konstantu lze na každém z těchto intervalů určit tak, že dosadíme libovolný bod příslušného intervalu Protože arctg + arcsin + + = π a arctg + arcsin + + = π je arctg + arcsin = π + pro, + arctg + arcsin = π + pro, Nalezněte hodnotu k a interval, ve kterém platí rovnost arctg arccos + = k Označme f = arctg arccos Definiční obor funkce f je určen nerovností + + Z toho plyne, že D f = R Derivace funkce f je rovna f = = + + Diferencovatelná funkce f je konstantní na intervalu právě tehdy, když je její derivace rovna nule V našem případě je f = pro, +, a tedy je na tomto intervalu rovna konstantě Protože f =, je arctg arccos = pro, + + 4

15 Vypočtěte itu sin π ln Jedná se o itu typu Proto lze k jejímu výpočtu použít l Hospitalovo pravidlo To dává sin π ln = π cos π = π Vypočtěte itu e e sin Protože se jedná o itu typu, je možné použít k výpočtu této ity l Hospitalovo pravidlo To dává e e e + e = = sin cos Vypočtěte itu sin 3 Jedná se o itu typu Proto lze použít l Hospitalovo pravidlo To dává sin cos sin 3 = 3 = 6 = 6 Vypočtěte itu ln Protože se jedná o itu typu, lze použít l Hospitalovo pravidlo To dává ln = = Vypočtěte itu tg sin 5

16 Jedná se o itu typu Proto lze k jejímu výpočtu použít l Hospitalovo pravidlo Pak dostaneme tg sin = cos cos cos = + cos cos = Vypočtěte itu Jedná se o itu typu l Hospitalovo pravidlo To dává π tg Proto výraz nejprve převedeme na ity typu a použijeme π tg = cotg π/ = π sin π/ = π Vypočtěte itu e/ Protože e / = a e / = + e y y + y = y + ey = +, e / neeistuje Vypočtěte itu sin Jedná se o itu typu Ale jestliže oba zlomky sečteme, získáme itu typu, pro jejíž výpočet již můžeme použít l Hospitalovo pravidlo takto dostaneme sin = sin sin = sin sin = cos sin = = = Vypočtěte itu e Jedná se o itu typu Proto nejprve výraz upravíme sečteme zlomky na itu typu Pak už můžeme použít l Hospitalovo pravidlo To dává e e = e = e e + e = e e + e = 6

17 Vypočtěte itu cotg Jedná se o itu typu Proto převedeme výraz na zlomek Platí cotg = cos sin = sin cos sin = sin + cos sin cos 3 = sin Hledanou itu najdeme jako součin tří it, které jsou vesměs typu Proto lze pro výpočet každé z nich použít l Hospitalovo pravidlo Tedy sin + cos sin cos cotg = 3 sin = sin = 3 = 3 Vypočtěte itu / Jedná se o itu typu Proto vyjádříme funkci pomocí eponenciály, tj napíšeme / = ln ep Protože je funkce f = e spojitá, platí / = ep ln = ep = e Vypočtěte itu + ln + Jedná se o itu typu Protože je + ln = e ln ln+ a funkce y = e je spojitá na celém R, je + ln = ep ln ln + = + + ln ln + = ep = e = + + Vypočtěte itu sin π/ tg 7

18 Funkce f je definována předpisem f = e tg lnsin Proto je její definiční obor určen podmínkou sin > a k + π Tedy D f = [ kπ, 4k + 4k + π π, k + π k Z Protože funkce y = e je spojitá v celém R, stačí najít itu tg lnsin Protože se jedná π/ o itu typu, převedeme tento výraz na itu typu a použijeme l Hospitalovo pravidlo Platí tg lnsin = lnsin π/ π/ cotg = cotg π/ sin = Proto je π/ tg sin = e = Vypočtěte itu + e e Protože se jedná o itu typu, lze k jejímu výpočtu použít l Hospitalovo pravidlo Pomocí něj dostaneme e + e = e e + e = Vypočtěte itu 3 Jedná se o itu typu Proto je možné použít l Hospitalovo pravidlo Pomocí něj dostaneme 3 = 3 ln 3 ln = ln 3 Najděte cos t dt Jedná se o itu typu proto lze k jejímu výpočtu použít l Hospitalovo pravidlo Pomocí něj dostaneme cos t dt = cos = 8

19 Najděte + arctg t dt + + Protože + arctg = π 4, integrál arctg t dt diverguje k + Jedná se tedy o itu typu Proto lze použít l Hospitalovo pravidlo To dává + arctg t dt + = + + arctg = π 4 Najděte + e t dt e t dt Protože integrály + e t dt a + k jejímu výpočtu použít l Hospitalovo pravidlo To dává + e t dt e t dt e t dt divergují do +, jedná se o itu typu Proto lze = + e e t dt e = = + e e = + e t dt e = Najděte + cos t t dt Protože pro t, platí nerovnost cos t t cos t > a integrál dt t = +, jedná se o itu t cos t dt cos t typu Jestliže píšeme + t dt = +, dostaneme itu typu Proto lze pro výpočet této ity použít l Hospitalovo pravidlo Tedy platí cos t + t dt = + t cos t dt = + cos = 9

20 Najděte + + t4 dt 3 Protože je + 4 = +, integrál t4 dt diverguje k + Jedná se tedy o itu Proto lze k výpočtu této itu použít l Hospitalovo pravidlo To dává + + t4 dt 3 = = 3 Najděte + + t e t dt ln/ + e t Protože integrál t použít l Hospitalovo pravidlo To dává dt diverguje k +, jedná se o itu typu Proto lze k jejímu výpočtu + + t e t dt ln/ = + e = Najděte α ft dt, + tα+ kde α > a ft je spojitá funkce na intervalu, ft Jestliže je f, integrál dt diverguje k nekonečnu Proto se v tomto případě jedná o tα+ itu typu Proto převedeme tento výraz na zlomek a dostaneme itu typu K jejímu výpočtu lze použít l Hospitalovo pravidlo Tímto způsobem dostaneme α ft dt = + tα+ + t α ft dt α α f = + α α = f α Jestliže je f =, pak ke každému ε > eistuje δ > takové, že pro každé, δ je f < ε Proto je pro < < δ + δ α t α ft dt α f dt + α t α ft dt + + δ

21 δ ε α dt + t α+ = ε α Protože tato rovnost platí pro každé ε >, je v tomto případě ita rovna α t α ft dt = + Tedy v obou případech je α ft f dt = + tα+ α Najděte definiční obor funkce f = e cosh + e 4 a její diferenciály v bodech = a = 4 Funkce je definována předpisem f = e cosh ln e +e 4 Proto je definiční obor D f této funkce určen nerovností e > Tedy D f = e, e Diferenciál funkce f, která má v bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = e cosh sinh ln e Protože v bodě = je f = 4, je df; h = 4h Bod = 4 není prvkem definičního oboru dané funkce Najděte definiční obor funkce f = a = 3 Funkce f je definována vztahem f = ep cosh e + 4e 4 cosh 7 3 tgh a její diferenciály v bodech = 3 [ 7 3 ln cosh tgh Proto je její 3 definiční obor D f =, 3 3, + Diferenciál funkce f, která má v bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = cosh 7 3 [ 3 ln cosh 3 3 Protože v bodě = je f =, je df; h = h Bod = 3 není prvkem definičního oboru funkce f Najděte definiční obor funkce f = = a = 67 3 tgh 3 3 cosh cosh + e a rovnici normál k jejímu grafu v bodech Protože je funkce f definována předpisem f = e cosh ln + e, je definiční obor této funkce určen podmínkou > Tedy D f =, Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, ve kterém je funkce f diferencovatelná, má tvar f y y =, kde f je derivace funkce f v bodě

22 V našem případě je f = cosh sinh ln + cosh + e Bod = není prvkem definičního oboru funkce f Pro = je y = a f = Tedy rovnice hledané normály je y =, neboli + y 4 = Najděte definiční obor funkce f = 3 cos + sin = π a = π a rovnici normál k jejímu grafu v bodech Funkce f je definována předpisem f = 3 cos + e lnsin Proto je její definiční obor určen vztahem sin > Tedy D f = kπ, k + π k Z Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Pro naší funkce je f = 3 sin + sin lnsin + cotg Pro bod = π π je y = a f = 3 Tedy rovnice normály je v tomto případě 3y = π, neboli 3y + 3 π = Bod = π není prvkem definičního oboru funkce f Najděte definiční obor funkce f = cos arctg 3 = π a = a rovnici tečen k jejímu grafu v bodech Funkce f je definována předpisem f = e lncos arctg Proto je její definiční obor určen 3 nerovností cos > Tedy D f = 4k π, 4k + π k Z Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Pro naši funkce je f = cos 3 lncos tg 9 + Bod = π není prvkem D f Pro bod = je y = f = a f = 3 Tedy tečna v bodě [ ; je y =, neboli 3 + 3y 3 = Najděte definiční obor funkce f = 3 + cos cosh a rovnici normál k jejímu grafu v bodech = π a = Protože je funkce f definována předpisem f = 3+e cosh lncos, je definiční obor této funkce určen vztahem cos > Tedy D f = k Z 4k 4 π, 4k + 4 Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě π

23 V našem případě je derivace funkce f v obecném bodě definičního oboru rovna f = 3 + cosh cos sinh lncos cosh tg Bod = π není prvkem D f V bodě =, je y = a f = 3 Tedy rovnice normály ke grafu funkce f v bodě [ ; je 3y =, neboli + 3y 3 = + Nalezněte ity v hraničních bodech definičního oboru funkce f = + Funkce f je definována předpisem f = = ep ln + Proto je její definiční obor D f určen nerovností + > Tedy D f =,, + + Pro ± je = + 4 = e 4 ± ± + Pro je daný výraz typu, a tedy = Pro + je daný výraz typu, a tedy = Nalezněte rovnice všech asymptot ke grafu funkce f = ln6 Funkce f je definována předpisem / ln ln6 f = ln6 = ep Proto je definiční obor této funkce určen vztahy ln6 > a Tedy D f =,, 5 Asymptoty ke grafu dané funkce budeme hledat v krajních bodech jejího definičního oboru, tj v bodech = 5, = a = / 5 Protože ln6 =, nemá funkce f v bodě = 5/ asymptotu Protože f = Protože / ln6 = +, je přímka = svislá asymptota ke grafu funkce f + ln ln6 je ep funkce f v bodě = ln ln6 = 3 ln6 =, = e = Tedy přímka y = je vodorovná asymptota ke grafu Nalezněte definiční obor funkce f = 9 3 cosh a napište rovnici normál k jejímu grafu v bodech = a = 4 cosh ln9 3 Funkce f je definována předpisem f = ep Proto je její definiční obor určen vztahy 9 3 > a Tedy D f =,, 3 3

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Elementární funkce. Polynomy

Elementární funkce. Polynomy Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!. 8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně

Více

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním tetu Fuchs, Krupkova: Matematika.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Stručný přehled učiva

Stručný přehled učiva Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 14. října 01 Materiál je v aktuální

Více

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b,

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b, Elementární funkce Mezi elementární komplení funkce se obvykle počítají tyto funkce:. Lineární funkce Lineární funkce je funkce tvaru f(z) az + b, kde a a b jsou konečná komplení čísla. Její derivace je

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Z MATEMATIKY. Tomáš Mikulenka. březen 2012

Z MATEMATIKY. Tomáš Mikulenka. březen 2012 VYBRANÉ PARTIE Z MATEMATIKY Tomáš Mikulenka březen 0 Tento výukový materiál vznikl jako součást grantového projektu Gymnázia Kroměříž s názvem Beznákladové ICT pro učitele realizovaného v letech 009 0.

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Vysoká škola polytechnická Jihlava. Obor Finance a řízení. Matematika 1,2 - Miloš Kraus

Vysoká škola polytechnická Jihlava. Obor Finance a řízení. Matematika 1,2 - Miloš Kraus Vysoká škola polytechnická Jihlava Obor Finance a řízení Matematika, - cvičení Miloš Kraus. vydání září 005 Obsah Matematická logika 5 Funkce a jejich vlastnosti 8 3 Inverzní a cyklometrické funkce 5

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Zimní semestr akademického roku 2013/2014. 3. září 2014

Zimní semestr akademického roku 2013/2014. 3. září 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 03/04 3. září 04 Předmluva ii Rozjezd

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z Diferenciální počet příklad Napište rovnici tečné roviny ke grafu funkce fx, y) = xy, která je kolmá na přímku x + = y + = 1 z Řešení: Směrový vektor dané přímky je n p =, 1, 1). Na ploše dané rovnicí

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

4.2. CYKLOMETRICKÉ FUNKCE

4.2. CYKLOMETRICKÉ FUNKCE 4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století

Více

Diferenciální rovnice separace proměnných verze 1.1

Diferenciální rovnice separace proměnných verze 1.1 Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí

Více

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1, Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,

Více

ANALYTICKÁ GEOMETRIE HYPERBOLY

ANALYTICKÁ GEOMETRIE HYPERBOLY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ANALYTICKÁ

Více

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné Evropský polytechnický institut, s.r.o.. soukromá vysoká škola na Moravě Kunovice MATEMATIKA I. Dierenciální počet unkcí jedné proměnné RNDr. Jitka Jablonická Doc. RNDr. Daniela Hricišáková, CSc. Evropský

Více

8.1. Separovatelné rovnice

8.1. Separovatelné rovnice 8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

10. Derivace, průběh funkce

10. Derivace, průběh funkce Moderní technologie ve studiu aplikované yziky CZ..07/..00/07.008 0. Derivace, průběh unkce Před mnoha lety se matematici snažili o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

Příklady z matematiky(pro ITS)

Příklady z matematiky(pro ITS) Příklady z matematikypro ITS) František Mošna Definiční obor: Zjistěte maimální definiční obor funkce:. f)=ln 2 8 9 ) + +2 Df= 2, ) 9, ).2 f)=ln 2 4 5 ) 36 2 Df= 6, ) 5,6.3 f)=ln 2 7 8 ) 00 2 Df= 0, 9)

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více