Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0."

Transkript

1 Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin + >, + a, neboli < Definiční obor funkce f = f = cos cosh + 3 a nalezněte rovnici tečen ke grafu této funkce v bodech [;? a [ π 3 ;? Funkce f je definována předpisem f = e cosh lncos + 3 Proto je její definiční obor určen vztahem cos > Tedy D f = 4k π, 4k + π k Z Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Pro naší funkce je f = cos cosh sinh lncos cosh tg + 3 Pro bod = je y = a f = 3 Tedy rovnice tečny je v tomto případě y = 3, neboli 3 y + = Bod = π 3 není prvkem definičního oboru funkce f Určete definiční obor funkce f = sin + 3 cos [ π a nalezněte rovnici normál ke grafu této funkce v bodech ;? a [ 4π 3 ;? Funkce f je definována předpisem f = e lnsin + 3 cos Proto je její definiční obor určen vztahem sin > Tedy D f = kπ, k + π k Z Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Pro naší funkce je f = sin lnsin + cotg 3 sin Pro bod = π π je y = a f = 3 Tedy rovnice normály je v tomto případě 3y = π, neboli 3y + 3 π = Bod = 4π 3 není prvkem definičního oboru funkce f Určete definiční obor funkce f = sin + Typeset by AMS-TEX

2 [ π [ 7 a nalezněte rovnici tečen ke grafu této funkce v bodech ;? a 4 π;? Funkce f je definována předpisem f = e lnsin + vztahem sin > Tedy D f = kπ, k + π k Z Proto je její definiční obor určen Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Pro naší funkce je f = sin lnsin + cotg + Pro bod = π je y = + π π 4 a f π π, neboli π y + π 4 = Bod = 7 π není prvkem definičního oboru funkce f 4 = π Tedy rovnice tečny je v tomto případě y π 4 = Určete definiční obor funkce f = sin + [ π [ 6 a nalezněte její diferenciál v bodech ;? a 5 π;? Funkce f je definována předpisem f = e lnsin + vztahem sin > Tedy D f = kπ, k + π k Z Proto je její definiční obor určen Diferenciál funkce y = f v bodě =, ve kterém má funkce f derivaci f, je lineární funkce proměnné h definovaná vztahem df ; h = f h Pro naší funkce je f = sin lnsin + cotg + Pro bod = π π π je f = Tedy diferenciál je v tomto případě df ; h = h Bod = 6 π není prvkem definičního oboru funkce f 5 Nalezněte rovnice tečen ke grafu funkce v jejích infleních bodech f = ln + Definiční obor funkce f je celá množina R První dvě derivace této funkce jsou f = + a f = + Protože f > pro, a f < pro,, +, je funkce f konvení na intervalu, a konkávní na intervalech, a, + tedy její inflení body jsou = ± Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Protože pro = je y = ln a f =, má rovnice tečny v bodě [; ln rovnici y ln =, neboli y + ln = Protože pro = je y = ln a f =, má rovnice tečny v bodě [ ; ln rovnici y ln = +, neboli + y + ln =

3 Určete definiční obor funkce f = sin + [ π [ 5 a nalezněte její diferenciál v bodech ;? a 3 π;? Protože je funkce f definována předpisem f = e lnsin +, je její definiční obor určen podmínkou sin > Je to tedy množina D f = k Z kπ, k + π Diferenciál funkce f, která má v bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = sin lnsin + cotg + π π Protože f = je df ; h = h Bod = 5 π není prvkem definičního oboru funkce f 3 Určete definiční obor funkce f = ln [ a nalezněte rovnici tečen ke grafu této funkce v bodech ;? a [ ;? Definiční obor D f funkce f = ln je určen nerovnostmi > a > Tedy D f =, Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Derivace funkce f v obecném bodě je f = + = V bodě = je y = ln 3 a f 8 = 3 Rovnice tečny ke grafu funkce f = ln v [ bodě ; ln 3 je y + ln 3 = 8, neboli 8 3y 4 3 ln 3 = 3 Bod = Určete definiční obor funkce není prvkem definičního oboru funkce f f = ln a nalezněte rovnice tečen ke grafu této funkce v bodech [;?, [;? Definiční obor funkce f je určen nerovností > Tedy D f =, 3, 3 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f = 9 3 Bod = není prvkem definičního oboru funkce f Pro = je y = ln 3 a f = 4 Tedy v tomto případě má tečna rovnici y ln = 4, 3 neboli 4 + y 4 ln 3 = 3

4 Určete definiční obor funkce f = ln [ a nalezněte rovnice tečen ke grafu této funkce v bodech ;?, [;? Definiční obor D f funkce f = ln je určen nerovnostmi > a > Tedy D f =, Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Derivace funkce f v obecném bodě je f = + = V bodě = je y = ln 3 a f 8 = 3 Rovnice tečny ke grafu funkce f = ln v [ bodě ; ln 3 je y + ln 3 = 8, neboli 8 3y 4 3 ln 3 = 3 Bod = není prvkem definičního oboru funkce f Určete definiční obor funkce f = sin + 3 cos [ π a nalezněte rovnice tečen ke grafu této funkce v bodech,?, [π,? Funkce f je definována předpisem f = e lnsin + 3 cos Proto je její definiční obor určen nerovností sin > Tedy D f = k Z kπ, k + π Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Derivace funkce f v obecném bodě jejího definičního oboru je f = sin lnsin + cotg 3 sin Pro = π π π je y = f = a f = 3 Tedy rovnice tečny v bodě 3 π, neboli 3 + y 3 π = Bod = π není prvkem definičního oboru funkce f [ π ; je y = Určete definiční obor funkce f = cos cosh + 3 a nalezněte rovnici normál ke grafu této funkce v bodech [;? a [π;? Protože je funkce f definována předpisem f = e cosh lncos +3, je definiční obor této funkce určen vztahem cos > Tedy D f = k Z 4k π, 4k + π 4

5 Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě V našem případě je derivace funkce f v obecném bodě definičního oboru rovna f = cos cosh sinh lncos cosh tg + 3 V bodě =, je y = a f = 3 Tedy rovnice normály ke grafu funkce f v bodě [ ; je 3y =, neboli + 3y 3 = Bod = π není prvkem D f Nalezněte definiční obor funkce a její diferenciál v bodech = a = 3 f = e cosh + e 4 Funkce je definována předpisem f = e cosh ln e + e 4 Proto je definiční obor D f této funkce určen nerovností e > Tedy D f = e, e Diferenciál funkce f v bodě, která má v tomto bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = e cosh sinh ln e + V bodě = je f = 4 Tedy df; h = 4h Bod = 3 není prvkem definičního oboru funkce f Určete definiční obor funkce f = 4 sin a nalezněte rovnice tečen ke grafu této funkce v bodech [ 3;?, [;? cosh e + 4e 4, Protože funkce f je definována předpisem f = e sin ln4, je její definiční obor určen nerovností 4 >, tj, Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě V našem případě je f = 4 sin cos ln4 sin 4 Bod = 3 není prvkem definičního oboru funkce f Pro bod = je y = f = a f = ln 4 Tedy rovnice tečny ke grafu funkce f v bodě [; je y = ln 4, neboli ln 4 y + = Nalezněte ity v krajních bodech definičního oboru funkce f = ln4 9 Definiční obor funkce f je určen vztahy 4 > a 9 Tedy D f =, 3 3, 3 3, 4 Čili máme najít ity v bodech = 4, = ±3 a = 5

6 ln4 4 9 = + Pro 3 se jedná o itu typu K jejímu výpočtu použijeme l Hospitalovo pravidlo To dává ln4 3 9 = 3 4 = 6 ln4 ln4 Protože = + a 3 9 =, ita v bodě = 3 neeistuje Pro se jedná o itu typu proto můžeme pro výpočet této ity použít l Hospitalovo pravidlo Z něj plyne ln4 9 = 4 = Nalezněte asymptoty ke grafu funkce f = ln Definiční obor funkce f je D f =,, + Proto budeme hledat asymptoty v bodech =, = a = + Protože =, nemá funkce f v bodě = svislou asymptotu + ln Protože = je přímka = svislou asymptotou ke grafu funkce f f = ln + + Protože Protože + + ln = f = + = +, nemá funkce f v bodě = + vodorovnou asymptotu + =, nemá funkce f v bodě = + ani šikmou asymptotu ln Nalezněte ity v krajních bodech definičního oboru funkce f = ln + Definiční obor funkce f je určen vztahy + > a Tedy D f =,,, + Čili máme najít ity v bodech =, = ± a = + ln + + = Pro se jedná o itu typu K jejímu výpočtu použijeme l Hospitalovo pravidlo To dává ln + = + = ln + ln + Protože + = + a =, ita v bodě = neeistuje Pro + se jedná o itu typu proto můžeme pro výpočet této ity použít l Hospitalovo pravidlo Z něj plyne ln + + = + Dokažte, že derivace sudé funkce je funkce lichá + = 6

7 Nechť f je sudá funkce To znamená, že pro každé D f je f = f Nechť je bod D f, f + h f ve kterém eistuje derivace funkce f, tj eistuje konečná ita = f h h Protože je funkce f sudá, platí pro takové vztah f f + h f f h f = = = h h h h f h f = = f h h Tedy pro každý bod D f je f = f, což znamená, že funkce f je lichá Napište rovnici normály ke grafu funkce f = ln rovnoběžné s přímkou p y + 3 = Definiční obor funkce f je interval D f =, + Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Tedy normála má směrnici k = f V našem případě je f = ln + Protože přímka p má směrnici k p = a normála má být rovnoběžná s touto přímkou, musí pro ovou souřadnici průsečíku normály s grafem funkce platit vztah f = ln + = Tedy souřadnice tohoto bodu jsou = e a y = e Proto je rovnice hledané normály y + e = e, neboli y 3e = Určete rovnici tečen k parabole y = +, které prochází bodem B = [; Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f = Tedy rovnice tečny, která prochází bodem [ ; y, kde y = + je y = Protože hledáme tečnu, která prochází bodem [;, musí splňovat rovnici = Její řešení jsou = + 6 a = 6 Tedy body dotyku jsou [ + 6; nebo [ 6; 7 6 Dostali jsme tedy dvě řešení Tečna, která prochází bodem [ + 6; 7+ 6, má rovnici y 7 6 = + 6 6, neboli + 6 y 3 6 = a tečna, která prochází bodem [ 6; 7 6, má rovnici y 7+ 6 = 6 + 6, neboli 6 +y +3 6 = Je dána funkce f = sin Vypočtěte f K výpočtu této derivace je výhodné použít Leibnizův vzorec n n n f g = f k g n k, k k= kde f a g jsou funkce, které mají derivace do řádu n včetně Jestliže zvolíme f = a g = sin, platí: f =, f = a f k = pro k > a pro každé k N je g 4k = g 4k+ = sin a g 4k+ = g 4k+3 = cos Z Leibnizova vzorce tedy dostáváme sin = sin 7 cos sin =

8 = 38 sin 4 cos Dokažte, že derivace liché funkce je funkce sudá Nechť f je lichá funkce To znamená, že pro každé D f je f = f Nechť je bod D f, f + h f ve kterém eistuje derivace funkce f, tj eistuje konečná ita = f h h Protože je funkce f lichá, platí pro takové vztah f f + h f f h + f = = = h h h h f h f = = f h h Tedy pro každý bod D f je f = f, což znamená, že funkce f je sudá Ve kterých bodech má graf funkce f = + 3 sin tečny rovnoběžné s osou y? Definiční obor funkce f je celá množina R Naším úkolem je najít body R, ve kterých je f + h f = ± Protože derivace funkce f, f = + h h 3 cos je pro kπ, sin /3 k Z konečná, stačí zkoumat pouze body = kπ V těchto bodech je h + 3 sinkπ + h = + k 3 sin h h h h h = + k h /3 h h /3 Protože tato ita je pro sudá k rovna + a pro lichá k rovna, jsou tečny ke grafu funkce f = + 3 sin v bodech = kπ, k Z, rovny = kπ, a tedy rovnoběžné s osou Oy Určete rovnici tečny ke grafu funkce y = 3 +, která je rovnoběžná s přímkou p y = 4 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě a je rovna směrnici této tečny V našem případě je f = 3 + Protože směrnice přímky p je k p = 4 a tato přímka má být rovnoběžná s tečnou, budeme hledat na grafu funkce y = 3 + body, pro které je f = 3 + = 4 Takto získáme dva body dotyku [; a [ ; 4 Tedy v bodě [; je rovnice tečny y = 4, neboli 4 y 4 =, a v bodě [ ; 4 je rovnice tečny y + 4 = 4 +, čili 4 y = Určete rovnici tečny ke grafu funkce y =, která je rovnoběžná s přímkou p y = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny Protože směrnice přímky y = je rovna nule, máme na grafu funkce y = f = najít body, ve kterých je f = Protože f = 4, jsou to body =, = a = Protože f = f = a f =, eistují dvě tečny s danými vlastnostmi Jejich rovnice jsou y = a y = 8

9 Určete rovnici tečny ke grafu funkce y = , která je kolmá k přímce p 6y + = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny V našem případě je derivace funkce rovna f = Protože přímka p má směrnici k = 3 a má být kolmá na hledanou tečnu, musí v bodě platit rovnost = 3 tedy = Pro toto je y = 3 a f = 3 Tedy rovnice hledané tečny je y + 3 = 3 +, neboli 3 + y + 6 = Určete rovnici tečny ke grafu funkce y = + 5, která je kolmá k dané přímce p y = + 3 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny V našem případě je f = Protože směrnice přímky p je k p = a tato přímka má být kolmá na tečnu, budeme hledat na grafu funkce y = +5 body, pro které je f = = Takto získáme bod dotyku [ 3 ; 7 4 Tedy rovnice tečny je y 7 4 = 3, neboli 4 4y + = Určete rovnici tečny ke grafu funkce y = ln, která je kolmá k přímce p y = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny V našem případě je derivace funkce rovna f = Protože přímka p má směrnici k p = a má být kolmá na hledanou tečnu, musí v bodě platit rovnost = tedy = Pro toto je y = ln a f = Tedy rovnice hledané tečny je y ln =, neboli y + ln = Napište rovnice tečen hyperboly 7 y = 4, které jsou kolmé na přímku + 4y 3 = Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě Tato derivace je rovna směrnici tečny Protože přímka má směrnici k p = a hledáme tečnu kolmou na tuto přímku, musí být směrnice tečny rovna k = Označme y = f Na dané hyperbole máme najít najít bod, ve které je y = f = Protože funkce f splňuje rovnici 7 f = 4, dostaneme jejím derivováním rovnici 4 4ff = Tedy v bodě dotyku [ ; y musí být splněny rovnice 7 4y = a 7 y = 4 Řešení této soustavy rovnic nám dá dva body dotyku [4; 7 a [ 4; 7 Tedy eistují dvě tečny s danou vlastností Je-li bod dotyku [4; 7 je rovnice tečny y 7 = 4, tj y =, a je-li bod dotyku [ 4; 7 je rovnice tečny y + 7 = + 4, tj y + = Veďte tečny ke grafu funkce y = tak, aby procházely bodem B = [; 3 9

10 Rovnice tečny ke grafu funkce y = f v bodě [ ; y, y = f, ve kterém je funkce f diferencovatelná, má tvar y y = f, kde f je derivace funkce f v bodě V našem případě je pro, y = a f = 4 Rovnice tečny tedy je y + = 4 Protože tečna má procházet bodem [; 3, musí splňovat rovnici 4 = 4 Tato rovnice má dvě řešení = ± Pro = + je y = + 8 a f + = 4 + Rovnice tečny, která se dotýká grafu funkce v tomto bodě je y 8 = 4 +, neboli 4 + y 3 8 = Pro = je y = 8 a f = 4 Rovnice tečny, která se dotýká grafu funkce v tomto bodě je y +8 = 4 +, neboli 4 y 3+8 = Určete rovnici normály ke grafu funkce y = 4 + 5, která je rovnoběžná s přímkou p + 4y 4 = Normála ke grafu funkce = f v bodě [ ; y, kde y = f, která je v tomto bodě diferencovatelná, má rovnici f y y =, kde f je derivace funkce f v bodě Její směrnice je tedy k n = f Protože přímka p má směrnici k p =, máme na grafu 4 funkce y = najít body, pro které je f = 4 Protože f = 4, eistuje pouze jeden takový bod Jeho souřadnice jsou = 4 a y = 5 Tedy rovnice hledané normály je 4y 5 = 4, neboli + 4y 4 = Určete rovnici normály ke grafu funkce y = 6 + 6, která je kolmá k dané přímce p y = Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Tedy normála má směrnici k = f V našem případě je f = 6 Protože přímka p má směrnici k p = a normála má být kolmá na tuto přímku, musí pro ovou souřadnici průsečíku normály s grafem funkce platit vztah f = 6 = Tedy souřadnice tohoto bodu jsou = 5 a y = Proto je rovnice 4 hledané normály y + 4 = 5, neboli y 4 = Určete rovnici normály ke grafu funkce y = +, která je kolmá k přímce p y = + Definiční obor funkce f je D f =, + Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Tedy normála má směrnici k = f Směrnice přímky p je k p = Protože má být normála kolmá na přímku p, musí mít směrnici k = = Protože f = k p máme na grafu funkce y = + najít bod [ ; y, ve kterém je = To je bod [; tedy rovnice hledané normály je y =, neboli y = Veďte tečny ke grafu funkce y = tak, aby procházely bodem B = [;

11 Definiční obor funkce f je D f =, 5 5, + Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f 4 = + 5 Tedy rovnice tečný, která prochází bodem [ ; y, kde y = je y = Protože hledáme tečnu, která prochází bodem [;, musí splňovat rovnici = Její řešení jsou = 3 a = 5 Tedy [ body dotyku jsou [ 3; 3 nebo 5; 3 5 Dostali jsme tedy dvě řešení Tečna, která prochází bodem [ 3; 3, má rovnici y 3 = + 3 neboli + y = a tečna, která prochází bodem + 5y = [ 5; 3 5, má rovnici y 3 5 = + 5, neboli 5 Veďte tečny ke grafu funkce y = tak, aby procházely bodem B = [ ; Definiční obor funkce f je D f =,, + Rovnice tečny ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je y y = f, kde f je derivace funkce f v bodě V našem případě je f = Tedy rovnice tečny v bodě [ ; y, kde y =, je y = Protože hledáme tečnu, která prochází bodem [ ;, musí splňovat rovnici = Tato rovnice má dvě řešení = ± Tedy body dotyku jsou [ + ; a [, Tečna, která prochází bodem [ + ;, má rovnici y + = 3 a tečna, která prochází bodem [ + ;, má rovnici y + + = Vypočtěte itu arctg 3 Protože se jedná o itu typu, lze k jejímu výpočtu použít l Hospitalova pravidla To dává arctg 3 = 3 + = 3 Vypočtěte itu π arctg +

12 Jedná se o itu typu l Hospitalova pravidla To dává Proto výraz nejprve upravíme na itu typu a použijeme π arctg = + π arctg + = + + = Vypočtěte itu + cotg Jedná se o itu typu proto výraz nejprve upravíme na podíl Platí cos sin cos = sin sin l Hospitalovo pravidlo Pomocí něj dostaneme cotg = Protože nyní již jde o itu typu, lze k jejímu výpočtu použít + cotg sin cos = = + sin sin cos = + + sin = sin = + Vypočtěte itu + e Jedná se o itu typu Ale protože + e = + e = =, je + e e e = + + Vypočtěte itu cos + Jedná se o itu typu Protože cos = ep ln cos a funkce y = e je spojitá na celém R, stačí najít itu ln cos To je ita typu proto ji upravíme na itu typu Tedy + a použijeme l Hospitalovo pravidlo Takto dostaneme ln cos ln cos y sin y = + y + y = y + y cos y = cos = e / +

13 Vypočtěte itu cotg sin + Jedná se o itu typu sin Protože cotg = e sin ln cotg a funkce y = e je spojitá na celém R, stačí najít itu sin ln cotg, což je ita typu Tu převedeme na itu + typu a použijeme l Hospitalovo pravidlo Tak dostaneme sin ln cotg ln cotg = + = + sin + tg cos = Tedy + cotg sin = e = Dokažte, že polynom P s reálnými koeficienty má tuto vlastnost: Mezi každými dvěma reálnými kořeny polynomu P leží kořen polynomu P Nechť a, <, jsou nulové body polynomu P Protože každý polynom má na celé reálné ose derivace všech řádů a P = P =, jsou na intervalu, splněny předpoklady Rollovy věty o střední hodnotě Podle ní eistuje bod, takový, že P = Nalezněte hodnotu k a interval, ve kterém platí uvedená rovnost arctg + arccotg = k Definiční obor funkce f = arctg + arccotg je celá reálná osa Protože je funkce f diferencovatelná v celém R a její derivace je f = + =, je funkce f na celém R + konstantní Protože f = arctg + arccotg = π, je arctg + arccotg = π pro každé R Nalezněte hodnotu k a interval, ve kterém platí rovnosti arctg + arctg + = k Označme f = arctg + arctg + Definiční obor této funkce je D f =,, + Diferencovatelná funkce y = f se konstantní na intervalu právě tehdy, když je na tomto intervalu f = Protože je f + = =, je funkce f konstantní na + intervalech, a, + Konstantu určíme pomocí funkční hodnoty v libovolném bodě každého z těchto intervalů Protože f = π, platí na intervalu, + rovnost arctg + arctg 4 + = π 4 Protože arctg + arctg = π, 3

14 je na intervalu, funkce arctg + arctg + = 3 4 π Nalezněte hodnotu k a interval, ve kterém platí rovnost arctg + arcsin + = k Uvažujme funkci f = arctg + arcsin Definiční obor této funkce je dán nerovností +, a tedy je to celá množina R + Diferencovatelná funkce je na intervalu konstantní právě tehdy, když je na tomto intervalu f = Derivace funkce f je f = = + + Tedy f = pro <, tj pro,, + Tedy funkce f = arctg + arcsin je na intervalech, a, + konstantní + Tuto konstantu lze na každém z těchto intervalů určit tak, že dosadíme libovolný bod příslušného intervalu Protože arctg + arcsin + + = π a arctg + arcsin + + = π je arctg + arcsin = π + pro, + arctg + arcsin = π + pro, Nalezněte hodnotu k a interval, ve kterém platí rovnost arctg arccos + = k Označme f = arctg arccos Definiční obor funkce f je určen nerovností + + Z toho plyne, že D f = R Derivace funkce f je rovna f = = + + Diferencovatelná funkce f je konstantní na intervalu právě tehdy, když je její derivace rovna nule V našem případě je f = pro, +, a tedy je na tomto intervalu rovna konstantě Protože f =, je arctg arccos = pro, + + 4

15 Vypočtěte itu sin π ln Jedná se o itu typu Proto lze k jejímu výpočtu použít l Hospitalovo pravidlo To dává sin π ln = π cos π = π Vypočtěte itu e e sin Protože se jedná o itu typu, je možné použít k výpočtu této ity l Hospitalovo pravidlo To dává e e e + e = = sin cos Vypočtěte itu sin 3 Jedná se o itu typu Proto lze použít l Hospitalovo pravidlo To dává sin cos sin 3 = 3 = 6 = 6 Vypočtěte itu ln Protože se jedná o itu typu, lze použít l Hospitalovo pravidlo To dává ln = = Vypočtěte itu tg sin 5

16 Jedná se o itu typu Proto lze k jejímu výpočtu použít l Hospitalovo pravidlo Pak dostaneme tg sin = cos cos cos = + cos cos = Vypočtěte itu Jedná se o itu typu l Hospitalovo pravidlo To dává π tg Proto výraz nejprve převedeme na ity typu a použijeme π tg = cotg π/ = π sin π/ = π Vypočtěte itu e/ Protože e / = a e / = + e y y + y = y + ey = +, e / neeistuje Vypočtěte itu sin Jedná se o itu typu Ale jestliže oba zlomky sečteme, získáme itu typu, pro jejíž výpočet již můžeme použít l Hospitalovo pravidlo takto dostaneme sin = sin sin = sin sin = cos sin = = = Vypočtěte itu e Jedná se o itu typu Proto nejprve výraz upravíme sečteme zlomky na itu typu Pak už můžeme použít l Hospitalovo pravidlo To dává e e = e = e e + e = e e + e = 6

17 Vypočtěte itu cotg Jedná se o itu typu Proto převedeme výraz na zlomek Platí cotg = cos sin = sin cos sin = sin + cos sin cos 3 = sin Hledanou itu najdeme jako součin tří it, které jsou vesměs typu Proto lze pro výpočet každé z nich použít l Hospitalovo pravidlo Tedy sin + cos sin cos cotg = 3 sin = sin = 3 = 3 Vypočtěte itu / Jedná se o itu typu Proto vyjádříme funkci pomocí eponenciály, tj napíšeme / = ln ep Protože je funkce f = e spojitá, platí / = ep ln = ep = e Vypočtěte itu + ln + Jedná se o itu typu Protože je + ln = e ln ln+ a funkce y = e je spojitá na celém R, je + ln = ep ln ln + = + + ln ln + = ep = e = + + Vypočtěte itu sin π/ tg 7

18 Funkce f je definována předpisem f = e tg lnsin Proto je její definiční obor určen podmínkou sin > a k + π Tedy D f = [ kπ, 4k + 4k + π π, k + π k Z Protože funkce y = e je spojitá v celém R, stačí najít itu tg lnsin Protože se jedná π/ o itu typu, převedeme tento výraz na itu typu a použijeme l Hospitalovo pravidlo Platí tg lnsin = lnsin π/ π/ cotg = cotg π/ sin = Proto je π/ tg sin = e = Vypočtěte itu + e e Protože se jedná o itu typu, lze k jejímu výpočtu použít l Hospitalovo pravidlo Pomocí něj dostaneme e + e = e e + e = Vypočtěte itu 3 Jedná se o itu typu Proto je možné použít l Hospitalovo pravidlo Pomocí něj dostaneme 3 = 3 ln 3 ln = ln 3 Najděte cos t dt Jedná se o itu typu proto lze k jejímu výpočtu použít l Hospitalovo pravidlo Pomocí něj dostaneme cos t dt = cos = 8

19 Najděte + arctg t dt + + Protože + arctg = π 4, integrál arctg t dt diverguje k + Jedná se tedy o itu typu Proto lze použít l Hospitalovo pravidlo To dává + arctg t dt + = + + arctg = π 4 Najděte + e t dt e t dt Protože integrály + e t dt a + k jejímu výpočtu použít l Hospitalovo pravidlo To dává + e t dt e t dt e t dt divergují do +, jedná se o itu typu Proto lze = + e e t dt e = = + e e = + e t dt e = Najděte + cos t t dt Protože pro t, platí nerovnost cos t t cos t > a integrál dt t = +, jedná se o itu t cos t dt cos t typu Jestliže píšeme + t dt = +, dostaneme itu typu Proto lze pro výpočet této ity použít l Hospitalovo pravidlo Tedy platí cos t + t dt = + t cos t dt = + cos = 9

20 Najděte + + t4 dt 3 Protože je + 4 = +, integrál t4 dt diverguje k + Jedná se tedy o itu Proto lze k výpočtu této itu použít l Hospitalovo pravidlo To dává + + t4 dt 3 = = 3 Najděte + + t e t dt ln/ + e t Protože integrál t použít l Hospitalovo pravidlo To dává dt diverguje k +, jedná se o itu typu Proto lze k jejímu výpočtu + + t e t dt ln/ = + e = Najděte α ft dt, + tα+ kde α > a ft je spojitá funkce na intervalu, ft Jestliže je f, integrál dt diverguje k nekonečnu Proto se v tomto případě jedná o tα+ itu typu Proto převedeme tento výraz na zlomek a dostaneme itu typu K jejímu výpočtu lze použít l Hospitalovo pravidlo Tímto způsobem dostaneme α ft dt = + tα+ + t α ft dt α α f = + α α = f α Jestliže je f =, pak ke každému ε > eistuje δ > takové, že pro každé, δ je f < ε Proto je pro < < δ + δ α t α ft dt α f dt + α t α ft dt + + δ

21 δ ε α dt + t α+ = ε α Protože tato rovnost platí pro každé ε >, je v tomto případě ita rovna α t α ft dt = + Tedy v obou případech je α ft f dt = + tα+ α Najděte definiční obor funkce f = e cosh + e 4 a její diferenciály v bodech = a = 4 Funkce je definována předpisem f = e cosh ln e +e 4 Proto je definiční obor D f této funkce určen nerovností e > Tedy D f = e, e Diferenciál funkce f, která má v bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = e cosh sinh ln e Protože v bodě = je f = 4, je df; h = 4h Bod = 4 není prvkem definičního oboru dané funkce Najděte definiční obor funkce f = a = 3 Funkce f je definována vztahem f = ep cosh e + 4e 4 cosh 7 3 tgh a její diferenciály v bodech = 3 [ 7 3 ln cosh tgh Proto je její 3 definiční obor D f =, 3 3, + Diferenciál funkce f, která má v bodě derivaci, je lineární funkce proměnné h definovaná vztahem df ; h = f h, kde f je derivace funkce f v bodě Derivace dané funkce je f = cosh 7 3 [ 3 ln cosh 3 3 Protože v bodě = je f =, je df; h = h Bod = 3 není prvkem definičního oboru funkce f Najděte definiční obor funkce f = = a = 67 3 tgh 3 3 cosh cosh + e a rovnici normál k jejímu grafu v bodech Protože je funkce f definována předpisem f = e cosh ln + e, je definiční obor této funkce určen podmínkou > Tedy D f =, Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, ve kterém je funkce f diferencovatelná, má tvar f y y =, kde f je derivace funkce f v bodě

22 V našem případě je f = cosh sinh ln + cosh + e Bod = není prvkem definičního oboru funkce f Pro = je y = a f = Tedy rovnice hledané normály je y =, neboli + y 4 = Najděte definiční obor funkce f = 3 cos + sin = π a = π a rovnici normál k jejímu grafu v bodech Funkce f je definována předpisem f = 3 cos + e lnsin Proto je její definiční obor určen vztahem sin > Tedy D f = kπ, k + π k Z Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě Pro naší funkce je f = 3 sin + sin lnsin + cotg Pro bod = π π je y = a f = 3 Tedy rovnice normály je v tomto případě 3y = π, neboli 3y + 3 π = Bod = π není prvkem definičního oboru funkce f Najděte definiční obor funkce f = cos arctg 3 = π a = a rovnici tečen k jejímu grafu v bodech Funkce f je definována předpisem f = e lncos arctg Proto je její definiční obor určen 3 nerovností cos > Tedy D f = 4k π, 4k + π k Z Tečna ke grafu funkce y = f v bodě [ ; y, kde y = f je dána rovnicí y y = f, kde f je derivace funkce f v bodě Pro naši funkce je f = cos 3 lncos tg 9 + Bod = π není prvkem D f Pro bod = je y = f = a f = 3 Tedy tečna v bodě [ ; je y =, neboli 3 + 3y 3 = Najděte definiční obor funkce f = 3 + cos cosh a rovnici normál k jejímu grafu v bodech = π a = Protože je funkce f definována předpisem f = 3+e cosh lncos, je definiční obor této funkce určen vztahem cos > Tedy D f = k Z 4k 4 π, 4k + 4 Rovnice normály ke grafu funkce y = f v bodě [ ; y, kde y = f, v němž má funkce f derivaci, je f y y =, kde f je derivace funkce f v bodě π

23 V našem případě je derivace funkce f v obecném bodě definičního oboru rovna f = 3 + cosh cos sinh lncos cosh tg Bod = π není prvkem D f V bodě =, je y = a f = 3 Tedy rovnice normály ke grafu funkce f v bodě [ ; je 3y =, neboli + 3y 3 = + Nalezněte ity v hraničních bodech definičního oboru funkce f = + Funkce f je definována předpisem f = = ep ln + Proto je její definiční obor D f určen nerovností + > Tedy D f =,, + + Pro ± je = + 4 = e 4 ± ± + Pro je daný výraz typu, a tedy = Pro + je daný výraz typu, a tedy = Nalezněte rovnice všech asymptot ke grafu funkce f = ln6 Funkce f je definována předpisem / ln ln6 f = ln6 = ep Proto je definiční obor této funkce určen vztahy ln6 > a Tedy D f =,, 5 Asymptoty ke grafu dané funkce budeme hledat v krajních bodech jejího definičního oboru, tj v bodech = 5, = a = / 5 Protože ln6 =, nemá funkce f v bodě = 5/ asymptotu Protože f = Protože / ln6 = +, je přímka = svislá asymptota ke grafu funkce f + ln ln6 je ep funkce f v bodě = ln ln6 = 3 ln6 =, = e = Tedy přímka y = je vodorovná asymptota ke grafu Nalezněte definiční obor funkce f = 9 3 cosh a napište rovnici normál k jejímu grafu v bodech = a = 4 cosh ln9 3 Funkce f je definována předpisem f = ep Proto je její definiční obor určen vztahy 9 3 > a Tedy D f =,, 3 3

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 9. srpna 05 Materiál je v aktuální

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Derivace a průběh funkce příklady z písemných prací

Derivace a průběh funkce příklady z písemných prací Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel.

MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel. MATEMATIKA ZIMNÍ SEMESTR 008/009 Autor: Mati neučitel. Kdo se matiku pilně učil, a jen si není jistý zadanými příklady, tomu stačí ty kousky podbarvené oranžově. Kdo najde nějakou mou chybu, o které ještě

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Návod k programu Graph, verze 4.3

Návod k programu Graph, verze 4.3 Návod k programu Graph, verze 4.3 Obsah 1 Úvod 2 2 Popis pracovní lišty a nápovědy 2 2.1 Nastavení os...................................... 2 2.2 Nápověda....................................... 3 3 Jak

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016

Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ. strana ze 36 Šárka Hošková Jaromír Kuben Pavlína Račková Vytvořeno v rámci projektu Operačního programu Rozvoje

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

1.1 Oslunění vnitřního prostoru

1.1 Oslunění vnitřního prostoru 1.1 Oslunění vnitřního prostoru Úloha 1.1.1 Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Diferenciální a integrální počet funkcí více proměnných

Diferenciální a integrální počet funkcí více proměnných Fakulta strojního inženýrství VUT v Brně 5. června 9 Diferenciální a integrální počet funkcí více proměnných RNDr. Jiří Klaška, Dr. Sbírka řešených příkladů k předmětu Matematika II pro profesní a kombinovanou

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

Maturitní okruhy z matematiky pro školní rok 2005-2006

Maturitní okruhy z matematiky pro školní rok 2005-2006 MATURITA 005-006 Gymnázium V.Hlavatého, Louny, Poděbradova 66 0.9.005 Maturitní okruhy z matematiky pro školní rok 005-006 Třída 8.A/8,.A/ V.Zlatohlávek, B. Naer. Úpravy výrazů v matematice.... Rovnice

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1- Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY

ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY Marie Polcerová Fakulta chemická, Vysoké učení technické v Brně Abstrakt: Zavedení nového samostatného povinného předmětu Počítačová

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body Urèete, kde je unkce rostoucí a kde klesající: Prùbìh unkce a) () =ln 0; e klesající ; e ; + rostoucí b) () =+ [( ; 0) [ (0; ) klesající ; ( ; ) [ (; +) rostoucí] c) () =e jj [ ( ; 0) rostoucí ; (0; +)

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více