Národníinformačnístředisko pro podporu jakosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Národníinformačnístředisko pro podporu jakosti"

Transkript

1 Národníinformačnístředisko pro podporu jakosti

2 OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král

3 Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov Shapiro -Wilk Anderson - Darling Ryan -Joiner grafické metody: Histogram Pravděpodobnostní graf Q - Q graf P - P graf

4 Histogram Histogram sestrojený na základě dostatečného počtu hodnot pocházejících z normálního rozdělení má charakteristický tvar, jehož modelem je Gaussova křivka. Příklad histogramu sestrojeného z 1 hodnot z normálního rozdělení se střední hodnotou µ= a směrodatnou odchylkou σ=3 je na následujícím obrázku.

5 Histogram ,3 19,3,,3 1,3,3 3,3,3 5,3,3 7,3,3 9,3,3 31,3,3 33,3,3 35,3,3 37,3,3 39,3,3 41,3

6 Výběry rozsahu n = 5 ze základního souboru s normálním rozdělením m = a s = 3

7 Výběry rozsahu n = 5 ze základního souboru s normálním rozdělením m = a s = 3

8 Výběry rozsahu n = 1 ze základního souboru s normálním rozdělením m = a s = 3

9 Výběry rozsahu n = ze základního souboru s normálním rozdělením m = a s = 3

10 Zhodnocení Všechny uvedené histogramy představují náhodné výběry z normálního rozdělení se střední hodnotou µ = a směrodatnou odchylkou σ = 3. Vidíme, že čím je větší rozsah výběru n, tím lépe odpovídá výběrové rozdělení, znázorněné histogramem, rozdělení v základním souboru, znázorněnému hustotou pravděpodobnosti. Při běžně používaném rozsahu n=1 nemusí být vizuální posouzení objektivní a tvar histogramu může být navíc ovlivněn volbou mezí intervalu.

11 Testy dobré shody Pomocí testů dobré shody objektivně posoudíme, zda je možno považovat předpoklad normálního rozdělení za splněný. Testovaná hypotéza H : Náhodný výběr pochází ze základního souboru s normálním rozdělením Rozlišují se dva případy: a) Model normálního rozdělení je plně specifikován, tj. jsou dány střední hodnota µ a rozptyl σ. b) Model normálního rozdělení není plně specifikován, střední hodnota a rozptyl se odhadnou z výběrových hodnot. Rozdíl mezi plně a neúplně specifikovaným modelem se projeví na rozdělení testové statistiky a tedy při rozhodování o tom, zda vypočtená hodnota testové statistiky je či není v kritickém oboru. Alternativní hypotéza a) H 1 : náhodný výběr nepochází ze základního souboru s normálním rozdělením s danými parametry µ a σ. b) H 1 : náhodný výběr nepochází ze základního souboru s normálním rozdělením

12 Chí -kvadrát test Náhodný výběr rozsahu n je rozdělen do k intervalů s četnostmi n j (j = 1,,..., k), horní meze intervalů označíme x j. Vypočteme teoretické třídní četnosti za předpokladu, že výběr pochází ze základního souboru s normálním rozdělením N(µ, σ ): Horní meze x j třídních intervalů převedeme na hodnoty normované proměnné u j Není-li model plně specifikován, použijeme místo parametru µ výběrový průměr x a místo parametru σ výběrovou směrodatnou odchylku s ; = x Pro každé j vyhledáme odpovídající hodnoty distribuční funkce normovaného normálního rozdělení φ(u j ); j µ σ,

13 Určíme teoretické relativní a absolutní třídní četnosti π j = φ(u j ) φ(u j-1 ) a n π j ; Intervaly, jejichž teoretická absolutní četnost n π j 5 sloučíme se sousedními intervaly tak, aby byla splněna podmínka n π j >5 Pro redukovaný počet tříd k vypočteme výrazy ( n ) j nπ j Jejich součtem (přes redukovaný počet tříd k ) dostaneme hodnotu testové statistiky nπ j ; χ k ( ) o nj nπ j = j= 1 nπ j

14 Kritický obor pro test normality, na hladině významnosti α, je ( ) χ χ α o ( k c ) > 1 1 o kde χ je (1-α) -kvantil rozdělení c 1 α k c 1 pro n = k -c -1 stupňů volnosti, c je počet odhadovaných parametrů U plně specifikovaného modelu je c =. Ověřujeme-li jen tvar normálního rozdělení (neúplně specifikovaný model) a parametry µ a σ odhadujeme z výběrových hodnot, je c =.

15 PŘÍKLAD 1 V následujícítabulce je demonstrován postup výpočtu testové charakteristiky χ pro náhodný výběr rozsahu n = 1, ve kterém pozorované hodnoty byly roztříděny do k = 8 intervalů. První interval je (- ; 3,94), dalších 6 intervalů má šířku h =, a poslední interval je (4,6; ). Ze 1 hodnot byl určen výběrový průměr x = 3,999 a výběrová směrodatná odchylka s =,. Vzhledem k tomu, že krajní intervaly nesplňují požadavek nπ j 5, sloučíme je se sousedními intervaly. Redukovaný počet tříd je k = 6. Pro počet stupňů volnosti ν = k -3 = 3 a pro hladinu významnosti α =,5 je kritická hodnota χ,95 (3) = 7,815. Jelikož vypočtená hodnota testové charakteristiky χ = 1,477 nespadá do kritického oboru (není větší než kritická hodnota 7,815), nemáme důvod zamítnout hypotézu o tom, že výběr pocházíz normálního rozdělení.

16 Schéma výpočtu testové statistiky chí-kvadrát horní mez třídního intervalu třídní četnosti n j u j Φ(u j ) π j n π j n π j n j (n π j -n j ) n π j 3,9-1,931,7,7,67 3,96 9-1,759,111,74 7,48 1,11 11,787 3,98 -,619,787, , ,6767,665 4, 3,73,51465,678,67837, , , 1,6974,75576,111,11133, ,149 4, 17 1,875,9119, , , ,167 4,6 5,476,97751,661 6,6145 8,8789 8,855 4,8 3,49,944 c = 1,47653

17 Kolmogorovův-Smirnovův test dobré shody H : náhodný výběr rozsahu n pochází ze základního souboru s normálním rozdělením N(µ, σ ) sdistribuční funkcí F(x) (plně specifikovaný model) Uvažujeme-li pozorování uspořádaná podle velikosti x (i), je testovou statistikou Η se zamítá, je-li x x... x n () 1 ( ) ( ) i 1 i Dn = max F( x() i ), F( x() i ) n n Dn D α, i = 1,,, n. Kritické hodnoty D α jsou tabelovány (Tab. 1)

18 Modifikovaný Kolmogorovův-Smirnovův test Nejsou-li parametry normálního rozdělení známy (neúplně specifikovaný model), nahradí se odhady. Při rozhodování se musí použít jiné kritické hodnoty (Tab. ).

19 Tab. 1 Kritické hodnoty D n (α) maximální odchylky empirické distribuční funkce od teoretické

20 Tab. Upravené kritické hodnoty dle Lilieforse Rozsah α Rozsah α výběru n,,1,5,1 výběru n,,1,5,1 4,3,6,376,413 16,176,195,13,7 5,9,319,3,397 17,171,19,7, 6,9,97,3,371 18,167,185,, 7,5,,4,351 19,163,181,197,8 8,39,5,8,333,159,176,19,3 9,7,5,74,317 5,143,159,173,1 1,17,1,,4,131,146,159,185 11,8,31,51,91,115,1,139,16 1,,,,1 1,74,8,89,14 13,193,15,,71,37,41,45,5 14,187,8,6, 9,5,,,35 15,181,1,19,54

21 PŘÍKLAD Bylo provedeno n = 1 měření zatížení vlákna do přetržení: i x i i/n (i-1)/n F(x) F(x)-(i-1)/n F(x)-i/n 1,14,83333,,188,188,37548,,166667,83333,843,11759,176 3,7,5,166667,116,54493,8 4,6,333333,5,5589,589,784 5,7,416667,333333,99,3984, ,7,5,416667,333351,83315, ,8,583333,5,35596,14494,837 8,51,666667,583333,499,95,1757 9,77,75,666667,759,34, ,751,833333,75,7441,7959, ,158,916667,833333,9648,1315, ,17 1,,916667,966679,51,331 prumer,583 max,1315,837 rozptyl,13 sm.odch, Závěr : Vzhledem k tomu, že maximální absolutní diference mezi empirickou distribučnífunkcía teoretickou distribučnífunkcínenívětší než kritická hodnota D n (α), nemáme důvod zamítnout testovanou hypotézu H : výběr pochází ze základního souboru s normálním rozdělením.

22 Grafický test Do pravděpodobnostního papíru zakreslíme průběh empirické distribuční funkce, tj. body [ x (i) ; i/n ] a přímku odpovídající průběhu odhadu distribuční funkce rozdělení N(µ, σ ) Fˆ(x). K odhadu teoretické distribuční funkce zakreslíme meze konfidenčního intervalu, tj. body [ x ; Fˆ(x) ± D n (α) ]. Vzniklé dvě křivky představují konfidenční interval distribuční funkce F(x) s konfidenční úrovní 1-α. Testovaná hypotéza H se zamítá, na hladině významnosti α, jestliže alespoň pro jednu hodnotu x empirická distribuční funkce, znázorněná na grafu body, leží vně zakresleného pásma.

23 Aplikace testu normality, pomocí pravděpodobnostního papíru

24 PŘÍKLAD pokračování: Na obrázku je vedle pravděpodobnostnístupnice y = 1 F(x) ještě stupnice u, odpovídající kvantilům normovaného normálního rozdělení N(, 1). ( Platí tedy 1 φ(u) = y.) Přímku představující odhad distribuční funkce hypotetického normálního rozdělení N( µ =,5 ; σ =,355 ) proložíme body ( x =,5 ; u = ) a ( x + s =,875 ; u = 1 ). Pro n = 1 a α =,5 je D n (α) = D 1 (,5) =, Tedy hranice zakreslené na obrázku jsou (F(x) ±,375) *1. Závěr : Ani jeden bod neleží mimo zakreslené meze, nemáme důvod zamítnout testovanou hypotézu H.

25 Testy normality v MINITABu Kolmogorov Smirnov Anderson Darling testová statistika A (A squared) hodnoty větší než kritické svědčí proti normalitě Ryan Joiner testová statistika R podobný Shapiro-Wilkově testu (viz dále) hodnoty menší než kritické svědčíproti normalitě

26 Použití p-hodnoty Na výstupu každé procedury pro statistický test je kromě hodnoty testové statistiky uvedena tzv. p-hodnota (p-value) Platí-li: p-hodnota < α, zamítneme testovanou hypotézu na hladině významnosti α.

27 Pravděpodobnostní graf v MINITABu osa x naměřené hodnoty x (i) sledované veličiny uspořádané podle velikosti osa y hodnoty empirické distribuční funkce vynášené na nelineární stupnici, vycházející z předpokladu normality y-ová souřadnice bodu odpovídá kvantilu u (i) rozdělení N(,1) červeně proložena regresní přímka Ex { } = µ + σu () i () i Normálnímu rozdělení veličiny X odpovídají vynesené body ležící v blízkosti přímky a nevykazující nápadný nelineární trend. Graf je buď doplněn výsledkem některého z uvedených testů normality nebo 95% pásem spolehlivosti.

28 Testy normality ve Statistice chí-kvadrát Kolmogorov Smirnov Shapiro-Wilk testovástatistika W čím blíže 1, tím více svědčípro normalitu

29 Grafické metody ve Statistice pravděpodobnostní graf osa x naměřené hodnoty x (i) seřazené podle velikosti osa y kvantily u (i) rozdělení N(,1)

30 Q - Q graf osa x - kvantily u (i) rozdělení N(,1) osa y - naměřené hodnoty x (i) seřazené podle velikosti vynesenými body je proložena regresní přímka z rovnice regresní přímky se odhadnou parametry

31 P - P graf osa x hodnoty teoretické distribuční funkce (lineární stupnice) osa y hodnoty empirické distribuční funkce (lineární stupnice) v grafu vyznačena přímka se směrnicí 1

32 Výhoda grafických metod Naznačují, o jaké rozdělení se ve skutečnosti jedná. I v případě, že testy vycházejí nevýznamné, může nelineární trend v grafu prozradit vhodnost jiného než normálního rozdělení. Někdy umožňují lépe posoudit, zda nepřijatelnost hypotézy o normalitě je důsledkem existence několika extrémních pozorování, nebo zda je výběrové rozdělení skutečně jiné než normální.

33 PŘÍKLAD 3 V rámci SPC se v montážním závodě kontroluje vzdálenost aktuální pozice bodu na klikovém hřídeli od základní pozice. Každý den se provedlo 5 měření, k dispozici jsou hodnoty za 5 dní. Před výpočtem indexu způsobilosti je třeba ověřit, zda lze rozdělení hodnot měřené vzdálenosti považovat za normální.

34 Příklad 3 - MINITAB Normal Probability Plot Probability,999,99,95,8,5,,5,1,1-8 Average:,44174 StDev: 3,491 N: AtoBDist 4 6 Anderson-Darling Normality Test A-Squared:,891 P-Value:, 8

35 Příklad 3 - Výsledky různých testů normality

36 Příklad 3 - MINITAB Normal Probability Plot for AtoBDist ML Estimates - 95% CI Percent ML Estimates Mean,44174 StDev 3,477 Goodness of Fit AD* 1-1 Data 1

37 Příklad 3 - Statistica Histogram (Spreadsheet1 in Workbook1 1v*15c) AtoBDist = 15**normal(x;,4417; 3,4914) 5 No of obs AtoBDist: SW-W =, , p =,79; N = 15, Mean =,4417, StdDv = 3, , Max = 8,, -1 Min -8 = -7,6; -6 D -4 =,94956, - p < n.s., Lilliefors-p <, AtoBDist

38 Příklad 3 - Statistica 3 Normal Probability Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Expected Normal Value AtoBDist: SW-W =, , p =,79 Observed Value

39 Příklad 3 - Statistica 1 Quantile-Quantile Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Distribution: Normal AtoBDist =,4417+3,488*x,1,5,5,5,75,9, Observed Value Theoretical Quantile

40 Příklad 3 - Statistica 1,4 Probability-Probability Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Distribution: Normal(,44174, 3,491) 1, Empirical cumulative distribution 1,,8,6,4,, -, -,4 -,,,,4,6,8 1, 1, Theoretical cumulative distribution

41 Příklad 4 Při elektronickém testování ozubených kol se sleduje maximální odchylka profilu od ideálního tvaru.

42 Příklad 4 - MINITAB Normal Probability Plot Probability,999,99,95,8,5,,5,1,1 Average: 77,55 StDev: 14,165 N: x Anderson-Darling Normality Test A-Squared:,455 P-Value:,

43 Příklad 4 Normal Probability Plot for x ML Estimates - 95% CI Percent ML Estimates Mean 77,55 StDev 13,839 Goodness of Fit AD*, Data

44 Příklad 4 - Výsledky různých testů normality

45 Příklad 5 5 vzorků materiálu pro operační přístroje bylo testováno na obsah kovových příměsí.

46 Příklad 5-MINITAB Normal Probability Plot,999,99,95 Probability,8,5,,5,1,1 Average: 1, StDev: 8,57185 N: x 5 35 Anderson-Darling Normality Test A-Squared: 1,76 P-Value:,

47 Příklad 5 - MINITAB Normal Probability Plot for x ML Estimates - 95% CI Percent ML Estimates Mean 1, StDev 8,39867 Goodness of Fit AD* 1, Data

48 Příklad 5 - Výsledky různých testů normality

49 Příloha vzorce 1 Anderson - Darling n 1 A = ( i 1)ln [ Φ+ i ln( 1 Φn + i 1) ] n n i= 1 Φ =Φ( u ) i () i u () i = x () i σˆ x σˆ = 1 n n i= 1 ( x i x) ( ) maximálně věrohodný odhad σ

50 Příloha vzorce Shapiro -Wilk W = ( u ) () i x() i () i () i u ( x x) u () i 1 i 3/ 8 =Φ n + 14 /

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace České vysoké učení technické v Praze Fakulta elektrotechnická Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace Životnost LED diod Autor: Joel Matějka Praha, 2012 Obsah 1 Úvod

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Výkonnost procesů v případě nenormálně rozděleného znaku kvality. Jiří Michálek

Výkonnost procesů v případě nenormálně rozděleného znaku kvality. Jiří Michálek Výkonnost procesů v případě nenormálně rozděleného znaku kvality Jiří Michálek 1 Hodnocení způsobilosti a výkonnosti výrobních procesů je prováděno především u dodavatelů do automobilového průmyslu, kde

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Zadání 11 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1: DOMÁCÍ ÚKOL

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

VŠB Technická univerzita Ostrava

VŠB Technická univerzita Ostrava VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní

Více

STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU

STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU RNDr. Jiří Michálek, CSc. Centrum pro kvalitu a spolehlivost CQR při Ústavu teorie informace a automatizace AVČR e-mail: michalek@utia.cas.cz Ing. Jan Král ISQ

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE 1 Úvod Michal Dorda, Dušan Teichmann VŠB - TU Ostrava, Fakulta strojní, Institut dopravy Seřaďovací stanice jsou železniční

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více