Národníinformačnístředisko pro podporu jakosti

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Národníinformačnístředisko pro podporu jakosti"

Transkript

1 Národníinformačnístředisko pro podporu jakosti

2 OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král

3 Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov Shapiro -Wilk Anderson - Darling Ryan -Joiner grafické metody: Histogram Pravděpodobnostní graf Q - Q graf P - P graf

4 Histogram Histogram sestrojený na základě dostatečného počtu hodnot pocházejících z normálního rozdělení má charakteristický tvar, jehož modelem je Gaussova křivka. Příklad histogramu sestrojeného z 1 hodnot z normálního rozdělení se střední hodnotou µ= a směrodatnou odchylkou σ=3 je na následujícím obrázku.

5 Histogram ,3 19,3,,3 1,3,3 3,3,3 5,3,3 7,3,3 9,3,3 31,3,3 33,3,3 35,3,3 37,3,3 39,3,3 41,3

6 Výběry rozsahu n = 5 ze základního souboru s normálním rozdělením m = a s = 3

7 Výběry rozsahu n = 5 ze základního souboru s normálním rozdělením m = a s = 3

8 Výběry rozsahu n = 1 ze základního souboru s normálním rozdělením m = a s = 3

9 Výběry rozsahu n = ze základního souboru s normálním rozdělením m = a s = 3

10 Zhodnocení Všechny uvedené histogramy představují náhodné výběry z normálního rozdělení se střední hodnotou µ = a směrodatnou odchylkou σ = 3. Vidíme, že čím je větší rozsah výběru n, tím lépe odpovídá výběrové rozdělení, znázorněné histogramem, rozdělení v základním souboru, znázorněnému hustotou pravděpodobnosti. Při běžně používaném rozsahu n=1 nemusí být vizuální posouzení objektivní a tvar histogramu může být navíc ovlivněn volbou mezí intervalu.

11 Testy dobré shody Pomocí testů dobré shody objektivně posoudíme, zda je možno považovat předpoklad normálního rozdělení za splněný. Testovaná hypotéza H : Náhodný výběr pochází ze základního souboru s normálním rozdělením Rozlišují se dva případy: a) Model normálního rozdělení je plně specifikován, tj. jsou dány střední hodnota µ a rozptyl σ. b) Model normálního rozdělení není plně specifikován, střední hodnota a rozptyl se odhadnou z výběrových hodnot. Rozdíl mezi plně a neúplně specifikovaným modelem se projeví na rozdělení testové statistiky a tedy při rozhodování o tom, zda vypočtená hodnota testové statistiky je či není v kritickém oboru. Alternativní hypotéza a) H 1 : náhodný výběr nepochází ze základního souboru s normálním rozdělením s danými parametry µ a σ. b) H 1 : náhodný výběr nepochází ze základního souboru s normálním rozdělením

12 Chí -kvadrát test Náhodný výběr rozsahu n je rozdělen do k intervalů s četnostmi n j (j = 1,,..., k), horní meze intervalů označíme x j. Vypočteme teoretické třídní četnosti za předpokladu, že výběr pochází ze základního souboru s normálním rozdělením N(µ, σ ): Horní meze x j třídních intervalů převedeme na hodnoty normované proměnné u j Není-li model plně specifikován, použijeme místo parametru µ výběrový průměr x a místo parametru σ výběrovou směrodatnou odchylku s ; = x Pro každé j vyhledáme odpovídající hodnoty distribuční funkce normovaného normálního rozdělení φ(u j ); j µ σ,

13 Určíme teoretické relativní a absolutní třídní četnosti π j = φ(u j ) φ(u j-1 ) a n π j ; Intervaly, jejichž teoretická absolutní četnost n π j 5 sloučíme se sousedními intervaly tak, aby byla splněna podmínka n π j >5 Pro redukovaný počet tříd k vypočteme výrazy ( n ) j nπ j Jejich součtem (přes redukovaný počet tříd k ) dostaneme hodnotu testové statistiky nπ j ; χ k ( ) o nj nπ j = j= 1 nπ j

14 Kritický obor pro test normality, na hladině významnosti α, je ( ) χ χ α o ( k c ) > 1 1 o kde χ je (1-α) -kvantil rozdělení c 1 α k c 1 pro n = k -c -1 stupňů volnosti, c je počet odhadovaných parametrů U plně specifikovaného modelu je c =. Ověřujeme-li jen tvar normálního rozdělení (neúplně specifikovaný model) a parametry µ a σ odhadujeme z výběrových hodnot, je c =.

15 PŘÍKLAD 1 V následujícítabulce je demonstrován postup výpočtu testové charakteristiky χ pro náhodný výběr rozsahu n = 1, ve kterém pozorované hodnoty byly roztříděny do k = 8 intervalů. První interval je (- ; 3,94), dalších 6 intervalů má šířku h =, a poslední interval je (4,6; ). Ze 1 hodnot byl určen výběrový průměr x = 3,999 a výběrová směrodatná odchylka s =,. Vzhledem k tomu, že krajní intervaly nesplňují požadavek nπ j 5, sloučíme je se sousedními intervaly. Redukovaný počet tříd je k = 6. Pro počet stupňů volnosti ν = k -3 = 3 a pro hladinu významnosti α =,5 je kritická hodnota χ,95 (3) = 7,815. Jelikož vypočtená hodnota testové charakteristiky χ = 1,477 nespadá do kritického oboru (není větší než kritická hodnota 7,815), nemáme důvod zamítnout hypotézu o tom, že výběr pocházíz normálního rozdělení.

16 Schéma výpočtu testové statistiky chí-kvadrát horní mez třídního intervalu třídní četnosti n j u j Φ(u j ) π j n π j n π j n j (n π j -n j ) n π j 3,9-1,931,7,7,67 3,96 9-1,759,111,74 7,48 1,11 11,787 3,98 -,619,787, , ,6767,665 4, 3,73,51465,678,67837, , , 1,6974,75576,111,11133, ,149 4, 17 1,875,9119, , , ,167 4,6 5,476,97751,661 6,6145 8,8789 8,855 4,8 3,49,944 c = 1,47653

17 Kolmogorovův-Smirnovův test dobré shody H : náhodný výběr rozsahu n pochází ze základního souboru s normálním rozdělením N(µ, σ ) sdistribuční funkcí F(x) (plně specifikovaný model) Uvažujeme-li pozorování uspořádaná podle velikosti x (i), je testovou statistikou Η se zamítá, je-li x x... x n () 1 ( ) ( ) i 1 i Dn = max F( x() i ), F( x() i ) n n Dn D α, i = 1,,, n. Kritické hodnoty D α jsou tabelovány (Tab. 1)

18 Modifikovaný Kolmogorovův-Smirnovův test Nejsou-li parametry normálního rozdělení známy (neúplně specifikovaný model), nahradí se odhady. Při rozhodování se musí použít jiné kritické hodnoty (Tab. ).

19 Tab. 1 Kritické hodnoty D n (α) maximální odchylky empirické distribuční funkce od teoretické

20 Tab. Upravené kritické hodnoty dle Lilieforse Rozsah α Rozsah α výběru n,,1,5,1 výběru n,,1,5,1 4,3,6,376,413 16,176,195,13,7 5,9,319,3,397 17,171,19,7, 6,9,97,3,371 18,167,185,, 7,5,,4,351 19,163,181,197,8 8,39,5,8,333,159,176,19,3 9,7,5,74,317 5,143,159,173,1 1,17,1,,4,131,146,159,185 11,8,31,51,91,115,1,139,16 1,,,,1 1,74,8,89,14 13,193,15,,71,37,41,45,5 14,187,8,6, 9,5,,,35 15,181,1,19,54

21 PŘÍKLAD Bylo provedeno n = 1 měření zatížení vlákna do přetržení: i x i i/n (i-1)/n F(x) F(x)-(i-1)/n F(x)-i/n 1,14,83333,,188,188,37548,,166667,83333,843,11759,176 3,7,5,166667,116,54493,8 4,6,333333,5,5589,589,784 5,7,416667,333333,99,3984, ,7,5,416667,333351,83315, ,8,583333,5,35596,14494,837 8,51,666667,583333,499,95,1757 9,77,75,666667,759,34, ,751,833333,75,7441,7959, ,158,916667,833333,9648,1315, ,17 1,,916667,966679,51,331 prumer,583 max,1315,837 rozptyl,13 sm.odch, Závěr : Vzhledem k tomu, že maximální absolutní diference mezi empirickou distribučnífunkcía teoretickou distribučnífunkcínenívětší než kritická hodnota D n (α), nemáme důvod zamítnout testovanou hypotézu H : výběr pochází ze základního souboru s normálním rozdělením.

22 Grafický test Do pravděpodobnostního papíru zakreslíme průběh empirické distribuční funkce, tj. body [ x (i) ; i/n ] a přímku odpovídající průběhu odhadu distribuční funkce rozdělení N(µ, σ ) Fˆ(x). K odhadu teoretické distribuční funkce zakreslíme meze konfidenčního intervalu, tj. body [ x ; Fˆ(x) ± D n (α) ]. Vzniklé dvě křivky představují konfidenční interval distribuční funkce F(x) s konfidenční úrovní 1-α. Testovaná hypotéza H se zamítá, na hladině významnosti α, jestliže alespoň pro jednu hodnotu x empirická distribuční funkce, znázorněná na grafu body, leží vně zakresleného pásma.

23 Aplikace testu normality, pomocí pravděpodobnostního papíru

24 PŘÍKLAD pokračování: Na obrázku je vedle pravděpodobnostnístupnice y = 1 F(x) ještě stupnice u, odpovídající kvantilům normovaného normálního rozdělení N(, 1). ( Platí tedy 1 φ(u) = y.) Přímku představující odhad distribuční funkce hypotetického normálního rozdělení N( µ =,5 ; σ =,355 ) proložíme body ( x =,5 ; u = ) a ( x + s =,875 ; u = 1 ). Pro n = 1 a α =,5 je D n (α) = D 1 (,5) =, Tedy hranice zakreslené na obrázku jsou (F(x) ±,375) *1. Závěr : Ani jeden bod neleží mimo zakreslené meze, nemáme důvod zamítnout testovanou hypotézu H.

25 Testy normality v MINITABu Kolmogorov Smirnov Anderson Darling testová statistika A (A squared) hodnoty větší než kritické svědčí proti normalitě Ryan Joiner testová statistika R podobný Shapiro-Wilkově testu (viz dále) hodnoty menší než kritické svědčíproti normalitě

26 Použití p-hodnoty Na výstupu každé procedury pro statistický test je kromě hodnoty testové statistiky uvedena tzv. p-hodnota (p-value) Platí-li: p-hodnota < α, zamítneme testovanou hypotézu na hladině významnosti α.

27 Pravděpodobnostní graf v MINITABu osa x naměřené hodnoty x (i) sledované veličiny uspořádané podle velikosti osa y hodnoty empirické distribuční funkce vynášené na nelineární stupnici, vycházející z předpokladu normality y-ová souřadnice bodu odpovídá kvantilu u (i) rozdělení N(,1) červeně proložena regresní přímka Ex { } = µ + σu () i () i Normálnímu rozdělení veličiny X odpovídají vynesené body ležící v blízkosti přímky a nevykazující nápadný nelineární trend. Graf je buď doplněn výsledkem některého z uvedených testů normality nebo 95% pásem spolehlivosti.

28 Testy normality ve Statistice chí-kvadrát Kolmogorov Smirnov Shapiro-Wilk testovástatistika W čím blíže 1, tím více svědčípro normalitu

29 Grafické metody ve Statistice pravděpodobnostní graf osa x naměřené hodnoty x (i) seřazené podle velikosti osa y kvantily u (i) rozdělení N(,1)

30 Q - Q graf osa x - kvantily u (i) rozdělení N(,1) osa y - naměřené hodnoty x (i) seřazené podle velikosti vynesenými body je proložena regresní přímka z rovnice regresní přímky se odhadnou parametry

31 P - P graf osa x hodnoty teoretické distribuční funkce (lineární stupnice) osa y hodnoty empirické distribuční funkce (lineární stupnice) v grafu vyznačena přímka se směrnicí 1

32 Výhoda grafických metod Naznačují, o jaké rozdělení se ve skutečnosti jedná. I v případě, že testy vycházejí nevýznamné, může nelineární trend v grafu prozradit vhodnost jiného než normálního rozdělení. Někdy umožňují lépe posoudit, zda nepřijatelnost hypotézy o normalitě je důsledkem existence několika extrémních pozorování, nebo zda je výběrové rozdělení skutečně jiné než normální.

33 PŘÍKLAD 3 V rámci SPC se v montážním závodě kontroluje vzdálenost aktuální pozice bodu na klikovém hřídeli od základní pozice. Každý den se provedlo 5 měření, k dispozici jsou hodnoty za 5 dní. Před výpočtem indexu způsobilosti je třeba ověřit, zda lze rozdělení hodnot měřené vzdálenosti považovat za normální.

34 Příklad 3 - MINITAB Normal Probability Plot Probability,999,99,95,8,5,,5,1,1-8 Average:,44174 StDev: 3,491 N: AtoBDist 4 6 Anderson-Darling Normality Test A-Squared:,891 P-Value:, 8

35 Příklad 3 - Výsledky různých testů normality

36 Příklad 3 - MINITAB Normal Probability Plot for AtoBDist ML Estimates - 95% CI Percent ML Estimates Mean,44174 StDev 3,477 Goodness of Fit AD* 1-1 Data 1

37 Příklad 3 - Statistica Histogram (Spreadsheet1 in Workbook1 1v*15c) AtoBDist = 15**normal(x;,4417; 3,4914) 5 No of obs AtoBDist: SW-W =, , p =,79; N = 15, Mean =,4417, StdDv = 3, , Max = 8,, -1 Min -8 = -7,6; -6 D -4 =,94956, - p < n.s., Lilliefors-p <, AtoBDist

38 Příklad 3 - Statistica 3 Normal Probability Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Expected Normal Value AtoBDist: SW-W =, , p =,79 Observed Value

39 Příklad 3 - Statistica 1 Quantile-Quantile Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Distribution: Normal AtoBDist =,4417+3,488*x,1,5,5,5,75,9, Observed Value Theoretical Quantile

40 Příklad 3 - Statistica 1,4 Probability-Probability Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Distribution: Normal(,44174, 3,491) 1, Empirical cumulative distribution 1,,8,6,4,, -, -,4 -,,,,4,6,8 1, 1, Theoretical cumulative distribution

41 Příklad 4 Při elektronickém testování ozubených kol se sleduje maximální odchylka profilu od ideálního tvaru.

42 Příklad 4 - MINITAB Normal Probability Plot Probability,999,99,95,8,5,,5,1,1 Average: 77,55 StDev: 14,165 N: x Anderson-Darling Normality Test A-Squared:,455 P-Value:,

43 Příklad 4 Normal Probability Plot for x ML Estimates - 95% CI Percent ML Estimates Mean 77,55 StDev 13,839 Goodness of Fit AD*, Data

44 Příklad 4 - Výsledky různých testů normality

45 Příklad 5 5 vzorků materiálu pro operační přístroje bylo testováno na obsah kovových příměsí.

46 Příklad 5-MINITAB Normal Probability Plot,999,99,95 Probability,8,5,,5,1,1 Average: 1, StDev: 8,57185 N: x 5 35 Anderson-Darling Normality Test A-Squared: 1,76 P-Value:,

47 Příklad 5 - MINITAB Normal Probability Plot for x ML Estimates - 95% CI Percent ML Estimates Mean 1, StDev 8,39867 Goodness of Fit AD* 1, Data

48 Příklad 5 - Výsledky různých testů normality

49 Příloha vzorce 1 Anderson - Darling n 1 A = ( i 1)ln [ Φ+ i ln( 1 Φn + i 1) ] n n i= 1 Φ =Φ( u ) i () i u () i = x () i σˆ x σˆ = 1 n n i= 1 ( x i x) ( ) maximálně věrohodný odhad σ

50 Příloha vzorce Shapiro -Wilk W = ( u ) () i x() i () i () i u ( x x) u () i 1 i 3/ 8 =Φ n + 14 /

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

SW podpora při řešení projektů s aplikací statistických metod

SW podpora při řešení projektů s aplikací statistických metod SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Pravděpodobnostní rozdělení v MS Excel

Pravděpodobnostní rozdělení v MS Excel Pravděpodobnostní rozdělení v MS Excel Luboš Marek Vysoká škola ekonomická v Praze, Praha Konzultace 1 Úvod Mezi statistickou obcí se často diskutuje, který statistický program je nejlepší, přičemž se

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

BAKALÁŘSKÁ PRÁCE. Lorenzova křivka

BAKALÁŘSKÁ PRÁCE. Lorenzova křivka UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Lorenzova křivka Vedoucí bakalářské práce: Mgr. Ondřej Vencálek Rok odevzdání:

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Zhodnocení dopadů inovace na studijní výsledky

Zhodnocení dopadů inovace na studijní výsledky Zhodnocení dopadů inovace na studijní výsledky Zpracoval: doc. Ing. Josef Weigel, CSc. hlavní řešitel projektu Hodnocené studijní programy: - Bakalářský studijní program Geodézie a kartografie v prezenční

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková Počítačové cvičení předmětu M6130 Výpočetní statistika Marie Budíková 013 Poděkování Tento učební text vznikl za přispění Evropského sociálního fondu a státního rozpočtu ČR prostřednictvím Operačního programu

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Použití základních typů grafu v programu EXCEL

Použití základních typů grafu v programu EXCEL Použití základních typů grafu v programu EXCEL (doplňující výukový text, únor 2013) Václav Synek 1 Použití základních typů grafu v programu EXCEL Václav Synek Graf sloupcový Graf spojnicový Graf XY bodový

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu

Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jiří Michálek Ukazatele způsobilosti a výkonnosti C p, C pk, P p, P pk byly zavedeny ve snaze popsat stav výrobního procesu,

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12 Obsah Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11 Typografická konvence použitá v knize 12 1 Vybraná témata z Excelu pro techniky 13 Vzorce a funkce pro techniky 14 Vytvoření jednoduchého vzorce

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat Organizační pokyny k přednášce Matematická statistika MS710P05 Zdeněk Hlávka (Šárka Hudecová, Michal Kulich) Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hlavka@karlin.mff.cuni.cz

Více