Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13"

Transkript

1 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test : 9, 7, 12, 6, 15, 6, 8, 4, 11, 8 Řešení 1 V tomto případě můžeme z charakteru dat předpokládat normální rozdělení obou náhodných veličin a. Budeme testovat nulovou hypotézu (výsledky obou testů jsou nezávislé proti jednostranné alternativní hypotéze (výsledky testů jsou kladně korelované. :=0, : >0 Ze zadání úlohy máme =10. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu neboli výsledky prvního testu a svislá osa pro náhodnou veličinu neboli výsledky druhého testu Korelační pole Nejprve budeme počítat výběrový korelační koeficient Pearsonův (jak bylo uvedeno výše, předpokládáme normalitu dat podle vzorce z teorie.! = " #$ %" & # " & $ Pro výpočet podle tohoto vzorce potřebujeme vypočítat průměry, výběrové rozptyly a výběrovou kovarianci podle vzorců. ' = 1 10 ( ' = 1 10 ( 1

2 Po dosazení dostaneme " # & = 1 1 (+ ', & " $ & = 1 1 (+ ', & " #$ = 1 1 (+ ',+ ', ' = ,=78 10 =7,8 ' = ,=86 10 =8,6 " # & = 1 9 /+7 7,8,& ++8 7,8, & ,8, & ++4 7,8, & ,8, & ++9 7,8, & ++6 7,8, & ++2 7,8, & ,8, & ++5 7,8, & 0 = 1 9 /+ 0,8,& ++0,2, & ++2,2, & ++ 3,8, & ++6,2, & ++1,2, & ++ 1,8, & ++ 5,8, & ++5,2, & ++ 2,8, & 0 = 1 9 /0,64+0,04+4,84+14,44+38,44+1,44+3,24+33,64+27,04+7,840 = 131,6 9 =14,62222 " $ & = 1 9 /+9 8,6,& ++7 8,6, & ,6, & ++6 8,6, & ,6, & ++6 8,6, & ++8 8,6, & ++4 8,6, & ,6, & ++8 8,6, & 0 = 1 9 /+0,4,& ++ 1,6, & ++3,4, & ++ 2,6, & ++6,4, & ++ 2,6, & ++ 0,6, & ++ 4,6, & ++2,4, & ++ 0,6, & 0 = 1 9 /0,16+2,56+11,56+6,76+40,96+6,76+0,36+21,16+5,76+0,360 = 96,4 9 =10,71111 " #$ = 1 9 /+7 7,8,+9 8,6,++8 7,8,+7 8,6,++10 7,8,+12 8,6,++4 7,8,+6 8,6, ,8,+15 8,6,++9 7,8,+6 8,6,++6 7,8,+8 8,6, ++2 7,8,+4 8,6,++13 7,8,+11 8,6,++5 7,8,+8 8,6,0 = 1 9 /+ 0,8, 0,4+0,2 + 1,6,+2,2 3,4++ 3,8, + 2,6,+6,2 6,4+1,2 + 2,6,++ 1,8, + 0,6,++ 5,8, + 4,6,+5,2 2,4++ 2,8, + 0,6,0 = 1 9 / 0,32 0,32+7,48+9,88+39,68 3,12+1,08+26,68+12,48+1,680 = 95,2 9 =10,57778 Nyní se můžeme vrátit k výpočtu výběrového Pearsonova korelačního koeficientu. Dosadíme do výše uvedeného vzorce a dostaneme 10,57778! = 14, ,71111 = 10,57778 %156,62025 =10, ,51480 =0,

3 Podle hodnoty výběrového Pearsonova korelačního koeficientu je zřejmé, že lze očekávat zamítnutí nulové hypotézy. Přesvědčíme se o tom výpočtem testové statistiky podle vzorce z teorie! 3 = 2 1! & Po dosazení 0, , , , = %1 0,84522 & 10 2= 8= 2,828427= 1 0, %0, , =4,47338 Podle teorie hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli 3 7 8& : Připomínáme, že 7 8& , označuje kvantil Studentova trozdělení o 2 stupních volnosti (ten najdeme ve statistických tabulkách. Dosadíme a dostaneme 4,47338 =4, ,306=7 8& <1 0,05 2 = Je zřejmé, že uvedená nerovnost platí. Proto na hladině 0,05 zamítáme nulovou hypotézu. Můžeme konstatovat, že na hladině významnosti 0,05 jsou výsledky testů kladně korelované. 3

4 Příklad 2 V tabulce je uvedena spotřeba alkoholu a úmrtnost na cirhózu jater a alkoholismus v některých vybraných zemích. Určete na hladině významnosti 0,05, zda úmrtnost na cirhózu jater a alkoholismus na spotřebě alkoholu závisí. Země Spotřeba alkoholu [l/osoba] Úmrtnost na cirhózu jater a alkoholismus [zemřelí na obyvatel] Finsko 3,9 3,6 Norsko 4,2 4,3 Irsko 5,6 3,4 Holandsko 5,7 3,7 Švédsko 6,0 7,2 Anglie 7,2 3,0 Belgie 10,8 12,3 Rakousko 10,9 7,0 Německo 12,3 23,7 Itálie 15,7 23,6 Francie 24,7 46,1 Řešení 2 Označme náhodnou veličinu udávající spotřebu alkoholu na osobu a náhodnou veličinu udávající počet zemřelých na cirhózu jater a alkoholismus na obyvatel. Ze vstupních dat máme 11 a z požadavku úlohy 4 0,05. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu neboli výsledky prvního testu a svislá osa pro náhodnou veličinu neboli výsledky druhého testu. V tomto případě nemůžeme předpokládat normalitu dat. Je to zřejmé hlavně pro veličinu již z tohoto obrázku. Proto nemůžeme k výpočtu použít výběrový korelační koeficient Pearsonův. V této situaci je nutné vypočítat výběrový korelační koeficient Spearmanův. Tento koeficient je nazýván koeficient pořadové korelace, protože nepracuje přímo s danými hodnotami, ale jejich pořadím. 4

5 Tabulku ze zadání upravíme tak, aby obsahovala pořadí veličin X a Y, rozdíly těchto pořadí a druhé mocniny těchto rozdílů. Dostaneme (součet obou pořadí je jen kontrolní údaj i Xi Yi Rx Ry RxRy (RxRy2 1 3,9 3, ,2 4, ,6 3, ,7 3, , , ,8 12, , ,3 23, ,7 23, ,7 46, Suma Nyní můžeme vypočítat Spearmanův výběrový korelační koeficient, který podle teorie je! > =1 6 + & 1, & Dosadíme a dostaneme 6! > = & 1, 50= =1 = , =1 0, =0, Podle teorie testové kritérium (testovou statistiku počítáme jako A = 1! > Hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli! >! > + ;4, Kritické hodnoty Spearmanova korelačního koeficientu najdeme ve statistických tabulkách. Vypočteme si nyní testovou statistiku dosazením do vzorce A = ,772727=3, ,772727=2, Tuto statistiku ovšem pro následující závěrečné porovnání vůbec nepotřebujeme. 0, =0, ,6091=! > +11;0,05, Je zřejmé, že nerovnost platí. Tedy na hladině významnosti 0,05 nulovou hypotézu zamítáme. Můžeme konstatovat, že na hladině významnosti 0,05 byla prokázána závislost mezi spotřebou alkoholu a úmrtností na cirhózu jater a alkoholismus. 5

6 Příklad 3 Byly naměřeny následující hodnoty veličin a. Na hladině významnosti 0,05 prověřte, zda jsou naměřené hodnoty kladně korelované. : 55, 55, 55, 65, 65, 65, 75, 75, 75, 85, 85, 95, 95, 95 : 3, 3.6, 4.2, 1.8, 2.4, 3, 1.8, 2.4, 3, 1.8, 2.4, 1.8, 2.4, 3 Řešení 3 Ze vstupních dat máme 14 a z požadavku úlohy 4 0,05. Nulová hypotéza předpokládá nezávislost naměřených dat, alternativní hypotéza předpokládá jejich závislost. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu a svislá osa pro náhodnou veličinu. V tomto případě nemůžeme předpokládat normalitu dat. Proto nemůžeme k výpočtu použít výběrový korelační koeficient Pearsonův. V této situaci je nutné vypočítat výběrový korelační koeficient Spearmanův. Tento koeficient je nazýván koeficient pořadové korelace, protože nepracuje přímo s danými hodnotami, ale jejich pořadím. Tabulku ze zadání upravíme tak, aby obsahovala pořadí veličin X a Y, rozdíly těchto pořadí a druhé mocniny těchto rozdílů. Dostaneme (součet obou pořadí je jen kontrolní údaj i Xi Yi Rx Ry RxRy (RxRy , , , , ,

7 i Xi Yi Rx Ry RxRy (RxRy , , , , , Suma Nyní můžeme vypočítat Spearmanův výběrový korelační koeficient, který podle teorie je! > =1 6 + & 1, & Dosadíme a dostaneme 6! > = & 1, 522= = , = =1 1, = 0, Podle teorie testové kritérium (testovou statistiku počítáme jako A = 1! > Hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli! >! > + ;4, Kritické hodnoty Spearmanova korelačního koeficientu najdeme ve statistických tabulkách. Vypočteme si nyní testovou statistiku dosazením do vzorce A = ,147253,=3, ,147253,= 0,53093 Tuto statistiku ovšem pro následující závěrečné porovnání vůbec nepotřebujeme. 0, =0, ,5341=! > +14;0,05, Je zřejmé, že nerovnost neplatí. Tedy na hladině významnosti 0,05 nulovou hypotézu nemůžeme zamítnout. Můžeme konstatovat, že na hladině významnosti 0,05 byla prokázána nezávislost naměřených dat. 7

8 Příklad 4 Bylo zjišťováno, zda u souboru chlapců je závislost mezi počtem provedených shybů a kliků. Byly zjištěny hodnoty uvedené v tabulce. Závislost testujte na hladině významnosti 0,05. shyby: 1, 3, 2, 0, 5, 6, 1, 4, 3, 5, 6, 2, 1, 1, 8 kliky: 10, 15, 15, 0, 40, 25, 7, 31, 30, 35, 41, 10, 14, 9, 64 Řešení 4 V tomto případě můžeme z charakteru dat předpokládat normální rozdělení obou náhodných veličin a. Budeme testovat nulovou hypotézu (výsledky obou testů jsou nezávislé proti jednostranné alternativní hypotéze (výsledky testů jsou kladně korelované. :0, : 0 Ze zadání úlohy máme 15 a 4 0,05. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu neboli výsledky prvního testu a svislá osa pro náhodnou veličinu neboli výsledky druhého testu. Nejprve budeme počítat výběrový korelační koeficient Pearsonův (jak bylo uvedeno výše, předpokládáme normalitu dat podle vzorce z teorie.! " #$ %" & # " & $ Pro výpočet podle tohoto vzorce potřebujeme vypočítat průměry, výběrové rozptyly a výběrovou kovarianci podle vzorců. ' 1 10 ( ' 1 10 ( 8

9 " # & = 1 1 (+ ', & " $ & = 1 1 (+ ', & " #$ = 1 1 (+ ',+ ', Pro provedení výpočtů si připravíme tabulku v MS Excel obsahující kromě hodnot náhodných veličin i jejich rozdíly od jejich průměru, druhé mocniny těchto rozdílů a součin těchto rozdílů. i X Y XPrX (XPrX2 YPrY (YPrY2 (XPrX(YPrY ,2 4,84 13, , , ,2 0,04 8, , , ,2 1,44 8, , , ,2 10,24 23, , , ,8 3,24 16, , , ,8 7,84 1, , , ,2 4,84 16, , , ,8 0,64 7, , , ,2 0,04 6, , , ,8 3,24 11, , , ,8 7,84 17, , , ,2 1,44 13, , , ,2 4,84 9, , , ,2 4,84 14, , , ,8 23,04 40, , ,48 Pruměr 3,2 23,06667 Součet 78,4 4082, ,8 Pomocí této tabulky dostaneme ' =3,2 ' =23,06667 " & # = 78,4 14 =5,6 " & $ = 4082,933 =291, " #$ = 524,8 14 =37,48571 Nyní se můžeme vrátit k výpočtu výběrového Pearsonova korelačního koeficientu. Dosadíme do výše uvedeného vzorce a dostaneme 37,48571! = %5,6 291,6381 = 37, ,173 =37, ,41254 =0, Podle hodnoty výběrového Pearsonova korelačního koeficientu je zřejmé, že lze očekávat zamítnutí nulové hypotézy. Přesvědčíme se o tom výpočtem testové statistiky podle vzorce z teorie! 3 = 2 1! & Po dosazení 9

10 0, , , = %1 0, & 15 2= 13= 1 0, , , = 3, , =8, Podle teorie hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli 3 7 8& : Připomínáme, že 7 8& , označuje kvantil Studentova trozdělení o 2 stupních volnosti (ten najdeme ve statistických tabulkách. Dosadíme a dostaneme 8, =8, ,160=7 I8& <1 0,05 2 = Je zřejmé, že uvedená nerovnost platí. Proto na hladině 0,05 zamítáme nulovou hypotézu. Můžeme konstatovat, že na hladině významnosti 0,05 jsou výsledky měření počtu shybů a počtu kliků kladně korelované. 10

11 Příklad 5 V tabulce jsou uvedeny údaje z výběrového souboru 269 studentů jisté fakulty, které jsou tříděné podle oboru studia a podle jimi subjektivně hodnocené prestiže studovaného oboru. Na hladině významnosti 0,01 prokažte závislost mezi těmito dvěma proměnnými. Obor Prestiž vysoká Prestiž průměrná Prestiž nízká Celkem A B C Celkem Řešení 5 Jedním ze zkoumaných znaků je studovaný obou, druhým je subjektivně vnímaná prestiž studovaného obou. Nulovou hypotézou je nezávislost těchto zkoumaných znaků, alternativní hypotézou je závislost zkoumaných znaků. V zadání úlohy je stanovena hladina významnosti 4 =0,01. Tato situace vede k využití takzvaného chí kvadrát testu nezávislosti v kontingenční tabulce. Tento test porovnává napozorované četnosti s očekávanými četnostmi za předpokladu nezávislosti znaků. Podle zadání máme =269, J =3, K =3 Označme L,M =1,,J,O =1,,K četnost v M=tém řádku a O=tém sloupci naší tabulky. Dále označme P součet četností v Mtém řádku a PL součet četností v Otém sloupci tabulky. Konkrétně tedy máme P =69, &P =72, QP =128 P =54, P& =130, PQ =85 Využijeme MS Excel a data si uspořádáme do tabulky Suma A B C Suma Očekávaná četnost v Mtém řádku a Otém sloupci tabulky za hypotézy nezávislosti mezi těmito dvěma znaky je R L = P PL Vypočteme jednotlivé hodnoty podle tohoto vzorce. Dostaneme tabulku Suma A 13,85 33,35 21,80 69 B 14,45 34,80 22,75 72 C 25,70 61,86 40, Suma

12 Z této tabulky můžeme počítat testovou statistiku vyjadřující míru shody mezi stejnolehlými prvky předchozích tabulek. Podle teorie budeme tuto statistiku počítat podle vzorce W V S & =(( T L R L U & L Sčítané členy si vypočteme v MS Excel ve třetí tabulce. Tyto členy pak sečteme do řádkových a sloupcových součtů, vpravo dole bude součet celkový. Dostaneme R L Suma A 7,01 0,57 9,24 16,82 B 10,73 0,02 7,72 18,46 C 19,36 0,43 18,62 38,41 Suma 37,10 1,01 35,58 73,69 V tabulce jsou již provedeny potřebné součty, takže S & =73,69 Podle teorie hypotézu nezávislosti vyšetřovaných dvou znaků na hladině 4 zamítáme, jeli S & S & +W8, +V8, +1 4, Kritické hodnoty S & testu najdeme ve statistických tabulkách. V tabulkách tedy budeme hledat hodnotu S & +Q8, +Q8, +1 0,01,=S& & & +1 0,01,=S& X +1 0,01,=13,28 Dosadíme do testovací nerovnosti a dostaneme S & =73,69 =13,28=S & +Q8, +Q8, +1 0,01, Je zřejmé, že testovací nerovnost platí. Tedy nulovou hypotézu o nezávislosti testovaných znaků na hladině 0,01 zamítáme. Na hladině významnosti 0,01 pokládáme závislost mezi studovaným oborem a úrovní jeho prestiže za prokázanou. 12

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 12 Testování hypotéz Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků) Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz

6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz 6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů.

Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů. Téma 10: Analýza závislosti dvou nominálních veličin Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů. barva očí barva vlasů světlá

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření

TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů. Neparametricke testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů) VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.

PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10. PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více