Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13"

Transkript

1 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test : 9, 7, 12, 6, 15, 6, 8, 4, 11, 8 Řešení 1 V tomto případě můžeme z charakteru dat předpokládat normální rozdělení obou náhodných veličin a. Budeme testovat nulovou hypotézu (výsledky obou testů jsou nezávislé proti jednostranné alternativní hypotéze (výsledky testů jsou kladně korelované. :=0, : >0 Ze zadání úlohy máme =10. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu neboli výsledky prvního testu a svislá osa pro náhodnou veličinu neboli výsledky druhého testu Korelační pole Nejprve budeme počítat výběrový korelační koeficient Pearsonův (jak bylo uvedeno výše, předpokládáme normalitu dat podle vzorce z teorie.! = " #$ %" & # " & $ Pro výpočet podle tohoto vzorce potřebujeme vypočítat průměry, výběrové rozptyly a výběrovou kovarianci podle vzorců. ' = 1 10 ( ' = 1 10 ( 1

2 Po dosazení dostaneme " # & = 1 1 (+ ', & " $ & = 1 1 (+ ', & " #$ = 1 1 (+ ',+ ', ' = ,=78 10 =7,8 ' = ,=86 10 =8,6 " # & = 1 9 /+7 7,8,& ++8 7,8, & ,8, & ++4 7,8, & ,8, & ++9 7,8, & ++6 7,8, & ++2 7,8, & ,8, & ++5 7,8, & 0 = 1 9 /+ 0,8,& ++0,2, & ++2,2, & ++ 3,8, & ++6,2, & ++1,2, & ++ 1,8, & ++ 5,8, & ++5,2, & ++ 2,8, & 0 = 1 9 /0,64+0,04+4,84+14,44+38,44+1,44+3,24+33,64+27,04+7,840 = 131,6 9 =14,62222 " $ & = 1 9 /+9 8,6,& ++7 8,6, & ,6, & ++6 8,6, & ,6, & ++6 8,6, & ++8 8,6, & ++4 8,6, & ,6, & ++8 8,6, & 0 = 1 9 /+0,4,& ++ 1,6, & ++3,4, & ++ 2,6, & ++6,4, & ++ 2,6, & ++ 0,6, & ++ 4,6, & ++2,4, & ++ 0,6, & 0 = 1 9 /0,16+2,56+11,56+6,76+40,96+6,76+0,36+21,16+5,76+0,360 = 96,4 9 =10,71111 " #$ = 1 9 /+7 7,8,+9 8,6,++8 7,8,+7 8,6,++10 7,8,+12 8,6,++4 7,8,+6 8,6, ,8,+15 8,6,++9 7,8,+6 8,6,++6 7,8,+8 8,6, ++2 7,8,+4 8,6,++13 7,8,+11 8,6,++5 7,8,+8 8,6,0 = 1 9 /+ 0,8, 0,4+0,2 + 1,6,+2,2 3,4++ 3,8, + 2,6,+6,2 6,4+1,2 + 2,6,++ 1,8, + 0,6,++ 5,8, + 4,6,+5,2 2,4++ 2,8, + 0,6,0 = 1 9 / 0,32 0,32+7,48+9,88+39,68 3,12+1,08+26,68+12,48+1,680 = 95,2 9 =10,57778 Nyní se můžeme vrátit k výpočtu výběrového Pearsonova korelačního koeficientu. Dosadíme do výše uvedeného vzorce a dostaneme 10,57778! = 14, ,71111 = 10,57778 %156,62025 =10, ,51480 =0,

3 Podle hodnoty výběrového Pearsonova korelačního koeficientu je zřejmé, že lze očekávat zamítnutí nulové hypotézy. Přesvědčíme se o tom výpočtem testové statistiky podle vzorce z teorie! 3 = 2 1! & Po dosazení 0, , , , = %1 0,84522 & 10 2= 8= 2,828427= 1 0, %0, , =4,47338 Podle teorie hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli 3 7 8& : Připomínáme, že 7 8& , označuje kvantil Studentova trozdělení o 2 stupních volnosti (ten najdeme ve statistických tabulkách. Dosadíme a dostaneme 4,47338 =4, ,306=7 8& <1 0,05 2 = Je zřejmé, že uvedená nerovnost platí. Proto na hladině 0,05 zamítáme nulovou hypotézu. Můžeme konstatovat, že na hladině významnosti 0,05 jsou výsledky testů kladně korelované. 3

4 Příklad 2 V tabulce je uvedena spotřeba alkoholu a úmrtnost na cirhózu jater a alkoholismus v některých vybraných zemích. Určete na hladině významnosti 0,05, zda úmrtnost na cirhózu jater a alkoholismus na spotřebě alkoholu závisí. Země Spotřeba alkoholu [l/osoba] Úmrtnost na cirhózu jater a alkoholismus [zemřelí na obyvatel] Finsko 3,9 3,6 Norsko 4,2 4,3 Irsko 5,6 3,4 Holandsko 5,7 3,7 Švédsko 6,0 7,2 Anglie 7,2 3,0 Belgie 10,8 12,3 Rakousko 10,9 7,0 Německo 12,3 23,7 Itálie 15,7 23,6 Francie 24,7 46,1 Řešení 2 Označme náhodnou veličinu udávající spotřebu alkoholu na osobu a náhodnou veličinu udávající počet zemřelých na cirhózu jater a alkoholismus na obyvatel. Ze vstupních dat máme 11 a z požadavku úlohy 4 0,05. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu neboli výsledky prvního testu a svislá osa pro náhodnou veličinu neboli výsledky druhého testu. V tomto případě nemůžeme předpokládat normalitu dat. Je to zřejmé hlavně pro veličinu již z tohoto obrázku. Proto nemůžeme k výpočtu použít výběrový korelační koeficient Pearsonův. V této situaci je nutné vypočítat výběrový korelační koeficient Spearmanův. Tento koeficient je nazýván koeficient pořadové korelace, protože nepracuje přímo s danými hodnotami, ale jejich pořadím. 4

5 Tabulku ze zadání upravíme tak, aby obsahovala pořadí veličin X a Y, rozdíly těchto pořadí a druhé mocniny těchto rozdílů. Dostaneme (součet obou pořadí je jen kontrolní údaj i Xi Yi Rx Ry RxRy (RxRy2 1 3,9 3, ,2 4, ,6 3, ,7 3, , , ,8 12, , ,3 23, ,7 23, ,7 46, Suma Nyní můžeme vypočítat Spearmanův výběrový korelační koeficient, který podle teorie je! > =1 6 + & 1, & Dosadíme a dostaneme 6! > = & 1, 50= =1 = , =1 0, =0, Podle teorie testové kritérium (testovou statistiku počítáme jako A = 1! > Hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli! >! > + ;4, Kritické hodnoty Spearmanova korelačního koeficientu najdeme ve statistických tabulkách. Vypočteme si nyní testovou statistiku dosazením do vzorce A = ,772727=3, ,772727=2, Tuto statistiku ovšem pro následující závěrečné porovnání vůbec nepotřebujeme. 0, =0, ,6091=! > +11;0,05, Je zřejmé, že nerovnost platí. Tedy na hladině významnosti 0,05 nulovou hypotézu zamítáme. Můžeme konstatovat, že na hladině významnosti 0,05 byla prokázána závislost mezi spotřebou alkoholu a úmrtností na cirhózu jater a alkoholismus. 5

6 Příklad 3 Byly naměřeny následující hodnoty veličin a. Na hladině významnosti 0,05 prověřte, zda jsou naměřené hodnoty kladně korelované. : 55, 55, 55, 65, 65, 65, 75, 75, 75, 85, 85, 95, 95, 95 : 3, 3.6, 4.2, 1.8, 2.4, 3, 1.8, 2.4, 3, 1.8, 2.4, 1.8, 2.4, 3 Řešení 3 Ze vstupních dat máme 14 a z požadavku úlohy 4 0,05. Nulová hypotéza předpokládá nezávislost naměřených dat, alternativní hypotéza předpokládá jejich závislost. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu a svislá osa pro náhodnou veličinu. V tomto případě nemůžeme předpokládat normalitu dat. Proto nemůžeme k výpočtu použít výběrový korelační koeficient Pearsonův. V této situaci je nutné vypočítat výběrový korelační koeficient Spearmanův. Tento koeficient je nazýván koeficient pořadové korelace, protože nepracuje přímo s danými hodnotami, ale jejich pořadím. Tabulku ze zadání upravíme tak, aby obsahovala pořadí veličin X a Y, rozdíly těchto pořadí a druhé mocniny těchto rozdílů. Dostaneme (součet obou pořadí je jen kontrolní údaj i Xi Yi Rx Ry RxRy (RxRy , , , , ,

7 i Xi Yi Rx Ry RxRy (RxRy , , , , , Suma Nyní můžeme vypočítat Spearmanův výběrový korelační koeficient, který podle teorie je! > =1 6 + & 1, & Dosadíme a dostaneme 6! > = & 1, 522= = , = =1 1, = 0, Podle teorie testové kritérium (testovou statistiku počítáme jako A = 1! > Hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli! >! > + ;4, Kritické hodnoty Spearmanova korelačního koeficientu najdeme ve statistických tabulkách. Vypočteme si nyní testovou statistiku dosazením do vzorce A = ,147253,=3, ,147253,= 0,53093 Tuto statistiku ovšem pro následující závěrečné porovnání vůbec nepotřebujeme. 0, =0, ,5341=! > +14;0,05, Je zřejmé, že nerovnost neplatí. Tedy na hladině významnosti 0,05 nulovou hypotézu nemůžeme zamítnout. Můžeme konstatovat, že na hladině významnosti 0,05 byla prokázána nezávislost naměřených dat. 7

8 Příklad 4 Bylo zjišťováno, zda u souboru chlapců je závislost mezi počtem provedených shybů a kliků. Byly zjištěny hodnoty uvedené v tabulce. Závislost testujte na hladině významnosti 0,05. shyby: 1, 3, 2, 0, 5, 6, 1, 4, 3, 5, 6, 2, 1, 1, 8 kliky: 10, 15, 15, 0, 40, 25, 7, 31, 30, 35, 41, 10, 14, 9, 64 Řešení 4 V tomto případě můžeme z charakteru dat předpokládat normální rozdělení obou náhodných veličin a. Budeme testovat nulovou hypotézu (výsledky obou testů jsou nezávislé proti jednostranné alternativní hypotéze (výsledky testů jsou kladně korelované. :0, : 0 Ze zadání úlohy máme 15 a 4 0,05. Obrázek nám představuje data v grafické podobě. Vodorovná osa je pro náhodnou veličinu neboli výsledky prvního testu a svislá osa pro náhodnou veličinu neboli výsledky druhého testu. Nejprve budeme počítat výběrový korelační koeficient Pearsonův (jak bylo uvedeno výše, předpokládáme normalitu dat podle vzorce z teorie.! " #$ %" & # " & $ Pro výpočet podle tohoto vzorce potřebujeme vypočítat průměry, výběrové rozptyly a výběrovou kovarianci podle vzorců. ' 1 10 ( ' 1 10 ( 8

9 " # & = 1 1 (+ ', & " $ & = 1 1 (+ ', & " #$ = 1 1 (+ ',+ ', Pro provedení výpočtů si připravíme tabulku v MS Excel obsahující kromě hodnot náhodných veličin i jejich rozdíly od jejich průměru, druhé mocniny těchto rozdílů a součin těchto rozdílů. i X Y XPrX (XPrX2 YPrY (YPrY2 (XPrX(YPrY ,2 4,84 13, , , ,2 0,04 8, , , ,2 1,44 8, , , ,2 10,24 23, , , ,8 3,24 16, , , ,8 7,84 1, , , ,2 4,84 16, , , ,8 0,64 7, , , ,2 0,04 6, , , ,8 3,24 11, , , ,8 7,84 17, , , ,2 1,44 13, , , ,2 4,84 9, , , ,2 4,84 14, , , ,8 23,04 40, , ,48 Pruměr 3,2 23,06667 Součet 78,4 4082, ,8 Pomocí této tabulky dostaneme ' =3,2 ' =23,06667 " & # = 78,4 14 =5,6 " & $ = 4082,933 =291, " #$ = 524,8 14 =37,48571 Nyní se můžeme vrátit k výpočtu výběrového Pearsonova korelačního koeficientu. Dosadíme do výše uvedeného vzorce a dostaneme 37,48571! = %5,6 291,6381 = 37, ,173 =37, ,41254 =0, Podle hodnoty výběrového Pearsonova korelačního koeficientu je zřejmé, že lze očekávat zamítnutí nulové hypotézy. Přesvědčíme se o tom výpočtem testové statistiky podle vzorce z teorie! 3 = 2 1! & Po dosazení 9

10 0, , , = %1 0, & 15 2= 13= 1 0, , , = 3, , =8, Podle teorie hypotézu nezávislosti veličin a na hladině 4 zamítáme, jeli 3 7 8& : Připomínáme, že 7 8& , označuje kvantil Studentova trozdělení o 2 stupních volnosti (ten najdeme ve statistických tabulkách. Dosadíme a dostaneme 8, =8, ,160=7 I8& <1 0,05 2 = Je zřejmé, že uvedená nerovnost platí. Proto na hladině 0,05 zamítáme nulovou hypotézu. Můžeme konstatovat, že na hladině významnosti 0,05 jsou výsledky měření počtu shybů a počtu kliků kladně korelované. 10

11 Příklad 5 V tabulce jsou uvedeny údaje z výběrového souboru 269 studentů jisté fakulty, které jsou tříděné podle oboru studia a podle jimi subjektivně hodnocené prestiže studovaného oboru. Na hladině významnosti 0,01 prokažte závislost mezi těmito dvěma proměnnými. Obor Prestiž vysoká Prestiž průměrná Prestiž nízká Celkem A B C Celkem Řešení 5 Jedním ze zkoumaných znaků je studovaný obou, druhým je subjektivně vnímaná prestiž studovaného obou. Nulovou hypotézou je nezávislost těchto zkoumaných znaků, alternativní hypotézou je závislost zkoumaných znaků. V zadání úlohy je stanovena hladina významnosti 4 =0,01. Tato situace vede k využití takzvaného chí kvadrát testu nezávislosti v kontingenční tabulce. Tento test porovnává napozorované četnosti s očekávanými četnostmi za předpokladu nezávislosti znaků. Podle zadání máme =269, J =3, K =3 Označme L,M =1,,J,O =1,,K četnost v M=tém řádku a O=tém sloupci naší tabulky. Dále označme P součet četností v Mtém řádku a PL součet četností v Otém sloupci tabulky. Konkrétně tedy máme P =69, &P =72, QP =128 P =54, P& =130, PQ =85 Využijeme MS Excel a data si uspořádáme do tabulky Suma A B C Suma Očekávaná četnost v Mtém řádku a Otém sloupci tabulky za hypotézy nezávislosti mezi těmito dvěma znaky je R L = P PL Vypočteme jednotlivé hodnoty podle tohoto vzorce. Dostaneme tabulku Suma A 13,85 33,35 21,80 69 B 14,45 34,80 22,75 72 C 25,70 61,86 40, Suma

12 Z této tabulky můžeme počítat testovou statistiku vyjadřující míru shody mezi stejnolehlými prvky předchozích tabulek. Podle teorie budeme tuto statistiku počítat podle vzorce W V S & =(( T L R L U & L Sčítané členy si vypočteme v MS Excel ve třetí tabulce. Tyto členy pak sečteme do řádkových a sloupcových součtů, vpravo dole bude součet celkový. Dostaneme R L Suma A 7,01 0,57 9,24 16,82 B 10,73 0,02 7,72 18,46 C 19,36 0,43 18,62 38,41 Suma 37,10 1,01 35,58 73,69 V tabulce jsou již provedeny potřebné součty, takže S & =73,69 Podle teorie hypotézu nezávislosti vyšetřovaných dvou znaků na hladině 4 zamítáme, jeli S & S & +W8, +V8, +1 4, Kritické hodnoty S & testu najdeme ve statistických tabulkách. V tabulkách tedy budeme hledat hodnotu S & +Q8, +Q8, +1 0,01,=S& & & +1 0,01,=S& X +1 0,01,=13,28 Dosadíme do testovací nerovnosti a dostaneme S & =73,69 =13,28=S & +Q8, +Q8, +1 0,01, Je zřejmé, že testovací nerovnost platí. Tedy nulovou hypotézu o nezávislosti testovaných znaků na hladině 0,01 zamítáme. Na hladině významnosti 0,01 pokládáme závislost mezi studovaným oborem a úrovní jeho prestiže za prokázanou. 12

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10 MÍRY STATISTICKÉ VAZBY, VÝBĚROVÁ ŠETŘENÍ, STATISTICKÁ ANALÝZA DOTAZNÍKOVÝCH DAT Obsah 1 Statistická data 1 1.1 Úvod.......................................... 1 1. Data...........................................

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Aktivita A 0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení 1/62 Aktivita A0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Datum

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION

INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION VLIV INFORMATIVNÍ TABULE NA ZMĚNU RYCHLOSTI VE VYBRANÉ LOKALITĚ INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION Martin Lindovský 1 Anotace: Článek popisuje měření prováděné na

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO RNDr. Jana Hrubá Katedra matematických metod v ekonomice (K151) Institut inovace vzdělávání (K167) Ekonomická fakulta

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více