15. T e s t o v á n í h y p o t é z

Rozměr: px
Začít zobrazení ze stránky:

Download "15. T e s t o v á n í h y p o t é z"

Transkript

1 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů: Parametrické testy jsou testy o hodnotách parametrů rozdělení ze kterého je proveden náhodný výběr. Neparametrické testy jsou testy o typu rozdělení shodě rozdělení symetrii rozdělení. Testování provádíme na základě funkce náhodného výběru statistiky jejíž rozdělení je známé a rozhodnutí činíme na základě hodnot této statistiky. Strategie testování. 1. Na základě hodnot náhodného výběru a charakteru úlohy zvolíme: nulovou hypotézu H 0 a alternativní hypotézu H 1 kterou příjímáme v případě odmítnutí nulové hypotézy.. Volíme testovací kritérium. Vybereme statistiku funkci náhodného výběru jejíž rozdělení známe. 3. Stanovíme hladinu významnosti testu jako hodnotu α číslo α je blízké nule. Obvykle z intervalu (0 01; 0 1). 4. Na základě hodnoty hladiny stanovíme kritický obor testu kdy v případě že zvolená statistika má hodnotu z kritického oboru odmítneme nulovou hypotézu H 0 a příjmeme alternativní hypotézu H 1. Chyby testu. Je-li T testovací statistika α je hladina významnosti testu a je kritický obor testu pak při rozhodovaní nastanou následující situace. S k u t e č n o s t H 0 H 1 H 0 T / T / správně chyba. druhu β H 1 T T chyba 1. druhu α správně Stanovení kritického oboru. Požadujeme aby chyba 1. druhu kdy odmítneme nulovou hypotézu H 0 ačkoliv platí byla menší než α. K tomu stačí aby byl kritický obor doplňkem k (1 α)100% intervalu spolehlivosti pro testovaný parametr rozdělení. Chybu. druhu můžeme pouze odhadnout. Je-li zvolené číslo α příliš malé může být chyba. druhu velká. Znázorníme si situaci na obrázku. Tady bude obrázek Testy o parametrech rozdělení Test o střední hodnotě jednovýběrový t-test. Předpokládáme X 1 X... X n je náhodný výběr z normálního rozdělení N(µ; σ ). Jako odhad střední hodnoty µ použijeme výběrový průměr X a jako odhad rozptylu σ použijeme výběrový rozptyl S. a) Testujeme nulovou hypotézu H 0 : µ = µ 0 proti alternativní hypotéze H 1 : µ µ 0. Za testovou statistiku volíme T = X µ 0 n S 89

2 o které je známo že má Studentovo t(n 1) rozdělení. Kritickým oborem je = {T ; T > t 1 α (n 1)} doplněk k (1 α)100% intervalu spolehlivosti pro parametr µ. Při této volbě je chyba 1. druhu menší než α. To znamená že ve 100α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu ačkoliv neplatí. Situace je znázorněná na obrázku. 0 t 1 α (n 1) Obdobně provádíme test jednostranných hypotéz: b) H 0 : µ µ 0 H 1 : µ > µ 0 pak 0 = {T ; T > t 1 α (n)}; t 1 α (n 1) c) H 0 : µ µ 0 H 1 : µ < µ 0 pak = {T ; T < t α (n)}. t α (n 1) 0 Kritické hodnoty testu. Krajní body intervalů které tvoří kritické obory se nazývají kritické hodnoty testu. Označují se symbolem t α ačkoliv jsou to 1 α kvantily. Při práci s tabulkami je třeba dávat pozor jak je přesně kritická hodnota definována. V záhlaví tabulky je toto vždy uvedeno. Poznamenejme že pro rozsahy výběru n 30 můžeme nahradit kvantily či kritické hodnoty Studentova t rozdělení hodnotami z normovaného normálního rozdělení Test o rozptylu normálního rozdělení. Pro náhodný výběr X 1 X... X n je náhodný výběr z normálního rozdělení N(µ; σ ) hledáme hodnotu rozptylu σ. Jako jeho odhad použijeme výběrový rozptyl S. a) Testujeme nulovou hypotézu H 0 : σ = σ0 proti alternativní hypotéze H 1 : σ σ0. Za testovou statistiku volíme (n 1)S V = σ0 o které je známo že má χ (n 1) rozdělení. Kritickým oborem je = {V ; V < χ α (n 1) nebo V > χ 1 α (n 1)} doplněk k (1 α)100% intervalu spolehlivosti pro parametr σ. Při této volbě je chyba 1. druhu menší než α. To znamená že ve 100α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu ačkoliv neplatí. Situace je znázorněná na obrázku. 90

3 0 χ α (n 1) χ 1 α (n 1) 0 Obdobně provádíme test jednostranných hypotéz: b) H 0 : σ σ 0 H 1 : σ > σ 0 pak = {V ; V > χ 1 α(n 1)}; χ 1 α (n 1) c) H 0 : σ σ 0 H 1 : σ < σ 0 pak = {V ; V < χ α(n 1)}. 0 χ α(n 1) Kritické hodnoty testu. Krajní body intervalů které tvoří kritické obory se nazývají kritické hodnoty testu. Označují se symbolem χ α ačkoliv jsou to 1 α kvantily. Při práci s tabulkami je třeba dávat pozor jak je přesně kritická hodnota definována. V záhlaví tabulky je toto vždy uvedeno Test pro parametr δ exponenciálního rozdělení Exp(0; δ). Pro náhodný výběr X 1 X... X n z exponenciálního rozdělení Exp(0; δ) hledáme hodnotu parametru δ. Testujeme nulovou hypotézu H 0 : δ = δ 0 proti alternativě H 1 : δ δ 0. Za testovou statistiku volíme T = nx δ 0 která má rozdělení χ (n). Kritickým oborem je = {V ; V < χ α (n 1) nebo V > χ 1 α (n 1)} doplněk k (1 α)100% intervalu spolehlivosti pro parametr δ Test o rovnosti středních hodnot. Předpokládáme že X 1 X... X n je náhodný výběr z normálního rozdělení N(µ 1 ; σ1 ) a Y 1 Y... Y m je náhodný výběr z normálního rozdělení N(µ ; σ ). Jako odhady středních hodnot µ 1 a µ použijeme výběrové průměry X a Y a jako odhady rozptylů σ1 a σ použijeme výběrové rozptyly SX a S Y. Předpokládáme že jsou výběry nezávislé a že se rozptyly rovnají. Testujeme nulovou hypotézu H 0 : µ 1 µ = obvykle = 0 proti alternativní hypotéze H 1 : µ 1 µ. A) Dvouvýběrový t-test. Za testovou statistiku volíme X Y (µ 1 µ ) nm(n + m ) T = (n 1)SX + (m 1)S n + m Y 91

4 o které je známo že má Studentovo t(n + m ) rozdělení. Kritickým oborem je = {T ; T > t 1 α (n + m )} doplněk k (1 α)100% intervalu spolehlivosti pro parametr. Při této volbě je chyba 1. druhu menší než α. To znamená že ve 100α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu ačkoliv neplatí. Porušení normality výběru se ve výsledcích testů výrazněji neprojeví. Shodu rozptylů před výpočtem ověříme testem pro jejich rovnost. Pokud nám test pro rovnost rozptylů dá negativní výsledek použijeme Cochranův-Coxův test nebo neparametrický dvouvýběrový Wilcoxonův test. B) Cochranův-Coxův test volíme v případě že není splněn předpoklad o rovnosti rozptylů. Za testovou statistiku volíme Kritickým oborem je T = X Y S = v X + v Y v X = S X S n v Y = S Y m. = {T ; T > t } t = v Xt n 1 (α) + v Y t m 1 (α) v X + v Y kde t k (α) je kritická hodnota jednovýběrového t testu. Tento test má ještě některé jiné varianty které pro menší rozsahy výběrů dávají poněkud jiné kritické obory. Uvedeme si na ukázku dvě z nich. C) Satterthwaite (1946). Kritickým oborem je = {T ; T > t f (α)} f = kde t k (α) je kritická hodnota jednovýběrového t testu. D) Welch (1947). Kritickým oborem je = {T ; T > t h (α)} h = kde t k (α) je kritická hodnota jednovýběrového t testu. S 4 v X n 1 + v Y m 1 S 4 v X n + v Y m Test o rovnosti rozptylů F-test. Předpokládáme že X 1 X... X n je náhodný výběr z normálního rozdělení N(µ 1 ; σ1 ) a Y 1 Y... Y m je náhodný výběr z normálního rozdělení N(µ ; σ ). Jako odhady středních hodnot µ 1 a µ použijeme výběrové průměry X a Y a jako odhady rozptylů σ1 a σ použijeme výběrové rozptyly SX a S Y. Předpokládáme že jsou náhodné výběry nezávislé. Testujeme nulovou hypotézu H 0 : σ1 = σ proti alternativní hypotéze H 1 : σ1 σ. 9

5 Jako výběr X i označíme ten pro který je SX > S Y. Za testovou statistiku volíme F = S X SY o které je známo že má F n 1m 1 rozdělení. Kritickým oborem je = {F ; F > F n 1m 1 (α) } kde F n 1m 1 (α) je kritická hodnota z tabulek. Poznamenejme že při této volbě označení výběrů vyjde vždy hodnota testovací statistiky větší než jedna. Kritický obor je tedy volen tak že tento poměr nesmí přesáhnout kritickou hodnotu. Pro obecnou situaci by měl kritický obor ještě část hodnot blízkých nule. To ve zvolené variantě testu ale nemůže nastat. Testy ve statistických softwarových produktech předpokládají volbu této varianty a testují pouze překročení horní kritické hodnoty. Při této volbě je chyba 1. druhu menší než α. To znamená že ve 100α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu ačkoliv neplatí. Neparametrické testy V neparametrických testech má hypotéza charakter tvzení o vlastnostech rozdělení které nejsou odvozeny od hodnot parametrů. Uvedeme některé z nich Znaménkový test je testem o mediánu rozdělení. Používáme jej jako velice jednoduchou variantu testu na symetrii rozdělení kdy by se měl medián rovnat střední hodnotě. Předpokládáme že X 1 X... X n je náhodný výběr ze spojitého rozdělení jehož medián je x 05 = x. Testujeme nulovou hypotézu H 0 : x = x 0 proti alternativě H 1 : x x 0. Označme si Y i = X i x 0. Pokud je nulová hypotéza platná pak by měl být počet kladných a záporných hodnot souboru Y i stejný. Označíme-li Y počet kladných hodnot v souboru Y i je pak Y realizací náhodné veličiny která má binomické rozdělení Bi(n 1 ). Ta nabývá hodnot z množiny { n} a hodnoty blízké nule a n se vyskytují s velmi malou pravděpodobností. Kritický obor testu je = {Y ; Y k 1 nebo Y k } kde hodnoty k 1 a k nalezneme v tabulkách. Pro zvolenou hladinu testu je nalezneme tak že je k 1 největší z hodnot a k je nejmenší z hodnot pro které platí P (Y k 1 ) α P (Y k ) α jestliže má Y zmiňované binomické rozdělení Bi(n 1 ). Pokud má výběr větší rozsah n > 36 můžeme nahradit binomické rozdělení Bi(n 1 ) normálním rozdělením N( n n 4 ) která mají shodné střední hodnoty n a rozptyly n 4. Potom má náhodná veličina U = Y n n = Y n n normované normální rozdělení N(0; 1). Kritický obor je roven = {U; U u(α) } 93

6 kde u(α) je kritická hodnota pro normální rozdělení kterou nalezneme z tabulek. Poznamenejme že je tato kritická hodnota u(α) = u 1 α rovna 1 α kvantil normovaného normálního rozdělení. Snadno odvodíme i jednostranné varianty testu. Test má poměrně malou sílu a k věrohodnotnějšímu výsledku je potřeba poměrně velký rozsah náhodného výběru Jednovýběrový Wilcoxonův test je testem symetrie rozdělení. Testujeme symetrii rozdělení vzhledem k hodnotě x 0 tedy skutečnost že pro hustotu či pravděpodobnostní funkci platí f(x x 0 ) = f(x + x 0 ). Nulovou hypotézu zapisujeme ve tvaru podmínky pro medián x 05 = x : H 0 : x = x 0 proti alternativě H 1 : x x 0. Pro náhodný výběr X 1 X... X n utvoříme soubor Y i = X i x 0 ve kterém vypustíme případné nulové hodnoty. Hodnoty Y i uspořádáme podle velikosti a označíme R i + jejich pořadí. Nyní je S + = R i + S = R i +. Y i >0 Y i <0 Poznamenejme že S + + S = 1 n(n + 1). Pokud je rozdělení symetrické budou se vyskytovat kladné a záporné hodnoty souměrně kolem hodnoty x 0 tedy součty pořadí kladných a záporných hodnot se od sebe budou málo lišit. Kritický obor testu je stanoven jako : min(s + S ) < w(α) kde w(α) je kritická hodnota testu kterou nalezneme v tabulkách. Je-li splněna podmínka pro kritický obor zamítneme nulovou hypotézu že rozdělení je symetrické. Poznamenejme že pro náhodné veličiny S + a S je E(S + ) = E(S ) = 1 4 n(n + 1) a D(S+ ) = D(S ) = 1 n(n + 1)(n + 1). 4 Pro větší hodnoty rozsahu výběru nahradíme rozdělení rozdělením normálním tedy skutečností že má náhodná veličina U = S + 1 4n(n + 1) 1 4n(n + 1)(n + 1) normované normální rozdělení N(0; 1). Kritický obor testu je pak = {U; U > u(α) } kde u α je kritická hodnota testu pro normální rozdělení která je rovna u(α) = u 1 α kvantilu normovaného normálního rozdělení Dvouvýběrový Wilcoxonův test slouží k porovnání výběrů kdy testujeme hypotézu že jsou oba výběry ze stejného rozdělení. Předpokládáme že náhodný výběr {X 1 X... X n } je výběrem z rozdělení s distribuční funkcí F a náhodný výběr {Y 1 Y... Y m } je výběrem z rozdělení s distribuční funkcí G. Testujeme hypotézu H 0 : F = G proti alternativě H 1 : F G. Test je založen na skutečnosti že pokud jsou obě rozdělení stejná pak se v obou výběrech budou vyskytovat hodnoty shodné velikosti ve stejném počtu. 94

7 Algoritmus testu: 1. Vytvoříme sdružený soubor {Z 1 Z... Z n+m } = {X 1 X... X n } {Y 1 Y... Y m }.. Stanovíme pořadí prvků souboru který uspořádáme podle velikosti přičemž prvkům které mají stejnou velikost přiřadíme průměr jejich pořadí. Označme T 1 je součet pořadí prvků z prvního souboru; T je součet pořadí prvků z druhého souboru. Poznamenejme že T 1 + T = 1 (n + m)(n + m + 1). 3. Položme U 1 = nm + 1 n(n + 1) T 1 a U = nm + 1 m(m + 1) T. (U 1 + U = nm.) Testovací kritérium: Kritický obor : min{u 1 U } w(α) kde kritickou hodnotu w(α) testu nalezneme v tabulkách. Poznámka: Pořadí souborů volíme tak aby n m tabulky bývají pro rozsahy m 0 5 n 30. Pro větší rozsahy výběrů využíváme skutečnosti že za platnosti hypotézy H 0 je E(U 1 ) = E(U ) = 1 nm a D(U 1) = D(U ) = 1 nm(n + m + 1). 1 Rozdělení obou veličin můžeme pak považovat za normální a tedy náhodná veličina U = U 1 1 nm 1 1nm(n + m)(n + m + 1) má normované normální rozdělení N(); 1). Kritický obor testu je = {U; U > u(α)} kde u(α) je kritická hodnota pro normální rozdělení tedy u 1 α kvantil normálního rozdělení. Poznámka. Test je citlivý na posun tedy na situaci kdy je F (x) = G(x ). Pro situace kdy se soubory liší spíše rozptylem či tvarem je doporučen Kolmogorovův-Smirnovův test Kolmogorovův-Smirnovův test. Nejprve popíšeme empirickou distribuční funkci která se v testu používá. Je-li {X 1 X... X n } náhodný výběr z rozdělení které má distribuční funkci F pak empirickou distribuční funkcí nazýváme funkci F n která je definována předpisem: F n (x) = 1 n 0 x < Xi ξ i (x) kde ξ i (x) = n 1 x X i. Potom je lim F n(x) = F (x) x R. n Poznámka. Empirická distribuční funkce je po úsecích konstantní a má skoky velikosti 1 v bodech x = X i 1 i n. Znázorníme si průběh empirické distribuční funkce pro náhodný výběr pro který platí: X 1 < X < X 3 = X 4 < X 5. 95

8 y F 5 (x) X 1 X X 3 = X 4 X5 x Obr Předpokládáme že náhodný výběr {X 1 X... X n } je výběrem z rozdělení s distribuční funkcí F a náhodný výběr {Y 1 Y... Y m } je výběrem z rozdělení s distribuční funkcí G. Testujeme hypotézu H 0 : F = G proti alternativě H 1 : F G. Test je založen na skutečnosti že pokud jsou obě rozdělení stejná pak se v obou výběrech budou vyskytovat hodnoty shodné velikosti ve stejném počtu. Algoritmus testu: 1. Vypočteme empirické distribuční funkce F n a G m.. Určíme maximální rozdíl těchto funkcí D nm = sup{ F n (x) G m (x) ; x R}. Platí-li hypotéza H 0 je lim D nm = 0. nm 3. Určíme testovací statistiku MDnm M = nm n + m která má rozdělení určené distribuční funkcí K(λ) kde K(λ) = 1 ( 1) k+1 e k λ k=1 tj. 4. Kritický obor testu je ( ) lim P MDnm < λ = K(λ) λ > 0. nm : MDnm λ α D nm λ α M kde kritickou hodnotu testu D nm = λα M nalezneme v tabulkách pro hodnoty n 0 4 m 0 n + m 8. Pro větší rozsahy výběrů použijeme aproximace a kritickou hodnotu λ α určíme z podmínky: P ( D nm < K(λ). = 1 e λ λ ) α = K(λ) = 1 α 1 α = 1 e λ α λ α = 1 M ln α. 96

9 Pro kritický obor dostaneme : D nm D nm = 1 M ln α Test shody pro binomické rozdělení. Máme dány hodnoty nezávislých náhodných veličin X Bi(n p 1 ) a Y Bi(m p ). Testujeme nulovou hypotézu proti alternativě H 0 : p 1 = p H 1 : p 1 p. Algoritmus testu. 1. Vypočteme hodnoty x = X n a y = Y m které jsou odhady parametrů p 1 x a p y.. Má-li výběr dostatečně velký rozsah pak mají náhodné veličiny x a y po řadě normální rozdělení ( x N p 1 ; p ) 1(1 p 1 ) n a ( y N p ; p (1 p ) m 3. Protože jsou náhodné veličiny x a y nezávislé má náhodná veličina U = (x y) (p 1 p ) p1 (1 p 1 ) n + p (1 p ) m normované normální rozdělení N(0; 1). 4. Pokud platí nulová hypotéza H 0 je p 1 p = 0 a jestliže použijeme aproximací p 1 = x p = y má náhodná veličina ). U a = x(1 x) n x y + y(1 y) m normované normální rozdělení N(0; 1). 5. Kritický obor testu je pak = {U a ; U a u( α )} kde kritická hodnota u( α ) je rovna 1 α kvantilu normálního rozdělení N(0; 1). Alternativní varianta testu je založena na skutečnosti že společnou hodnotu p 1 = p odhadujeme pomocí hodnoty z = X+Y. Potom má náhodná veličina normované normální rozdělení N(0; 1). Kritický obor testu je pak n+m = nx+my n+m x y U b = ( ) z(1 z) 1 n + 1 m = {U b ; U b u( α )}. 97

10 Protože je pro n = m hodnota U b U a dává tato varianta častěji jako výsledk testu přijetí nulové hypotézy H Multinomické rozdělení. Uvažujme náhodné jevy A i 1 i k které jsou po dvou disjunktní P (A i ) = p i A 1 A... A k = U tedy p 1 + p p k = 1. Jestliže opakujeme n krát pokus který jako výsledek dává posloupnost jevů A i nebo A i a uvažujeme kolikrát se ma i tém místě objeví jev A i pak mluvíme omultinomickém rozdělení s parametry n a p 1 p... p k. Jestliže označíme jako náhodný vektor (X 1 X... X k ) výsledek pokusu pak pro sdruženou pravděpodobnostní funkci p dostaneme p(i 1 i... i k ) = P (X 1 = i 1 X = i... X k = i k ) = n! i 1!.i!... i k! pi 1 1 p i... p i k k kde 0 i j 1 j k i 1 + i +... i k = n. Marginální rozdělení každé z veličin X j je binomické rozdělení Bi(n p j ) a E(X j ) = np j D(X j ) = np j (1 p j ) 1 j k. Dále je koeficient korelace cov(x i X j ) = np i p j i j 1 i j k. Takové rozdělení dostaneme jestliže pro náhodný výběr provedeme diskretizaci jeho hodnot pomocí zvolené škály. Nechť je X 1 X... X n náhodný výběr z rozdělení s danou distribuční funkcí. Rozdělíme interval ve kterém se může daná náhodná veličina vyskytovat na systém k disjunktních intervalů tvaru (a 0 a 1 (a 1 a... (a k 1 a k ). Dále označme p i = P (a i 1 < X a i ) 1 i k pravděpodobnost výskytu náhodné veličiny X v i tém intervalu škály. Potom je np i teoretická četnost výskytu hodnot náhodného výběru v i tém intervalu škály. Jestliže si označíme n i 1 i k empirickou četnost výskytu t.j. počet hodnot X j z náhodného výběru které leží v i tém intervalu škály pak platí tvrzení. Věta: Náhodná veličina ( ) χ = k (n i np i ) np i má přibližně rozdělení χ (k 1). Poznámka: Hodnota χ je vlastně vážený součet čtverců odchylek empirické a teoretické četnosti kdy ja každá odchylka vážena proti své teoretické hodnotě. Tato hodnota má být co nejmenší. Uvedeme vzorec který se někdy lépe hodí k výpočtu hodnoty χ. Je totiž χ = k (n i np i ) np i = k n i n inp i + (np i ) np i = k n k k k i n i + np i = np i n i np i n Test dobré shody test χ (chí kvadrát). Testujeme že daný náhodný výběr je výběrem ze známého rozdělení. Pokud jsou parametry rozdělení (hustoty či pravděpodobnostní funkce) známy počítáme uvedené veličiny z rozdělení které je určeno jejich hodotami. Pokud tyto parametry neznáme použijeme pro ně odhady získané některou s metod hledání bodových odhadů (metoda maximální věrohodnosti či metoda momentů). Máme dán náhodný výběr X 1 X... X n z rozdělení se známým typem distribuční funkce (hustoty). Testujeme nulovou hypotézu 98

11 H 0 : náhodný výběr je výběrem s daným rozdělením proti alternativě H 1 : náhodný výběr je výběrem z jiného rozdělení. Algoritmus testu. 1. Definiční obor náhodné veličiny X rozdělíme pomocí dělících bodů na škálu k intervalů tvaru ( a 1 (a 1 a... (a k a k 1 (a k 1 a k = ).. Vypočteme teoretické četnosti a ověříme podmínku použitelnosti testu: p i = P (a i 1 < X a i ) 1 i k np i 5 1 i k nebo np i 5q kde q je podíl tříd pro které je np i < 5 v případech kdy k Určíme empirické četnosti n i jako počty hodnot X j z náhodného výběru které leží v intervalu (a i 1 a i 1 i k a vypočteme hodnotu statistiky χ = k (n i np i ) np i. 4. Pro zvolenou hladinu významnosti testu stanovíme kritický obor testu = {χ ; χ χ k 1(α)} kde χ k 1 (α) je kritická hodnota testu která je rovna 1 α kvantilu rozdělení χ (k 1). 5. Je-li hodnota χ zamítneme nulovou hypotézu H 0 ve prospěch alternativní hypotézy H 1. V opačném případě kdy je χ < χ k 1 (α) nulovou hypotézu H 0 přijmeme. Poznámka: Pokud použijeme místo skutečných hodnot parametrů rozdělení jejich odhadů pak místo k 1 stupňů volnosti rozdělení χ volíme rozdělení s k m 1 stupni volnosti kde m je počet parametrů rozdělení. Poznámka: Metoda minimálního χ se používá k zpřesnění výsledku v případě kdy parametry roazdělení odhadujeme. Její princip je založen na tom že hledáme hodnoty neznámých parametrů tak aby hodnota náhodné veličiny χ ze vzorce ( ) byla minimální. Řešení této úlohy je poměrně komplikované zájemce odkazujeme na podrobnější literaturu ze statistiky. 99

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

5 Parametrické testy hypotéz

5 Parametrické testy hypotéz 5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Stručný úvod do testování statistických hypotéz

Stručný úvod do testování statistických hypotéz Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup

Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

STATISTICKÉ HYPOTÉZY

STATISTICKÉ HYPOTÉZY STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

STATISTICKÉ ZJIŠŤOVÁNÍ

STATISTICKÉ ZJIŠŤOVÁNÍ STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz

6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz 6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více