Analýza obrazu I. Jan Macháček Ústav skla a keramiky VŠCHT Praha

Rozměr: px
Začít zobrazení ze stránky:

Download "Analýza obrazu I. Jan Macháček +42-0- 22044-4151. Ústav skla a keramiky VŠCHT Praha"

Transkript

1 Analýza obrazu I Jan Macháček Ústav skla a keramiky VŠCHT Praha

2 Obsah digitální obraz binární obraz matematická morfologie & měření příklady aplikací AO ukázky

3 Reference doporučená literatura The Image Processing Handbook John C. Russ, CRC Press 2007 doporučený software NIS-Elements verze 3.0 doporučené www stránky micro.magnet.fsu.edu/primer/ digitalimaging

4 Definice úprava obrazu vstup: digitalizovaný obraz (mikroskop, fotoaparát, skenr,...) výstup: upravený obraz (jas, kontrast, ořez, vyvážení bílé,...) analýza obrazu vstup: opět digitalizovaný obraz výstup: charakteristika objektů v obraze (počet, rozměr, orientace,...)

5 Definice příklad na úvod vstup: - letecká fotografie lesa a skladu dřeva - poloha, datum a čas výstup: - výška stromů v lese - objem vytěženého dřeva /Russ 2007/

6 /Russ 2007/ Digitální obraz rozlišení digitálního obrazu Počet obrazových bodů (pixelů) a) 256x256 b) 128x128 c) 64x64 d) 32x odstínů šedé

7 /Russ 2007/ Digitální obraz barevná hloubka digitálního obrazu Počet odstínů šedé a) 32 b) 16 c) 8 d) 4 256x256 pixelů

8 Digitální obraz barevné modely: RGB - aditivní míchání 3 barevné kanály a) R+G+B = bílá (W) b) R = červená c) G = zelená d) B = modrá RGB CMY /Russ 2007/

9 Digitální obraz barevné modely: CMY - subtraktivní míchání 3 barevné kanály a) C+M+Y = černá (K) b) C = azurová c) M = purpurová d) Y = žlutá RGB CMY /Russ 2007/

10 /Russ 2007/ Digitální obraz barevné modely: RGB a CMY kombinace barevných kanálů a) B+R = M b) B+G = C c) R+G = Y d) C+Y = G e) C+M = B f) Y+M = R g) R+G+B = W h) C+M+Y = K

11 Digitální obraz barevné modely: HSV (H) Odstín (0-360 ) (S) Sytost (0-100%) (V) Jas (0-100%)

12 /Russ 2007/ Digitální obraz barevné modely: HSI (HLS) (H) Odstín (0-360 ) (S) Sytost (0-100%) (I) Intenzita (0-100%)

13 Digitální obraz rozklad digitálního obrazu (a) do RGB (b-d) a HSI (e-g) Důvod: lepší separace objektů /Russ 2007/

14 Barva viditelné spektrum a barevné vnímání lidského oka - různá spektra p( ), ale jedna barva

15 barevné modely: CIE XYZ (1931) - tři typy čípků pro různé vlnové délky - standardní kolorimetrické funkce odezvy lidského oka Barva d z p Z d y p Y d x p X ) ( ) ( ) ( ) ( ) ( ) (

16 Barva barevné modely: CIE XYZ (pokračování I.) - kužel v prostoru XYZ - XYZ jsou kladné, neviditelné - intenzita (jas) = X + Y + Z - barva = jas + chromaticita jas (1D), chromaticita (2D)

17 Barva barevné modely: CIE XYZ (pokračování II.) - řez pro X + Y + Z = 1 a průmět podle Z-ové osy - chromaticita je dána souřadnicemi x a y. x = X / (X + Y + Z) y = Y / (X + Y + Z) - Vlastnosti: 1) W, K, R, G, B, C, M, Y 2) sytost, odstín, jas 3) míchání barev, komplementarita

18 Barva barevné modely: CIE XYZ (pokračování III.) - gamut je rozmezí barev, které může zařízení zobrazit. - Příklady: 1) lidské oko (barva) 2) monitor (černá) 3) tiskárna (bílá) - teplota barvy - záření černého tělesa

19 Barva barevné modely: CIE XYZ (pokračování III.) - gamut je rozmezí barev, které může zařízení zobrazit. - Příklady: 1) lidské oko (barva) 2) monitor (černá) 3) tiskárna (bílá) - teplota barvy - záření černého tělesa (modrá)

20 Barva další barevné modely: - CIE LUV (intuitivní vzdálenost mezi odstíny) L=jas, U=sytost, V=odstín - CIE Lab (intuitivní vzdálenost mezi odstíny) L=jas, a=r<->g, b=b<->y - YCrCb Y=jas, Cr=R<->Y, Cb=B<->Y - YUV, Y=jas (obrázek) NTSC, PAL Více na wikipedia.org

21 Digitální obraz formát obrazového dokumentu pro OA (např. JPEG2000) 1) Anotační vrstva vektorové objekty, šipky, poznámky, interakt. měření 2) Binární vrstva rastrový obraz Č/B vymezení oblastí 3) Obrazová vrstva až 32 kanálů a 16 bitů na kanál RGB, fluorescence 4) Sekvence Z, T, /LIM 2006/

22 Stupeň šedi, x Kalibrace kalibrace je nutná pro kvantitativní měření 1) Rozměr - snímá se objekt o známé velikosti a určí se převodní vztah mezi délkou v pixelech a skutečnou délkou - pro každý objektiv zvlášť 2) Osvětlení - důležité pro fotometrická a denzitometrická měření - kalibrační křivka, vztah mezi intenzitou světla (I) a stupněm šedi (x): x = {A(I + I 0 )} y 1 A je koeficient zesílení I 0 je koeficient offsetu standardů, šeď nebo R,G,B Intenzita osvětlení, I

23 /Russ 2007/ Kalibrace kalibrace je nutná pro kvantitativní měření 3) Nehomogenní pozadí (nejčastěji nehomogenní osvětlení) i. odečtení obrazu pozadí ii. vyrovnání barevných kanálů iii. aproximace pozadí funkcí ad i. manuální varianta a) snímek s objektem b) pouze pozadí c) snímek po odečtení pozadí

24 /Russ 2007/ Kalibrace kalibrace je nutná pro kvantitativní měření 3) Nehomogenní pozadí (nejčastěji nehomogenní osvětlení) i. odečtení obrazu pozadí ii. vyrovnání barevných kanálů iii. aproximace pozadí funkcí ad i. automatická varianta "rank leveling" a) původní snímek c) nejtmavější pixel v oktagon. matici 5x5 d) opakování dilatace e) odečtení d od a f) úprava kontrastu

25 /Russ 2007/ Kalibrace kalibrace je nutná pro kvantitativní měření 3) Nehomogenní pozadí (nejčastěji nehomogenní osvětlení) i. odečtení obrazu pozadí ii. vyrovnání barevných kanálů iii. aproximace pozadí funkcí ad ii. a) oční pozadí b) R kanál c) G kanál d) G/R

26 /Russ 2007/ Kalibrace kalibrace je nutná pro kvantitativní měření 3) Nehomogenní pozadí (nejčastěji nehomogenní osvětlení) i. odečtení obrazu pozadí ii. vyrovnání barevných kanálů iii. aproximace pozadí funkcí ad iii. manuální varianta a) výběr objektu a pozadí b) pozadí jako polynom c) odečtení pozadí 2 B(x,y) a a x a y a x a 4 y 2 a 5 xy a 6 x 3 a 7 x 2 y a 8 xy 2 a 9 y 3

27 /Russ 2007/ Kalibrace kalibrace je nutná pro kvantitativní měření 3) Nehomogenní pozadí (nejčastěji nehomogenní osvětlení) i. odečtení obrazu pozadí ii. vyrovnání barevných kanálů iii. aproximace pozadí funkcí ad iii. automatická varianta a) profil intenzity b) vyrovnání profilu

28 Úprava obrazu histogram intenzity rozdělení pixelů podle jasu - obraz v odstínech šedi 1 histogram - barevný obraz 3 histogramy - více-kanálový obraz každý kanál jeden /Russ 2007/

29 Úprava obrazu transformace histogramu jas: posun vlevo-vpravo (menší-větší) kontrast: rozšíření-zúžení (větší-menší) gama: exponenciální zesvětlení-ztmavení stínů inverze: komplementární barva vyrovnání: linearizace kum. histogramu vyvážení bílé: normalizace podle "bílého bodu" tónové křivky: transformace intenzity, x'=f(x) LUT: Look-Up-Tables - interaktivní histogramy

30 Úprava obrazu filtrování obrazu v reálném a reciprokém prostoru např. vyhlazení, rozmazání, ostření, detekce hran, reliéf, moirée (periodický šum). Konvoluce multipixelová operace, pixel se mění v závislosti na okolí

31 Úprava obrazu filtrování obrazu v reálném a reciprokém prostoru odstranění náhodného šumu mediánový filtr: intenzitu pixelu nahradí mediánem intenzit (8) okolních pixelů (hlavně na kontrastní obrazy, čistí plochy a zachovává hrany) top-hat filtr: změní vnitřek (bílou oblast) pokud její intenzita přesahuje (o tolik a tolik) intenzitu lemu (světle šedá oblast)

32 Měření jednoduché interaktivní měření 1) délka 2) úhel 3) poloměr 4) plocha 5) hustota 6) počet 7) taxonomie 100 m

33 Měření automatizované měření 1) úprava obrazu (filtrace) 2) prahování (segmentace) 3) úprava binárního obrazu (matematická morfologie) 4) měření - objektové (charakteristika objektů) - texturální (týká se celé plochy)

34 Úprava obrazu histogram intenzity rozdělení pixelů podle jasu metalografický nábrus v odstínech šedé /Russ 2007/

35 Binární obraz prahování (segmentace) pixely jsou rozděleny podle intenzity na popředí (objekt) a pozadí

36 Binární obraz prahování (segmentace) lze vybrat i střední pás histogramu

37 Binární obraz binární obraz {0,1}, {černá, bílá} - charakterizace (plocha, obvod, délka, počet, orientace,...) - úprava obrazu pomocí matematické morfologie

38 Binární obraz základy matematické morfologie I - příklady eroze zavření originál dilatace 1 iterace, 8 konektivita matice 9 otevření

39 Binární obraz základy matematické morfologie - základní pojmy strukturní element (matice, kernel): mění hodnotu obrazového bodu; např. při dilataci 0->1 když je soused 1, jinak nedělá nic konektivita: udává jestli jsou dva sousední body součástí jednoho objektu; čtvercová mřížka může mít 4- a 8-konektivitu počet iterací: udává kolikrát byla transformace provedena

40 Binární obraz základy matematické morfologie I - komentář Eroze: Objekty se po provedení eroze zmenší, neboť se ubere z jejich okrajů. Je-li objekt nebo úzký výběžek menší, než ubíraná šířka, zmizí z obrazu. Dilatace: Po dilataci jsou objekty zvětšeny, což znamená, že k objektu je přidána slupka. Je-li vzdálenost mezi dvěma objekty menší, než dvojnásobná tloušťka slupky, objekty se spojí. Je-li otvor v objektu užší, než dvojnásobná tloušťka slupky, zmizí z obrazu. Otevření: Je vlastně eroze následovaná dilatací, takže velikost objektů se nijak významně nemění. Otevření vyhlazuje kontury, maže malé objekty a rozpojuje částice spojené tenkou šíjí. Zavření: Je dilatace následovaná erozí, takže velikost objektů není podstatně dotčena. Vyhladí obrysy, zaplní malé díry a vyhladí obrys tím, že zaplní malé okrajové trhliny. Též může spojit blízké objekty.

41 Binární obraz základy matematické morfologie II - příklady vyčištění obrysy originál vyplnění děr 1 iterace, 8 konektivita matice 9 vyhlazení

42 Binární obraz základy matematické morfologie II - komentář Vyčištění: Je též nazýváno geodesickým otevřením. Nejprve eroduje obraz, takže malé objekty mizí. Pak jsou zbývající objekty rekonstruovány do jejich původní velikosti a tvaru. Výhoda tohoto postupu je ta, že malé objekty zmizí, ale zbytek obrazu zůstane nedotčen. Vyplnění děr: Plní díry uvnitř obrazu. Tato operace je užitečná například při detekci hranic objektů, neboť objekty mají bohatou vnitřní strukturu s intenzitami typickými pro pozadí a hranice. Po této operaci jsou díry transformovány na uzavřené oblasti. Obrysy: Tato transformace transformuje binární obraz do jeho obrysů. Vyhlazení: Vyhlazuje obrysy binárního obrazu.

43 Binární obraz základy matematické morfologie III - příklady morfo-separace mezní eroze originál konvexní obálka 1 iterace, 8 konektivita matice 9 skeletonizace

44 Binární obraz základy matematické morfologie III - komentář Morfologická separace: Tato transformace detekuje spojené objekty a vzájemně je od sebe separuje. Konvexní obálka: je definována jako průnik všech polorovin, které obsahují objekt, tj. nejmenší konvexní množina, která pokrývá objekt. Skeletonizace: A skeleton includes medial lines of an object e.g. pixels with two or more equidistant nearest boundary points. It contains lines of thickness one pixel. This function preserves homotopy. It means, roughly saying, that any object is transformed to another one with the same number of holes and no object is split. Mezní eroze: Sequentially erodes binary image, but leaves the small area that would completely disappear in the next erosion. Optionally, you can dilate these seed points. Ultimate Erosion dialog box appears.

45 Binární obraz základy matematické morfologie IV - příklady homotopní značení zesílení originál střední osa - iterace, 8 konektivita matice 9 zóny vlivu

46 Binární obraz základy matematické morfologie IV - komentář Homotopní značení: Homotopic marking is a sequential homotopic thinning. It is used for marking objects. A filled object (with no holes) is transformed to a single point. Every hole leaves a closed contour. Střední osa:... Zesílení: Dilates a binary image without touching. The Thickening dialog box appears. Zóny vlivu: Zones of influence are separated by the pruned skeleton from background. It is a four connectivity line. Points that belong to one zone of influence have the nearest distance to the boundary of the same object.

47 Binární obraz logické operace s binárním obrazem AND = průnik OR = sjednocení XOR = non-ekvivalence / = rozdíl A/B / = rozdíl B/A

48 Binární obraz měřené charakteristiky objektů Plocha: počet pixelů objektu Obvod: *(Pr 0 +Pr 45 +Pr 90 +Pr 135 )/4 (NIS) Délka: (obvod + odmocnina(obvod 2-16*plocha))/4 Šířka: plocha/délka Maximální Feretův průměr: nejdelší rozměr objektu Minimální Feretův průměr: nejkratší rozměr objektu Orientace: úhel maximálního Feretova průměru Prodloužení: MaxFeret/MinFeret Ekvivalentní průměr: odmocnina(4*plocha/ ) Kruhovost: 4* *plocha/obvod 2 Frakce: plocha/celková_plocha

49 Binární obraz měřené charakteristiky objektů - PŘÍKLAD Plocha: 2031 px 2 Obvod: px Délka: px Šířka: 15.5 px MaxFeret: 70.0 px MinFeret: 50.0 px Orientace: 40.0 Prodloužení: 1.4 EkvivalPrůměr: 50.9 px Kruhovost: 0.28

50 Měření automatizované měření Měřící rámeček: Částice, které se dotýkají levého nebo dolního okraje, jsou při objektovém měření vyloučeny ze statistiky. Naopak částice, které se dotýkají horního a pravého okraje, jsou do statistiky zahrnuty.

51 Příklady popraskaná skleněná vlákna - operace uzavření a) originál; b) prahování; c) uzavření /Russ 2007/

52 /Russ 2007/ Příklady počítání červených krvinek - logické operace s obrazem a) originál; b) prahování; c) inverze; d) odečtení spojitého pozadí; e) sjednocení b a d; f) vyčištění malých a krajních objektů, separace objektů

53 Příklady kapky tuku - rozdělení podle velikosti a) originál; b) prahování; c) měření; d) histogram /Russ 2007/

54 Příklady otisky a vlákna - skeleton - skeletonizace vláken celulózy pro měření počtu vláken - otisk prstu a) a jeho topologie pomocí skeletonu (b) /Russ 2007/ /Russ 2007/

55 Příklady tkáň a rýže - orientace objektů - orientace buněk ve tkáni - orientace zrnek rýže (a-c) /Russ 2007/ /Russ 2007/

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené

Více

OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě

OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky

Více

Obrazová analýza základní práce

Obrazová analýza základní práce Obecný návod pro laboratorní úlohy z měřicí techniky Práce OX-1 Obrazová analýza základní práce Pomocí této úvodní laboratorní práce se seznámíte se základními funkcemi programu NIS-Elements a tyto znalosti

Více

Matematická morfologie

Matematická morfologie / 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická

Více

Mikroskopická obrazová analýza

Mikroskopická obrazová analýza Návod pro laboratorní úlohu z měřicí techniky Práce O1 Mikroskopická obrazová analýza 0 1 Úvod: Tato laboratorní úloha je koncipována jako seznámení se s principy snímání mikroskopických obrazů a jejich

Více

Analýza a zpracování digitálního obrazu

Analýza a zpracování digitálního obrazu Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové

Více

Barvy v počítačové grafice

Barvy v počítačové grafice arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 arvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové zář ení zář

Více

Makroskopická obrazová analýza pomocí digitální kamery

Makroskopická obrazová analýza pomocí digitální kamery Návod pro laboratorní úlohu z měřicí techniky Práce O3 Makroskopická obrazová analýza pomocí digitální kamery 0 1 Úvod: Cílem této laboratorní úlohy je vyzkoušení základních postupů snímání makroskopických

Více

Analýza obrazu II. Jan Macháček Ústav skla a keramiky VŠCHT Praha

Analýza obrazu II. Jan Macháček Ústav skla a keramiky VŠCHT Praha Analýza obrazu II Jan Macháček Ústav skla a keramiky VŠCHT Praha +4- - 44-45 Reference další doporučená literatura Microscopical Examination and Interpretation of Portland Cement and Clinker, Donald H.

Více

Operace s obrazem II

Operace s obrazem II Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů

Více

Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra.

Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra. 1. 1.5 Světlo a vnímání barev Pro vnímání barev je nezbytné světlo. Viditelné světlo je elektromagnetické záření o vlnové délce 400 750 nm. Různé frekvence světla vidíme jako barvy, od červeného světla

Více

DIGITÁLNÍ FOTOGRAFIE

DIGITÁLNÍ FOTOGRAFIE DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do

Více

Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika

Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika Barva v počítačové grafice Poznámky k přednášce předmětu Počítačová grafika Martina Mudrová 2007 Barvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové

Více

Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011

Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011 fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Kde se berou barvy? Co je barva Světlo jako elmg. záření nemá barvu. Jednou z vlastností světla je tzv. spektrální rozdělení (Spectral Power Distribution,

Více

Úvod do počítačové grafiky

Úvod do počítačové grafiky Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev

Více

Barevné modely, práce s barvou. Martin Klíma

Barevné modely, práce s barvou. Martin Klíma Barevné modely, práce s barvou Martin Klíma Proč je barva důležitá Důležitý vizuální atribut Různá zařízení, aplikace, média Monitor Tiskárna Video Televize Světlo a barvy Elektromagnetické vlnění Viditelná

Více

ROZ I. CVIČENÍ V. Morfologické operace v obraze teorie & praxe

ROZ I. CVIČENÍ V. Morfologické operace v obraze teorie & praxe ROZ I. CVIČENÍ V. Morfologické operace v obraze teorie & praxe TEORIE Morfologické operace v obraze Zdroje (7.. 0): Wikipedia EN: http://en.wikipedia.org/wiki/mathematical_morphology CMP: http://cmp.felk.cvut.cz/~hlavac/

Více

Barvy v počítačové grafice

Barvy v počítačové grafice arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 24 arvy v počítačové grafice o je barva? světlo = elmg. vlnění v rozsahu 4,3. 4-7,5. 4 Hz viditelná č ást spektra rentgenové

Více

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu

Více

Kde se používá počítačová grafika

Kde se používá počítačová grafika POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová

Více

Počítačová grafika. OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely

Počítačová grafika. OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely Počítačová grafika OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely Vektorová grafika Vektorová grafika Příklad vektorové grafiky Zpět na Obsah Vektorová grafika Vektorový

Více

ZPRACOVÁNÍ OBRAZU přednáška 4

ZPRACOVÁNÍ OBRAZU přednáška 4 ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Jasové transformace. Karel Horák. Rozvrh přednášky:

Jasové transformace. Karel Horák. Rozvrh přednášky: 1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace

Více

Rozšíření bakalářské práce

Rozšíření bakalářské práce Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE

Více

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová

Více

2010 Josef Pelikán, CGG MFF UK Praha

2010 Josef Pelikán, CGG MFF UK Praha Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti

Více

Práce na počítači. Bc. Veronika Tomsová

Práce na počítači. Bc. Veronika Tomsová Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující

Více

Barvy a barevné modely. Počítačová grafika

Barvy a barevné modely. Počítačová grafika Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač

Více

Počítačová grafika - úvod

Počítačová grafika - úvod Autor: Mgr. Dana Kaprálová Počítačová grafika - úvod Datum (období) tvorby: listopad, prosinec 2013 Ročník: osmý Vzdělávací oblast: IVT 1 Anotace: Žáci se seznámí se základními pojmy počítačové grafiky,

Více

Mikroskopická obrazová analýza

Mikroskopická obrazová analýza Návod pro laboratorní úlohu z měřicí techniky Práce O1 Mikroskopická obrazová analýza 0 1 Úvod: Tato laboratorní úloha je koncipována jako seznámení se s principy snímání mikroskopických obrazů a jejich

Více

Interní norma č. 22-102-01/01 Průměr a chlupatost příze

Interní norma č. 22-102-01/01 Průměr a chlupatost příze Předmluva Text vnitřní normy byl vypracován v rámci Výzkumného centra Textil LN00B090 a schválen oponentním řízením dne 7.12.2004. Předmět normy Tato norma stanoví postup měření průměru příze a celkové

Více

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)

Více

Co je počítačová grafika

Co je počítačová grafika Počítačová grafika Co je počítačová grafika Počítačovou grafikou rozumíme vše, co zpracovává počítač a co lze sledovat očima Využití počítačové grafiky Tiskoviny - časopisy, noviny, knihy, letáky Reklama

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) Barvy a barevné prostory I BI-MGA, 2010, Přednáška 3 1/32 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v

Více

Přednáška kurzu MPOV. Barevné modely

Přednáška kurzu MPOV. Barevné modely Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,

Více

Úpravy rastrového obrazu

Úpravy rastrového obrazu Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha

Více

VOLBA BAREVNÝCH SEPARACÍ

VOLBA BAREVNÝCH SEPARACÍ VOLBA BAREVNÝCH SEPARACÍ SOURAL Ivo Fakulta chemická, Ústav fyzikální a spotřební chemie Vysoké učení technické v Brně, Purkyňova 118, 612 00 Brno E-mail : Pavouk.P@centrum.cz K tomu aby byly pochopitelné

Více

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené

Více

Téma: Barevné modely, formáty souborů

Téma: Barevné modely, formáty souborů Téma: Barevné modely, formáty souborů Vypracoval/a: Ing. Jana Wasserbauerová TE NTO PR OJ E KT J E S POLUFINANC OVÁN EVR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Barevné modely

Více

VY_32_INOVACE_INF4_12. Počítačová grafika. Úvod

VY_32_INOVACE_INF4_12. Počítačová grafika. Úvod VY_32_INOVACE_INF4_12 Počítačová grafika Úvod Základní rozdělení grafických formátů Rastrová grafika (bitmapová) Vektorová grafika Základním prvkem je bod (pixel). Vhodná pro zpracování digitální fotografie.

Více

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování

Více

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d. Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu

Více

VYUŽITÍ POČÍTAČOVÉ GRAFIKY

VYUŽITÍ POČÍTAČOVÉ GRAFIKY POČÍTAČOVÁ GRAFIKA VYUŽITÍ POČÍTAČOVÉ GRAFIKY ÚPRAVA FOTOGRAFIÍ NAFOCENÉ FOTOGRAFIE Z DIGITÁLNÍHO FOTOAPARÁTU MŮŽEME NEJEN PROHLÍŽET, ALE TAKÉ UPRAVOVAT JAS KONTRAST BAREVNOST OŘÍZNUTÍ ODSTRANĚNÍ ČERVENÝCH

Více

O čem si něco povíme

O čem si něco povíme 1 O čem si něco povíme co to vlastně je předtisková příprava (prepress) různé způsoby tisku (offset, flexo, digital printing,...) správa barev inkousty, barevné prostory, profily RIP (raster image processor),

Více

Michal Dobeš ZPRACOVÁNÍ OBRAZU A ALGORITMY V C# Praha 2008 Michal Dobeš Zpracování obrazu a algoritmy v C# Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást kopírována nebo rozmnožována

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela

Více

Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11

Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 Obsah Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 KAPITOLA 1 Působení barev 13 Fyzikální působení barev 15 Spektrum

Více

Fungování předmětu. 12 vyučovacích hodin ve 3 blocích Evidence docházky Zápočtový test Aktuální informace a materiály na smetana.filmovka.

Fungování předmětu. 12 vyučovacích hodin ve 3 blocích Evidence docházky Zápočtový test Aktuální informace a materiály na smetana.filmovka. Fungování předmětu 12 vyučovacích hodin ve 3 blocích Evidence docházky Zápočtový test Aktuální informace a materiály na smetana.filmovka.cz Počítačová grafika, základy počítačového zobrazení 2 Cíle předmětu

Více

Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB )

Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB ) Přežiju to? 1 Gamut CMYK,RGB ) - souřadný systém, ve kterém udáváme barvy (CIE, dosažitelná oblast barev v barevném prostoru Vyjadřuje Rozsah barevného snímání (rozlišitelné barvy) Barevnou reprodukci

Více

Obsah. Úvod... 9. Barevná kompozice... 16 Světlo... 18 Chromatická teplota světla... 19 Vyvážení bílé barvy... 20

Obsah. Úvod... 9. Barevná kompozice... 16 Světlo... 18 Chromatická teplota světla... 19 Vyvážení bílé barvy... 20 Obsah Úvod.............................................................................................. 9 Historie grafického designu a tisku..................................... 10 Od zadání k návrhu..............................................................

Více

Digitalizace a zpracování obrazu

Digitalizace a zpracování obrazu Digitalizace a zpracování obrazu Jaroslav Fiřt a), Radek Holota b) a) Nové technologie výzkumné centrum Sedláčkova 15 306 14 Plzeň tel. (+420) 377236881, kl. 237 e-mail: firt@kae.zcu.cz b) Nové technologie

Více

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů. Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří

Více

Přednáška kurzu BZVS. Barevné modely

Přednáška kurzu BZVS. Barevné modely Přednáška kurzu BZVS Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář SD3.152, tel. 6434, Technická 12, VUT v Brně - 1/16 - Barvy v počítačové grafice Barevné modely Aditivní

Více

On-line škola mladých autorů , pořadatel: ČVUT FEL. Jak na obrázky? Martin Žáček

On-line škola mladých autorů , pořadatel: ČVUT FEL. Jak na obrázky? Martin Žáček On-line škola mladých autorů 20. 2. 18. 4. 2013, pořadatel: ČVUT FEL Jak na obrázky? Martin Žáček zacekm@fel.cvut.cz http://www.aldebaran.cz/onlineskola/ Jak na obrázky? Osnova 1. Co je to vůbec obrázek,

Více

DTP 2. Radek Fiala. fialar@kma.zcu.cz. Podpořeno z projektu FRVŠ 584/2011. Radek Fiala DTP 2

DTP 2. Radek Fiala. fialar@kma.zcu.cz. Podpořeno z projektu FRVŠ 584/2011. Radek Fiala DTP 2 DTP 2 Radek Fiala fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 PostScript Požadavky na obsah PS dokumentu PS dokument je program, který může být (stejně jako program v jiných programovacích jazycích)

Více

Multimediální systémy. 02 Reprezentace barev v počítači

Multimediální systémy. 02 Reprezentace barev v počítači Multimediální systémy 02 Reprezentace barev v počítači Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Reprezentace barev v PC Způsoby míchání barev Barevné modely Bitová hloubka Barvy

Více

Počítačová grafika. Studijní text. Karel Novotný

Počítačová grafika. Studijní text. Karel Novotný Počítačová grafika Studijní text Karel Novotný P 1 Počítačová grafika očítačová grafika je z technického hlediska obor informatiky 1, který používá počítače k tvorbě umělých grafických objektů a dále také

Více

Informační a komunikační technologie. Základy informatiky. 5 vyučovacích hodin. Osobní počítače, soubory s fotografiemi

Informační a komunikační technologie. Základy informatiky. 5 vyučovacích hodin. Osobní počítače, soubory s fotografiemi Výstupový indikátor 06.43.19 Název Autor: Vzdělávací oblast: Vzdělávací obory: Ročník: Časový rozsah: Pomůcky: Projekt Integrovaný vzdělávací systém města Jáchymov - Mosty Digitální fotografie Petr Hepner,

Více

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 Barva jako součást kompozice barva hraje důležitou roli barva je samostatným prvkem kompozice, který má na diváka (estetický)

Více

Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc

Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc Světlo a barvy v počítačové grafice Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc EM spektrum λ = c f, E = h f c... rychlost světla (300000 km/h) h... Planckova konstanta

Více

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření: 17. 1. 2013 Autor: MgA.

Více

Úvod do počítačové grafiky

Úvod do počítačové grafiky Úvod do počíta tačové grafiky Počíta tačová grafika zobrazování popis objektů obraz modelování (model světa) rekostrukce zpracování obrazu Popis obrazu rastrový neboli bitmapový obraz = matice bodů vektorový

Více

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován

Více

Abstrakt: Klíčová slova: Abstract: Keywords:

Abstrakt: Klíčová slova: Abstract: Keywords: ~ 1 ~ Abstrakt: Tato práce seznamuje se základním zpracováním obrazu v oblasti šedotónového a binárního obrazu. Zabývá se také analýzou získaných dat. Seznamuje s termíny jako morfologie či segmentace

Více

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Barevné prostory. RGB, CMYK, HSV a Lab gamut

Barevné prostory. RGB, CMYK, HSV a Lab gamut J. Vrzal, 1.0 Barevné prostory RGB, CMYK, HSV a Lab gamut rozsah všech barev, které jsou dosažitelné v určitém barevném prostoru barvy mimo oblast gamutu jsou reprodukovány nejbližší dostupnou barvou z

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Montážní program XMF

Montážní program XMF Montážní program Slovníček pojmů www.isspolygr.cz Vytvořila: Eva Bartoňková Vytvořila dne: 2. 4. 2013 Strana: 1/9 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces

Více

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 Dva úhly pohledu v DF se na barvy můžeme dívat ze dvou pohledů estetický působení na člověka jejich využití v kompozici

Více

Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku

Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku Arnošt Nečas Marketing manager GRAFIE CZ Jan Štor Odborný konzultant GRAFIE CZ Agenda Základy digitálních obrazů Kvalita obrazu

Více

Mikroskopická obrazová analýza větších částic

Mikroskopická obrazová analýza větších částic Návod pro laboratorní úlohu z měřicí techniky Práce O2 Mikroskopická obrazová analýza větších částic 0 1 Úvod: Tato laboratorní úloha je koncipována jako seznámení se s principy snímání obrazů heterogenních

Více

Zpracování obrazu a fotonika 2006

Zpracování obrazu a fotonika 2006 Základy zpracování obrazu Zpracování obrazu a fotonika 2006 Reprezentace obrazu Barevný obrázek Na laně rozměry: 1329 x 2000 obrazových bodů 3 barevné RGB kanály 8 bitů na barevný kanál FUJI Superia 400

Více

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová IVT Počítačová grafika - úvod 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

Moderní multimediální elektronika (U3V)

Moderní multimediální elektronika (U3V) Moderní multimediální elektronika (U3V) Prezentace č. 7 Digitální fotografie a digitální fotoaparáty Ing. Tomáš Kratochvíl, Ph.D. Ústav radioelektroniky, FEKT VUT v Brně Program prezentace Digitální fotografie

Více

ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU

ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU V Colormanagementu se neustále operuje s několika termíny: a) barevný gamut, b) barevné prostory CMYK a RGB, c) nezávislý barevný prostor, d) ICC profil S těmito

Více

Úvod do GIS. Prostorová data I. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Prostorová data I. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Prostorová data I. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální prostorová

Více

Color Management System

Color Management System Semestrální práce z předmětu Kartografická polygrafie a reprografie Color Management System Autor: Lenka Bajusová, Stanislava Balcarová Editor: Václav Kysela Praha, červen 2010 Katedra mapování a kartografie

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

Charakteristiky videomateriálu. Digitalizace Barevné schéma Barevná hloubka Rozlišení Framerate Streamování

Charakteristiky videomateriálu. Digitalizace Barevné schéma Barevná hloubka Rozlišení Framerate Streamování Charakteristiky videomateriálu Digitalizace Barevné schéma Barevná hloubka Rozlišení Framerate Streamování Digitalizace Při získání počítačového obrazu je jedním ze základních jevů přechod od spojité funkce

Více

zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se

zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se Kapitola 3 Úpravy obrazu V následující kapitole se seznámíme se základními typy úpravy obrazu. První z nich je transformace barev pro výstupní zařízení, dále práce s barvami a expozicí pomocí histogramu

Více

Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/

Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Zobrazování barev 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorRep 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Barevné schopnosti HW True-color

Více

Klasická a digitální mikrofotografie Příklad zpracování (= úprav) digitální (mikro)fotografie Příklady analýzy obrazu

Klasická a digitální mikrofotografie Příklad zpracování (= úprav) digitální (mikro)fotografie Příklady analýzy obrazu Fyziologie rostlin pro pokročilé Zpracování a analýza obrazu Klasická a digitální mikrofotografie Příklad zpracování (= úprav) digitální (mikro)fotografie Příklady analýzy obrazu Mikrofotografie mikroskop

Více

1. Polotóny, tisk šedých úrovní

1. Polotóny, tisk šedých úrovní 1. Polotóny, tisk šedých úrovní Studijní cíl Tento blok kurzu je věnován problematice principu tisku polotónů a šedých úrovní v oblasti počítačové grafiky. Doba nutná k nastudování 2 hodiny 1.1 Základní

Více

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: Grafická data jsou u 2D vektorové grafiky uložena ve voxelech. Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na

Více

IVT. Rastrová grafika. 8. ročník

IVT. Rastrová grafika. 8. ročník IVT Rastrová grafika 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

Rastrová grafika. Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou

Rastrová grafika. Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou Rastrová grafika Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou Kvalita je určena rozlišením mřížky a barevnou hloubkou (počet bitů

Více

Reprezentace bodu, zobrazení

Reprezentace bodu, zobrazení Reprezentace bodu, zobrazení Ing. Jan Buriánek VOŠ a SŠSE P9 Jan.Burianek@gmail.com Obsah Témata Základní dělení grafických elementů Rastrový vs. vektorový obraz Rozlišení Interpolace Aliasing, moiré Zdroje

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické

Více

Vyplňování souvislé oblasti

Vyplňování souvislé oblasti Počítačová grafika Vyplňování souvislé oblasti Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU. Které z následujících tvrzení není pravdivé: a) Princip interpolace je určení

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Barvové prostory semestrální práce Jana Pospíšilová Lenka Roušarová V Praze dne 26. 4. 2010

Více

2D grafika. Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace. Počítačová grafika, 2D grafika 2

2D grafika. Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace. Počítačová grafika, 2D grafika 2 2D grafika Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace Počítačová grafika, 2D grafika 2 2D grafika PC pracuje s daným počtem pixelů s 3 (4) kanály barev (RGB

Více

44. Obraz jako signál.

44. Obraz jako signál. 44. Obraz jako signál. Obraz je vícerozměrný signál. Je chápán intuitivně jako obraz na sítnici lidského oka nebo obraz sejmutý TV kamerou. Může být modelován matematicky pomocí spojité skalaární funkce

Více

Základy informatiky. 10 Počítačová grafika

Základy informatiky. 10 Počítačová grafika Základy informatiky 10 Počítačová grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Reprezentace barev v PC Způsoby míchání barev Barevné modely Bitová hloubka Rastrová grafika

Více

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data Grafická data jsou u 2D vektorové grafiky uložena ve voxelech Grafická data jsou u rastrové grafiky uložena v pixelech Grafická data jsou u vektorové grafiky uložena v pixelech Na rozdíl od rastrové grafiky

Více

Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát

Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát Jan Kaiser Fomei a.s., Hradec Králové Kaiser@fomei.com, +420 603 587 898 červen 2012 Který obraz je správný?

Více

Rastrové počítačové obrazy (poněkud sporně často označované jako bitmapové) jsou pravděpodobně nejběžnější variantou obrazů v počítači.

Rastrové počítačové obrazy (poněkud sporně často označované jako bitmapové) jsou pravděpodobně nejběžnější variantou obrazů v počítači. Ot 2. Rastrová počítačová grafika 1.1.1 Rastrové obrazy Rastrové počítačové obrazy (poněkud sporně často označované jako bitmapové) jsou pravděpodobně nejběžnější variantou obrazů v počítači. Rastrový

Více

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7

Více