Rozměr: px
Začít zobrazení ze stránky:

Download "http://www.natur.cuni.cz/~zdenap/members/zdenateaching.htm"

Transkript

1

2 ŽIVOTNÍ CYKLUS X BUNĚČNÝ CYKLUS Alternativní programy EB: Meiosa, sporulace, párování diferenciace apoptosa PB: Sporulace diferenciace apoptosa-like Externí signály zdroje živin další buňky teplota atd. Změna v dalším vývoji buňky: - alternativní programy - dráhy signální transdukce ROZHODOVÁNÍ: EB: G1 fáze START mitosa X alt. program PB? Před iniciací replikace B.dělení X alt. program VNĚJŠÍ PROSTŘEDÍ EB: Mitosa PB: Buněčné dělení Konstantní Cyklická reprodukce buňky Zachování kontinuity jaderné (DNA) i mimojaderné informace Interní signály

3 METODY STUDIA BUŇEČNÝCH A ŽIVOTNÍCH CYKLU KLASICKÉ METODY 1. SYNCHRONISOVANÉ KULTURY selekční a indukční metody a) SELEKČNÍ - velikost buněk (filtrace) - hustota (gradienty) -stáří filtr b) INDUKČNÍ - složení média (limitace fosfátů, vitaminů etc.) -teplota -tma/světlo (řasy) - chemické látky 2. MATEMATICKÉ METODY Generační doba τ Relativní stáří buňky: a = t / τ, t je doba od posledního dělení 3. MIKROSKOPICKÉ TECHNIKY / BARVENI

4 4. GENETICKÉ METODY: Mutanty buněčného cyklu + molekulárně biologické (genové manipulace) + cytologické Replikace Cytoskelet B.stěna X Organely atd. X Morfologie - TERMINÁLNÍ FENOTYP Problém = LETHALITA termosensitivní (ts) a chladosensitivní (cs) mutanty (termolabilní protein; reversibilní x ireversibilní) Analysy ts (cs) mutant: - terminální fenotyp - komplementace mutace - knihovna divokého kmene (centromerové vektory) isolace genu Analysy genů: - sekvenční/restrikční/počitačová - funkce genu v buňkách: amplifikace, modifikace genu (lokalisace), suprese jiných mutací, lokalisace v buňkách za různých podmínek (imunofluorescence etc.) MUTACE: Zrušení funkce X Změna funkce (např. jiný komplex)

5 MODERNÍ METODY 1. NOVÉ TECHNIKY BARVENÍ / MIKROSKOPIE - GFP (Green fluorescent protein) - varianty barevné, optimalisace pro organismy možnost sledování chování proteinů in vivo (kvasinky - genomové GFP fuse) 2. TECHNIKY GENOMIKY A PROTEOMIKY - sekvenování genomů a) Technika mikroarrays b) Technika 2d elektroforesy / MALDI analysa etc -proteomika c) DATABASE SGD Stanford Genomic Resources Published Datasets Stanford PROTEOME, YPD, d) PROJEKTY PŔÍPRAVY KMENU - EUROSCARF, deleční mutanty, kmeny - TRIPLES database - GFP-tag kmeny - lacz - tag kmeny

6 BUNĚČNÝ CYKLUS PROKARYOT : E. COLI Replikace DNA Růstové pochody (složky biomasy, povrchové struktury) Specifika (x EB): E.coli Generační doba = závisí na kultivačních podmínkách (E.coli: minimální gen. doba = 20 min = 1/2 doby replikace) Interval před zahájením replikace DNA (pouze je-li gen doba > 60min) Fáze B Replikace DNA Fáze C = 40 min (analogie S-fáze) Interval mezi terminací replikace a dělením buňky Fáze D = 20 min (analogie G2+M fází) Gen doba < 60min PŘEKRYVNÉ CYKLY

7 Gen doba < 60min PŘEKRYVNÉ CYKLY Inic. Termin. Dělení τ = 60 min C D τ = 50 min τ = 40 min τ = 30 min

8 BUNĚČNÝ CYKLUS E.COLI Exponenciální balancovaný růst: Dělení: stejná velikost buněk (pouze při balancovaném růstu x variabilní gen.doba) iniciace replikace ve stejném věku buňky tvorba septa v centru tvorba septa závislá na terminaci replikace pravidelná distribuce nukleoidů do dceř. buněk Interní signály Chemické (regulační proteiny; ionty - např. Ca 2+ - myosin-like molekuly; camp, cgmp etc ) Mechanické - stérické zábrany (např. při septaci) Redundantní regulace I. REPLIKACE 1963 (Jacob, Brenner, Cuzin) - role membrány -iniciační místa na membráně - separace nukleoidů

9 INICIACE REPLIKACE 1 x za buněčný cyklus I. 1. DnaA protein iniciátor replikace (koncentrace v b.cyklu stabilní, konzerv.) oric sekvence - 4 vazebná místa pro DnaA protein, vazba cca 20-40ti monomerů DnaA otevření oric pro replikační aparát ROLE MEMBRÁNY: DnaA - ATP = aktivní DnaA = neaktivní DnaA - ADP = neaktivní MONOMERY - vazba na oric DnaA - ATP ATP Poměrně DnaA stabilní DnaA - ADP ADP FOSFOLIPIDY = hlavně fosfolipidy s nenasycenými mastnými kyselinami 2. DnaA + fosfolipidy = neaktivní komplex (agregát) - nadprodukce DnaA - isolována směs: aktivní monomery neaktivní agregát DnaA+fosfolip. Aktivace fosfolipasami (DnaK) Membrána udržuje část DnaA v neaktivnim stavu (neváže oric)

10 II. INTERAKCE oric S MEMBRÁNOU oric sekvence: 11 kopii GATC Methylace Dam methyltransferasou (dam) Po iniciaci replikace - methylován jen rodičovský řetězec HEMIMETHYLOVANÁ DNA - blok reiniciace replikace -? posun vazby na vnější membránu (? Represorový protein) τ = min hemimethyl. DNA cca 8-10 min MODEL 1) Iniciace replikace na vnitřní membráně. - role fosfolipidů - vhodné množství monomeru DnaA-ATP INICIACE - inaktivace nenavázaného DnaA-ATP - agregace BLOK REINICIACE 2) Hemimethyl. oric DNA - posun z vnitřní membrány na inhibitor na vnější membráně, dokud není DnaA-ATP inaktivován X dam - kmeny

11 SEGREGACE NUKLEOIDU - terminace replikace (FtsA exprese -? signál pro buněčné dělení) - separace nukleoidů - posun 1/4 a 3/4 - septace 1963 Jacob - model - růst membrány X - Inhibice syntézy proteinů - nukleoidy zůstanou centrálně obnovení syntézy proteinů - posun nukleoidů bez viditelného růstu membrány inhibitory tvorby septa neovlivní umístění Růst membrány nemá vliv na odtažení nukleoidů MODEL Filamenta-? Vazbanastěnu (membránu) SEPTACE FtsZ protein = prokaryotický homolog tubulinu MukB protein =? Motorový protein - mutanty mukb - nukleoid zůstává v centru - in vitro vazba s mikrotubuly - interakce s FtsZ proteinem - vazba k DNA C-koncovou doménou - homologie s kinesinem a myosinem - Komplex s MukE a MukF ENZOSKELETON - membrána - DNA - cytoskelet -? Regulace Ca 2+, proteinfosforylace) - role i při adaptaci na různé prostředí

12 mukb -změny hydrodynamických vlastností nukleoidů rozbalení bakteriálního chromosomu MukB - ovlivňuje superhelicitu nukleoidu -? Síla nutná pro kondenzaci a oddělení dceřiných nukleoidů MukB - udržuje nukleoidy stacionárních buněk v kondensovaném stavu kondensované domény chromatinu dekondensované domény chromatinu Replication machinery SeqA vazba na hemimethylovanou DNA vedle replikační mašinerie a replikační vidličky, SeqA udržuje replikující se nukleoid v rozbaleném stavu -po remethylaci SeqA disociuje a MukB obnoví kondensovaný stav Oddělování nukleoidů probíhá paralelně s replikací - replikované domény se rovnou posunují na správné místo Replikace a oddělení nukleoidů v PB jsou paralelní procesy (X EB)

13 BAKTERIÁLNÍ CYTOSKELET

14

15 Bakteriální actin-like cytoskeletální proteiny - homologní k aktinu MreB a MreB homology - role v řadě buněčných funkcí (e.g. Regulace buněčného tvaru, segregace chromosomu, buněčná polarita..) - Proteiny uspořádány do helikálních filamentárních struktur - na vnitřní straně membrány MreB X není jasné, zda MreB hraje nějakou roli v cytokinesi E.coli Caulobacter crescentus Filamenta B. subtilis dynamické struktury, změny v průběhu b.cyklu - MreB protein Thermotoga maritima self-assembly in vitro - dlouhá filamenta - MreB využívá in vitro buď ATP nebo GTP pro tvorbu filament, filamenta pevnější než aktinová (podobnější intermediálním filamentům - poskytuje buňkám pevnost ) Možné role: 1 - regulace tvaru tyčovitých bakterií prostřednictvím organizace biosyntetických enzymů mureinu do helikální struktury podél dlouhé osy buňky - vzorec syntézy mureinu, který je zodpovědný za tyčovitý tvar buňky Murein (peptidoglykan) = primární determinanta tvaru bakteriální buňky, tvoří exoskeleton vně plasmatické membrány

16 2. participace na určení buněčné polarity -? Lokalisace specifických proteinů do jednoho nebo obou pólů buňky Např. C.crescentus - diferenciační cyklus - řada proteinů specificky cílena do jednoho nebo obou pólů (např. membránové histidine kinasy). MreB je pro lokalisaci nezbytný. Není-li přítomen, proteiny difusně rozloženy uvnitř buňky. Dále - polární lokalisace proteinů participujících na chemotaxi, pohybu, virulenci.? Mechanismus? 3. Segregace chromosomů - poškozená není-li MreB nukleoidy nesprávně distribuované v cytoplasmě, buňky bez nukleoidů nebo nukleoidy poškozeny septem -Mechanismus pohybu nukleoidu není znám,? Interakce (přímá nebo nepřímá) oric oblasti s MreB cytoskeletem pohyb podél helikální MreB struktury?

17 MamK aktinový homolog - subcelulární organizace membrán magnetosomů = další role pro aktin-like cytoskelet = umístění organel v bakteriální buňce Magnetosomy - na membránu vázané organely Magnetospirillum magneticum obsahující krystaly železa. Membrány magnetosomů = invaginace cytoplasmatické membrány - podél dlouhé osy buňky. - ohraničeny filamentárními MamK strukturami (MamK-GFP), Vazba MamJ - ΔmamK - nejsou filamenta ani uspořádané řetízky magnetosomů. Magnetosomy - role při orientaci bakterií podle magnetického pole, magnetotaktické bakterie -? Role při nalezení optimálního prostředí pro existenci rozhraní mezi kyslíkovým a anoxickým prostředím v půdě (mikroaerofilní bakerie)

18 FtsA aktinový homolog FtsA - komponenta mašinérie buněčného dělení - interakce s C-koncem FtsZ - Lokalizuje do FtsZ ringu -esenciálníprotein FtsA - in vitro tvoří polymerní strukturu -Váže ATP Funkce?

19 ParM a AlfA proteiny - Role při segregaci plasmidů (low copy number) - Kódované plasmidy E.coli ParRMC (parr a parm geny), pars lokus s repeticemi kam se váže ParR Par - E.coli AlfA B.subtilis, segregace plasmidů, tvoří vlákno mezi póly b.

20 Bakteriální tubulin-like cytoskeletální proteiny - homologní k tubulinu 2 typy = FtsZ a BtubA/BtubB proteiny (Prosthecobacter dejongeii), GTPasy FtsZ protein - vytváří transientní dynamickou helikální strukturu podél dlouhé osy buňky a tzv. Z-ring uprostřed buňky Bacillus subtilis - FtsZ konservativní, pravděpodobně u všech prokaryot - GTP-vazebný protein, GTPasová aktivita - in vitro - polymerace do uspořádané struktury - dynamické vlastnosti, růst z nukleačního místa Dynamická lokalizace v průběhu cyklu Assembly ve středu buňky, zůstává alespon polovinu BC než nastává invaginace Během septace: Z-ring shluknutí na konci invaginace half-life méně než minuta, prodloužení u FTsZ mutants s redukovanou GTPasovou aktivitou Assembly FtsZ - vytvoří se aktivní místo pro GTP hydrolysu mezi asociovanými monomery, k hydrolyse docházi asi hned po assembly Lokalisace (FtsZ-GFP)

21 Interaguje s mnoha proteiny

22 Bakteriální homology intermediálních filament Crescentin - homolog intermediálních filament EB - cca 25 % identita a 40 % similarita s IF EB. - zodpovědný za prohnutý tvar Caulobacter crescentus -cresmutanty = změna tvaru na tyčovitý Filamenta crescentinu

23 CfpA a Scc proteiny - u Spirochet cytoplasmatická filamenta- průměr 5-7 nm (EB IF = 8-10) -4-6 filament pod membránou, podél dlouhé osy buňky (helikální), vazba na membránu prostřednictvím proteinů AglZ protein u Myxococcus xanthus - hraje roli v sociální motilitě, interaguje s malými GTPasami -tvoří filamenta in vitro

24 Další bakteriální cytoskeletární proteiny, které nemají homology v EB MinD/ParA třída bakteriálních cytoskeletárních proteinů MinD skupina: umístění bakteriálních míst dělení ParA skupina: oddělování DNA MinD skupina: tvoří dynamickou helikální strukturu pod cytoplasmatickou membránou In vitro tvorba svazků MinD filament bundles v přítomnosti MinE, ATP, a phospholipidových vesiklů.

25 ParA skupina: plasmid partitioning proteins kódované plasmidy - zodpovědné za distribuci nízkokopiových plasmidů do dceřiných buněk In vivo - ParA proteiny tvoří helikální filamenta osciují podél nukleoidů (podobné min ) In vitro tvorba svazků ParF filament v přítomnosti ParG a ATP.

26 BUNĚČNÉ DĚLENÍ - TVORBA SEPTA Polar annuli (PA) Periseptal annuli (PSA) Elektronová mikroskopie 1983 Vnější membrána Vnitřní membrána Peptidoglykan PSA - vnitřní membrána těsně spojena s peptidoglykanem a vnější membránou - definuje oblast membrány, kde vznikne septum Fluorescenčně značené proteiny - do periplasmatického prostoru - oblasti PSA resp. PA - není volná komunikace se zbytkem periplasmatic. prostoru Komponenty pro tvorbu septa nedifundují, jsou lokalisovány

27 ts MUTANTY = fts (filamenting ts phenotype) - filamenta - blok v buněčném dělení (x mutace ovlivnující i jiné fce - CYKLUS SEPTACE: např sekrece, replikace etc) Předp. fenotyp = filamenta bez PSA (původní PSA dorozdělená) Nebyly identifikovány:? tvorbapsa I. Tvorba nových PSA nezbytná pro růst b. (např. signál pro inkorporaci nového materiálu) = letálni II. Změna lokalisace nových PSA + maturace PSA Zastavení v 1/4 resp. 3/4 délky III. Morfogenese septa Septum - invaginace všech tří vrstev IV. Modifikace PA PA odvozen od původního PSA = obsahuje elementy pro buněčné dělení Předp. fenotyp = filamenta s nekomplet. PSA, náhodně rozmístěná ftsz 84 = nematurovaná PSA náhodně podél filamenta Předp. fenotyp = filamenta s PSA - různá stádia tvorby septa ftsa = kompletní PSA ve správných posicích, po přenesení do permisivní teploty - dokončení sept -začátek invaginace ftsq -ddto enva, cha Změny permeability k antibiotikům

28 MINICELL MODEL: Mutanty min - fenotyp = heterogenní délka buněk v populaci -1 dělení / buněčný cyklus X 3 možná místa dělení Delece min lokusu = MINICELL FENOTYP 3 geny: minc mind mine Analysa min mutant + kmenů nadprodukujících min geny: FENOTYP - nadbytek minc + mind inhibice dělení filamenta - nadbytek mine dělení ve všech místech minicell - delece minc, D, E dělení ve všech místech minicell - delece mine inhibice dělení filamenta 1. Wild type CD E FINÁLNÍ FENOTYP určen poměrem množství min produktů 2. ΔminE nebo nadbytek mincd CD 3. ΔminCD nebo nadbytek mine CD E E E MinC+MinD = inhibitory buněčného dělení ve všech místech MinE = určuje specificitu mincd inhibitoru

29 Min proteiny vytváří dynamické struktury oscilace mezi 2 polovinami buňky MinC a MinD mají stejný pattern i periodicitu oscilace asi oscilují v komplexu (potvrzená interakce MinC a MinD) MinD-ATP vazba na fosfolipidy MinE MinD-ATP MinD-ADP MinE stimuluje ATP hydrolysu jen když je MinD-ATP vázán na membránu ATP a MinE regulují vazbu MinD na membránu Regulace assembly FtsZ uprostřed buňky: MinC je antagonista Z-ring assembly tato funkce stimulovana MinD?MinD přivede MinC k membráně (MinC v nepřítomnosti MinD v cytoplasmě) Cyklus oscilace cca 50s Proč assembly iniciuje na pólu?

30 FtsZ gen - overexprese - minicell fenotyp X nejsou prodloužené buňky - zvýšení frekvence buněčného dělení za buněčný cyklus = dělení v centru zůstává + dělení i na pólech - nadřazeno inhibici min lokusem (nadprodukce mincd částečně suprimuje) - lokalisace PSA INHIBITORY BUNĚČNÉHO DĚLENÍ MinC, MinD SfiA, SfiC: normálně reprimovány dereprese po SOS indukci - reversibilní blok septace (čas pro opravy a rekombinace)

31 Regulace dělení v závislosti na živinách Bacillus subtilis komponenta b.stěny lipoteichoic acid UgtP glucosyltransferasa hodně glukosy - vysoká úroveň aktivity glucolipid biosynthesis pathway UDP-glucose Blok FtsZ assembly glucose 1-phosphate phosphoglucomutasa hodně živin glucose 6-phosphate Lokalizace UgtP v závislosti na živinách UgtP-GFP wt překryvné cykly porucha UgtP dráhy

32 ? Udržuje konstantní poměr FtsZ rings vzhledem k buněčné délce a zajišťuje, že buňka dostatečně naroste a dokončí segregaci chromosomů před cytokinesí

BUŇEČNÝ CYKLUS A JEHO KONTROLA

BUŇEČNÝ CYKLUS A JEHO KONTROLA BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené

Více

Buněčný cyklus. Replikace DNA a dělení buňky

Buněčný cyklus. Replikace DNA a dělení buňky Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných

Více

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY CYTOSKELETÁLNÍ PRINCIP BUŇKY mikrotubuly střední filamenta aktinová vlákna CYTOSKELETÁLNÍ PRINCIP BUŇKY funkce cytoskeletu - udržovat

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Bakteriální transpozony

Bakteriální transpozony Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce

Více

1. AKTINOVY CYTOSKELET (mikrofilamenta)

1. AKTINOVY CYTOSKELET (mikrofilamenta) CYTOSKELET - pohyb bunek, zmeny tvaru bunek - pohyb organel, bunecné procesy (napr. separace chromosomu) - vyzaduje energii (ATP) - CYTOSKELETON = cytoplasmaticky systém vláken - nutný pro bunecný pohyb,

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.

Více

Úvod do mikrobiologie

Úvod do mikrobiologie Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie

Více

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým

Více

3. Nukleocytoplasmatický kompartment rostlinných buněk

3. Nukleocytoplasmatický kompartment rostlinných buněk 3. Nukleocytoplasmatický kompartment rostlinných buněk Co je nukleocytoplasmatický kompartment a jak vypadá u typické rostlinné buňky Jádro buněčné Nositel naprosté většiny genetické informace buňky Jak

Více

Genetická kontrola prenatáln. lního vývoje

Genetická kontrola prenatáln. lního vývoje Genetická kontrola prenatáln lního vývoje Stádia prenatáln lního vývoje Preembryonální stádium do 6. dne po oplození zygota až blastocysta polární organizace cytoplasmatických struktur zygoty Embryonální

Více

STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY

STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY Morfologie (tvar) bakterií STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY Tři základní tvary Koky(průměr 0,5-1,0 µm) Tyčinky bacily (šířka 0,5-1,0 µm, délka 1,0-4,0 µm) Spirály (délka 1 µm až100 µm) Tvorba skupin

Více

zvyšování počtu jednotlivých mikroorganismů roste počet živých buněk exponencio- nálně otevřeném systému

zvyšování počtu jednotlivých mikroorganismů roste počet živých buněk exponencio- nálně otevřeném systému Definice růstu Růstem myslíme jednak zvyšování počtu jednotlivých mikroorganismů, případně zbytnění jednotlivých organel, a tím i zvětšování jednotlivého mikrobu. Je-li mikroorganismus v uzavřeném prostoru,

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis

TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC

Více

Klonování DNA a fyzikální mapování genomu

Klonování DNA a fyzikální mapování genomu Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.

BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom

Více

SPORULACE BACILLUS SUBTILIS

SPORULACE BACILLUS SUBTILIS SPORULACE BACILLUS SUBTILIS 1.Buňka 1 nebo více buněk odlišných DĚLENÍ EXTERNÍ SIGNÁLY (pokles zdrojů výživy, hustota populace) INTERNÍ SIGNÁLY (stádium buněčného cyklu) Signální transdukce SPORULACE HLADOVĚNÍ

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK

REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK Molekulární základy dědičnosti - rozšiřující učivo REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK REPLIKACE deoxyribonukleové kyseliny (zdvojení DNA) je děj, při kterém se tvoří z jedné dvoušoubovice DNA dvě nová

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

Magnetotaktické bakterie

Magnetotaktické bakterie Magnetotaktické bakterie G- bakterie, objeveny v 60.l. 20.stol. koky, bacily, vibria, spirily; pohyb bičíky obligátně mikroaerofilní nebo anaerobní negativní aerotaxe výskyt: svrchní sedimenty ve vodě

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

7. Regulace genové exprese, diferenciace buněk a epigenetika

7. Regulace genové exprese, diferenciace buněk a epigenetika 7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom

Více

Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl

Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 1 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Charakteristika buněčného cyklu eukaryot

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru: Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -

Více

Determinanty lokalizace nukleosomů

Determinanty lokalizace nukleosomů METODY STUDIA CHROMATINU Topologie DNA a nukleosomů Struktura nukleosomu 1.65-1.8 otáčky Struktura nukleosomu 10.5 nt 1.8 otáčky 10n, 10n + 5 146 nt Determinanty lokalizace nukleosomů mechanické vlastnosti

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,

Více

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál

Více

ZÁKLADY BAKTERIÁLNÍ GENETIKY

ZÁKLADY BAKTERIÁLNÍ GENETIKY Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Vytvořilo Oddělení lékařské genetiky FN Brno

Vytvořilo Oddělení lékařské genetiky FN Brno GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI

Více

Kosterní svalstvo tlustých a tenkých filament

Kosterní svalstvo tlustých a tenkých filament Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci

Více

Cytoskelet a molekulární motory: Biologie a patologie. Prof. MUDr. Augustin Svoboda, CSc.

Cytoskelet a molekulární motory: Biologie a patologie. Prof. MUDr. Augustin Svoboda, CSc. Cytoskelet a molekulární motory: Biologie a patologie Prof. MUDr. Augustin Svoboda, CSc. Cytosol: tekutá hmota, vyplňující prostor uvnitř buňky mezi organelami. Ve světelném mikroskopu se jeví jako amorfní

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort Enzymová katalýza Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více

prokaryotní Znaky prokaryoty

prokaryotní Znaky prokaryoty prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

REKOMBINACE Přestavby DNA

REKOMBINACE Přestavby DNA REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných

Více

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Nukleové kyseliny Replikace Transkripce, RNA processing Translace ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti

Více

Buněčný cyklus a molekulární mechanismy onkogeneze

Buněčný cyklus a molekulární mechanismy onkogeneze Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich

Více

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají

Více

Globální pohled na průběh replikace dsdna

Globální pohled na průběh replikace dsdna Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový

Více

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité

Více

Apoptóza Onkogeny. Srbová Martina

Apoptóza Onkogeny. Srbová Martina Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Přeměna chemické energie v mechanickou

Přeměna chemické energie v mechanickou Přeměna chemické energie v mechanickou Molekulám schopným této energetické přeměny se říká molekulární motory. Nejklasičtějším příkladem je svalový myosin (posouvá se po aktinu), ale patří sem i ATP-syntáza

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více

MTI Cvičení č. 2 Pasážování buněk / Jana Horáková

MTI Cvičení č. 2 Pasážování buněk / Jana Horáková MTI Cvičení č. 2 Pasážování buněk 15.11./16.11.2016 Jana Horáková Doporučená literatura M. Vejražka: Buněčné kultury http://bioprojekty.lf1.cuni.cz/3381/sylabyprednasek/textova-verze-prednasek/bunecnekultury-vejrazka.pdf

Více

Růst a vývoj rostlin - praktikum MB130C78

Růst a vývoj rostlin - praktikum MB130C78 Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u

Více

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících

Více

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Regulace enzymových aktivit

Regulace enzymových aktivit Regulace enzymových aktivit Regulace enzymových aktivit: Změny množství enzymu v kompartmentu, buňce, orgánu: - změna exprese, degradace atd. - změna lokalizace Skutečné regulace: - aktivace/inhibice nízkomolekulárními

Více

Genetika zvířat - MENDELU

Genetika zvířat - MENDELU Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je

Více

Obecná biologie a genetika B53 volitelný předmět pro 4. ročník

Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie. Mezipředmětové

Více

MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha

MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 3.12.2008 Obsah Obsah Robustnost chemotaxe opakování model chemotaxe bakterií nerozliseny stavy aktivity represoru aktivita = ligandy a konc. represoru

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného

Více

BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY

BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY 1 VÝZNAM BUNĚČNÉ MOTILITY A MOLEKULÁRNÍCH MOTORŮ V MEDICÍNĚ Příklad: Molekulární motor: dynein Onemocnění: Kartagenerův syndrom 2 BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY

Více

Bakalářské práce. Magisterské práce. PhD práce

Bakalářské práce. Magisterské práce. PhD práce Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel

Více

MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE

MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.

Více

BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS

BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS C.crescentus: g - 15 % buněčných proteinů = periodická syntéza nebo syntéza specifická pro buněčný typ -mot + - receptory pro

Více

25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.

25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů. Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace

Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide

Více

Fyziologie AUTOFAGIE. MUDr. JAN VARADY KARIM FNO

Fyziologie AUTOFAGIE. MUDr. JAN VARADY KARIM FNO Fyziologie AUTOFAGIE MUDr. JAN VARADY KARIM FNO 29.1.2019 Autofagie?? Autofagie Self-eating Regulovaný katabolický jev Degradace a recyklace buněčných cytoplasmatických komponent: malfunkční a staré proteiny,

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách

Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou

Více

EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická

EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická EPIGENETIKA Epigenetika se zabývá studiem reverzibilních změn funkce genů, aniž by při tom došlo ke změnám v sekvenci jaderné DNA. Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická

Více

http://www.accessexcellence.org/ab/gg/chromosome.html

http://www.accessexcellence.org/ab/gg/chromosome.html 3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické

Více

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů

Více

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

Buněčné jádro a viry

Buněčné jádro a viry Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení

Více

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny. DeoxyriboNucleic li Acid Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou

Více