ZÁKLADY BAKTERIÁLNÍ GENETIKY
|
|
- Zbyněk Fišer
- před 9 lety
- Počet zobrazení:
Transkript
1 Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace je regulována, takže jednotlivé geny jsou funkční v závislosti na podmínkách prostředí Uložení genetické informace Chromozomy Plasmidy Plasmidy Množí se nezávisle na chromozomech Pouze intracelulární forma Obvykle kruhové, ale i lineární Většina bakterií obsahuje jeden nebo dva stejné plasmidy(lowcopy plasmid), některé více než 100 (high-copy plasmid) Velikost od několika genů až po několik set Obvykle méně než 5% velikosti chromozomu Některé bakterie mohou obsahovat několik různých plasmidů Geneticky různé Nekompatibilní skupiny Episomy Plasmidy, které se mohou integrovat do chromozomu Plasmidy Plasmidy nesou geny nutné k vlastní replikaci Vlastnosti kódované plasmidyjsou pro bakterie užitečné, ale ne nezbytné (rezistence k antibiotikům, tvorba antibiotik, tvorba tumorů u rostlin, metabolické schopnosti, fixace dusíku atd.) Většina plasmidůse množí pouze v jednom druhu Konjugativní plasmid Nese všechny informace nutné k přenosu konjugací Nekonjugativní plasmid Nemá tyto informace, ale může být přenesen konjugací, pokud stejná buňka obsahuje také konjugativní plasmid Základní pojmy Genotyp Celková genetická konstituce organismu Kompletní sekvence chromosomu(ů) a plasmidu(ů) Genom Genetická informace obsažená v DNA genotypu Fenotyp Charakteristiky projevované organismem v daném prostředí Změna genotypu může vést ke změně fenotypu Změny genotypu jsou vzácné, zahrnují změnu v sekvenci nukleotidů DNA, stabilní Změny fenotypu jsou běžné a snadno reverzibilní 1
2 Modifikace genů - mutace Dědičná změna nukleotidové sekvence v genomu organismu Mutace může nastat Záměnou jednoho nukleotidu druhým (bodová) Změna pozice vodíkového atomu v bázi (tautomerní posun) způsobí změnu vazebných vlastností Odstraněním nebo přidáním nukleotidu Posun čtecího rámce Změna kodónů a aminokyselin Možné i delece a inzerce stovek a tisíců párů bazí Translokací (přesun sekvence) Inverzí (obrácení sekvence) Mutant Učebnice Madigan a kol., obr. 11.6, str. 288 Důsledky bodové mutace Mutageneze Učebnice Madigan a kol., obr. 11.7, str. 289 Delece a inserce Proces vytváření mutací Frekvence Mutageny Činidla zvyšující frekvenci mutací 10 až 1000x Chemická činidla Transpozony(mobilní elementy) Radiace Mutace Spontánní Vliv záření, kyslíkových radikálů Chyby při replikaci Indukované Chemické mutageny Změna tvorby vodíkových vazeb HNO 2 (deaminace A ac) Alkylační činidla Přidávají alkylovou skupinu k bázi a mění tím její schopnost tvořit vodíkové vazby Analoga bazí Podobají se chemickou strukturou přirozeným bazím a mohou být začleněny do DNA Tvoří jinak vodíkové vazby a zvyšuje se tak možnost nesprávného párování při následné syntéze komplementárního řetězce Interkalační činidla Molekuly s třemi benzenovými jádry, které se vloží mezi báze obou vláken a oddálí tak přilehlé báze Při replikaci pak dojde k vložení dalších bazído volného místa vedoucího k přidání bazí Mobilní elementy Speciální segmenty DNA, které se mohou přemisťovat z jednoho místa na druhé ve stejné nebo jiné molekule DNA Vkládají se do genů a narušují jejich funkci Inzerční sekvence Obrácená repetice (palindrom) Pouze gen nutný pro přemístění Transposasa Transpozony Obsahuje další geny Transpozice (přemístění) Místně specifická rekombinace Transposasa rozpoznává palindromové sekvence a cílovou sekvenci 2
3 Ultrafialové záření Způsobuje dimerizaci sousedních pyrimidinových bazí na stejném vláknu DNA DNA vlákno je zdeformováno, nemůže se přizpůsobit dvoušroubovici a DNA je poškozena Zvyšuje se pravděpodobnost, že polymerasa udělá chybu Hlavní mutagenní účinek však plyne ze snahy o opravu poškození SOS systémem Oprava poškozené DNA SOS systém Indukovatelnýenzymový systém DNA replikace, který obejde poškozené místo Řada chyb a proto další mutace Fotoreaktivace Viditelné světlo indukuje enzym, který přeruší kovalentní vazbu thyminů Obnova vyříznutím Vyříznutí poškozené DNA z jednoho řetězce a syntéza komplementárního řetězce Další mechanismy opravy Frekvence mutací Pravděpodobnost, že při dělení buňky v daném genu nastane mutace 10-4 až na jedno dělení buňky Jednotlivé geny mutují nezávisle na sobě Mutace jsou stabilní Příležitostně se nukleotid může změnit zpět Reverze U prokaryotníchbuněk jsou mutace pozorovány rychle, protože obsahují pouze jeden nebo dva identické chromosomy Detekce a izolace mutantů Přímá selekce Izolace tzv. selektovatelných mutantů Přímá metoda Třídění (screening) Izolace tzv. neselektovatelných mutantů Nepřímá metoda Detekce a izolace mutantů Selektovatelná mutace Mutace uděluje organismu výhodnou vlastnost, kterou lze využít pro jeho izolaci Mutant roste na pevném médiu, na kterém mateřský organismus neroste Mutant přeroste mateřský organismus Např. organismy rezistentní k antibiotikům Izolace na médiu obsahujícím antibiotikum Selekce umožňuje izolaci jediného mutanta z populace mateřského organismu Neselektovatelná mutace Detekce zkoumáním rozdílných vlastností kolonií Mohou být viditelné na první pohled Např. ztráta pigmentace, tvorba zvrásněných kolonií, ztráta schopnosti růst bez růstového faktoru, citlivost na teplotu, ztráta motility Třídění a nepřímá selekce Využitelné pro izolaci nutričně defektivních mutantů Auxotrof Mutant s požadavky na výživu, neschopen syntézy sloučeniny nutné pro růst Prototrof Mateřský organismus od kterého byl odvozen auxotrof, syntetizuje všechny sloučeniny nutné pro růst Mutant neroste na médiu, na kterém roste mateřský organismus, vyžaduje určitý růstový faktor Neexistuje přímá metoda pro izolaci Mutant musí být identifikován pomocí screeningu Zdlouhavé Replica plating (metoda razítka) Nepřímá selekce pomocí penicilinu Obohacení kultury o mutantní organismus 3
4 Izolace nutričních auxotrofůmetodou replica plating Učebnice Madigan a kol., obr , str. 287 (vysvětluje postup metody třídění otiskem misky) Izolace auxotrofůpomocí penicilinové selekce Základní předpoklad: penicilin zabíjí pouze množící se buňky Předběžná inkubace směsné kultury na minimálním médiu s penicilinem Mutant neroste na minimálním médiu Mateřský organismus by rostl, ale je usmrcen penicilinem Následuje odstranění penicilinu a přenos na médium obsahující růstový faktor (kompletní médium) Vykultivované kolonie reprezentují mutantní organismus a mateřské buňky, které přežily kontakt s penicilinem Negativní selekce Selekce proti mateřskému organismu nikoli selekce mutantního Testování mutagenní aktivity látek Mutagenní látka je potenciálně karcinogenní Amesův test Stanovení frekvence reverze His - buněk na His + buňky Salmonellyv přítomnosti i nepřítomnosti testované chemické látky na médiu neobsahujícím vyžadovanou živinu (His) Mutagenní látka zvyšuje počet reverzí Pozorujeme růst kolonií na minimálním médiu Médium obsahuje enzymy z krysích jater Některé látky nejsou karcinogenní samy o sobě, ale až po metabolizaci v živočišném organismu, primárně v játrech Amesův test Přenos genů Genetická informace buňky může být změněna přenosem skupiny genů z jiné buňky Přenos genů mezi bakteriemi Transformace DNA je přenesena jako prostá DNA Transdukce Bakteriální DNA je přenesena bakteriálním virem Konjugace DNA je přenesena mezi bakteriemi, které jsou ve vzájemném kontaktu Je přenesen pouze krátký úsek DNA Homologní rekombinace Fyzická výměna genů mezi genetickými elementy, která nastává v důsledku homologie DNA sekvencí ze dvou různých zdrojů 4
5 Transformace Obecný mechanismus integrace donorové DNA do genomu příjemce Pokud je bakteriální buněčná stěna narušena, chromozomální DNA se rozpadne Tato DNA může projít skrze buněčnou stěnu a cytoplasmatickou membránu recipientníbuňky a být integrována do jejího chromozomu Přirozená kompetence DNA vstoupí do recipientníbuňky za určitých růstových podmínek Kompetentní buňka Bacillus subtilis, Streptococcus pneumoniae Umělá kompetence Otvory v buněčné stěně jsou vytvořeny uměle (např. elektroporací, pomocí chemických sloučenin) E.coli Transdukce Přenos bakteriální DNA pomocí bakteriofága Obecná transdukce Defektní virové částice náhodnězabudují fragmenty chromosomální DNA Virulentní i temperovaný fág (při lytickém cyklu) Specializovaná transdukce DNA temperovaného fága se nesprávně vyřízne z chromozomu hostitele a přenese do další buňky i sousedící geny hostitele E.coli, Pseudomonas, Rhodococcus, Rhodobacter, Salmonella, Staphylococcus Učebnice Madigan a kol., obr , 11,18, str. 300, 301 Konjugace Přenos plasmidu(f plasmid) z buňky do buňky Donorová a recipientní buňka Přenos pouze v jednom směru z donoru na recipienta Vyžaduje fyzický kontakt buněk E. coli, řada G - bakterií, známo i u G + (Streptococcus, Enterococcus, Staphylococcus) Donor obsahuje F plasmid F + buňka Nese genetickou informaci pro přenos DNA a syntézu pohlavního vlákna Není přítomen v recipientní buňce (F - buňka) Vznikají dvě F + buňky Konjugace Příležitostně se F plasmidintegruje do chromozomu (vznik Hfr buňky) Integrované F faktory jsou příležitostně vyříznuty z bakteriálního chromozomu Při správném vyříznutí vzniká znovu F + buňka Někdy plasmid nese i kus chromozomální DNA (F buňka) Hfri F buňky mohou konjugovat s F - buňkou 5
6 Přenos genů v jedné bakterii F + buňka přenáší F plasmid do F - buňky Transpozony (mobilní elementy) Transpozony se mohou přemístit z místa na chromozomu do plasmidu, který může být přenesen konjugací do jiných buněk Integrace F plasmidu do chromozomu Hfr buňka interaguje s F - buňkou, dochází k přenosu části DNA Hfr buňky, ale ne F faktoru F buňka interaguje s F - buňkou, dochází k přenosu části DNA původní F + buňky Restrikce a modifikace DNA Recipientníbuňky přijmou obecně DNA pouze ze stejného druhu bakterií Pokud do buňky vstoupí cizorodá DNA, je degradována pomocí restrikčních endonukleas Reaguje se specifickými krátkými sekvencemi v cizí DNA a štěpí ji na těchto místech Enzymy v různých organismech rozeznávají a štěpí různé sekvence Zamezení destrukce vlastní DNA Modifikační enzymy (např. metylace určitých bazív rozpoznávané sekvenci zabrání štěpení endonukleasou) Význam přenosu genů pro bakterie Konjugace a transformace nastává pouze u několika druhů bakterií Nejrozšířenější mechanismus přenosu genů je transdukce Přenos genů poskytuje mikroorganismu nové genetické informace, které mu umožní přežít v měnícím se prostředí Význam přenosu genů pro mikrobiální genetiku Umožňuje mapování genů na bakteriálním chromozomu analýzou jejich přenosu z jedné buňky do druhé Čím blíže jsou geny na chromozomu, tím vyšší je pravděpodobnost jejich společného přenosu Důležitá součást technologie genového inženýrství Využití pro zavedení genů do bakterií 6
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy)
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy) Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Rezistence patogenů vůči antimikrobialním látkám. Martin Hruška Jan Dlouhý
Rezistence patogenů vůči antimikrobialním látkám Martin Hruška Jan Dlouhý Pojmy Patogen (patogenní agens, choroboplodný zárodek nebo původce nemoci) je biologický faktor (organismus), který může zapřičinit
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Proměnlivost organismu. Mgr. Aleš RUDA
Proměnlivost organismu Mgr. Aleš RUDA Faktory variability organismů Vnitřní = faktory vedoucí k proměnlivosti genotypu Vnější = faktory prostředí Příčiny proměnlivosti děje probíhající při meioze segregace
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Termín biotechnologie byl poprvé použit v roce 1917 Procesy, při kterých se na tvorbě výsledného produktu podílejí živé organismy Širší definice: biotechnologie
Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. Z.1.07/2.2.00/07.0354 Předmět: KBB/OPSB íl přednášky: Dokončení problematiky Molekulární podstaty genetické informace, objasnění principu replikace
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA po jednom cyklu Kmeny E. coli K a K(P1) + mají vzájemně odlišnou hostitelskou specifitu (K a P1) = obsahují odlišné RM-systémy Experimentální důkaz přítomnosti a působení
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Konjugace. Přenos DNA zprostředkovaný konjugativními plazmidy. Donor recipient transkonjugant
Konjugace Přenos DNA zprostředkovaný konjugativními plazmidy Donor recipient transkonjugant (Exkonjuganti - v rámci téhož druhu, transkonjuganti - v rámci různých druhů) Přenášené typy elementů (DNA):
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU 1928: Griffith - Streptococcus pneumoniae - změny virulence 1944: Avery, MacLeod, McCarty - důkaz transformující aktivity DNA Streptococcus pneumoniae
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Školení GMO Ústav biochemie a mikrobiologie
Školení GMO Ústav biochemie a mikrobiologie 2.2.2018 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie
Klonování gen a genové inženýrství
Klonování gen a genové inženýrství Genové inženýrství užite né termíny Rekombinantní DNA = DNA, ve které se nachází geny nejmén ze dvou zdroj, asto ze dvou zných druh organism Biotechnologie = manipulace
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
VÝZNAM HORIZONTÁLNÍHO PŘENOSU GENETICKÉ INFORMACE PRO VZNIK ANTIBIOTICKÉ REZISTENCE. V. Bencko 1, P. Šíma 2
V. Bencko 1, P. Šíma 2 1 Ústav hygieny a epidemiologie 1. LF UK a VFN, Praha 2 Laboratoř imunoterapie, Mikrobiologický ústav, v. v. i. AV ČR, Praha VÝZNAM HORIZONTÁLNÍHO PŘENOSU GENETICKÉ INFORMACE PRO
analýza dat a interpretace výsledků
Genetická transformace bakterií III analýza dat a interpretace výsledků Předmět: Biologie ŠVP: Prokaryotní organismy, genetika Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: analyzovat
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
Školení GMO Ústav biochemie a mikrobiologie
Školení GMO Ústav biochemie a mikrobiologie 8.2.2019 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Citlivost a rezistence mikroorganismů na antimikrobiální léčiva
Citlivost a rezistence mikroorganismů na antimikrobiální léčiva Sylva Janovská Univerzita Pardubice Fakulta chemicko-technologická Katedra biologických a biochemických věd Centralizovaný rozvojový projekt
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Úvod do mikrobiologie
Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Využití houbových organismů v genovém inženýrství MIKROORGANISMY - bakterie, kvasinky a houby využíval
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/ B.Mieslerová (KB PřF UP v Olomouci)
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 2011 B.Mieslerová (KB PřF UP v Olomouci) VYUŽITÍ HOUBOVÝCH ORGANISMŮ V GENOVÉM INŽENÝRSTVÍ MIKROORGANISMY
Mutace jako změna genetické informace a zdroj genetické variability
Obecná genetika Mutace jako změna genetické informace a zdroj genetické variability Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Radiobiologický účinek záření. Helena Uhrová
Radiobiologický účinek záření Helena Uhrová Fáze účinku fyzikální fyzikálně chemická chemická biologická Fyzikální fáze Přenos energie na e Excitace molekul, ionizace Doba trvání 10-16 - 10-13 s Fyzikálně-chemická
SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM
SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM Jana Badurová, Hana Hudcová, Radoslava Funková, Helena Mojžíšková, Jana Svobodová Toxikologická rizika spojená
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU 1928: Griffith - Streptococcus pneumoniae - změny virulence nevirulentního kmene po přidání usmrcených buněk virulentního kmene 1944: Avery, MacLeod,
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
Výukový materiál zpracován v rámci projektu EU peníze školám
http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
SYSTÉMY ZPROSTŘEDKOVANÉHO PŘENOSU DNA
SYSTÉMY ZPROSTŘEDKOVANÉHO PŘENOSU DNA A. Transdukce E. coli, S. typhimurium, Bacillus, Klebsiella, Staphylococcus, Streptococcus Nespecifická (P22, P1, SPβ, φ11) abortivní Specifická (fág lambda) Jsou
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
Okruhy otázek ke zkoušce
Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.
Deoxyribonukleová kyselina (DNA)
Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou
PLAZMIDY PŘENOS GENETICKÉ INFORMACE
PLAZMIDY rozsáhlá skupina extrachromozomálních genomů jsou tvořeny kruhovou dsdna, která se replikuje nezávisle na chromozómu velikost od 1,5 do 400 kb (1 kilobaze - jeden gen) kryptické plazmidy nesou
Metody detekce poškození DNA
STABILITA GENOMU II. Metody detekce poškození DNA Metody detekce poškození DNA Možnosti stanovení: 1. poškození DNA per se nebo 2. jeho následky mutace genů a mutace chromosomů 1. Detekce poškození DNA
http://www.accessexcellence.org/ab/gg/chromosome.html
3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické
Molekulární biotechnologie. Nový obor, který vznikl koncem 70. let 20. století (č.1)
Molekulární biotechnologie Nový obor, který vznikl koncem 70. let 20. století (č.1) Molekulární biotechnologie je založena Na přenosu genů z jednoho organismu do druhého Jeden organismus má gen, který
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
Základní genetické pojmy
Základní genetické pojmy Genetika Věda o dědičnosti a proměnlivosti organismů Používá především pokusné metody (např. křížení). K vyhodnocování používá statistické metody. Variabilita v rámci druhu Francouzský
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Arabidopsis thaliana huseníček rolní
Arabidopsis thaliana huseníček rolní Arabidopsis thaliana huseníček rolní - čeleď: Brassicaceae (Brukvovité) - rozšíření: kosmopolitní, od nížin až do hor, zejména na výslunných stráních - poprvé popsána
Cílená konstrukce bioaugmentačních preparátů a jejich pozice v procesu efektivních bioremediací
Cílená konstrukce bioaugmentačních preparátů a jejich pozice v procesu efektivních bioremediací Průmyslová ekologie 2011 Bioaugmentace cílené vnesení mikrobiální populace v podobě tzv. biopreparátu (inokula)
Mutační změny genotypu
Mutační změny genotypu - změny genotypu: segregace, kombinace + MUTACE - náhodné změny Mutace - genové - spontánní - chromozómové - indukované (uměle vyvolané) - genomové A) Genové mutace - změna (ztráta)
Biologie - Oktáva, 4. ročník (přírodovědná větev)
- Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k
REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK
Molekulární základy dědičnosti - rozšiřující učivo REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK REPLIKACE deoxyribonukleové kyseliny (zdvojení DNA) je děj, při kterém se tvoří z jedné dvoušoubovice DNA dvě nová
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
DYNAMIKA BAKTERIÁLNÍHO RŮSTU
Úvod DYNAMIKA BAKTERIÁLNÍHO RŮSTU Bakterie mohou přežívat za velice rozdílných podmínek prostředí Jednotlivé druhy však rostou za limitovaných podmínek prostředí Bakteriální kolonie V přírodě existují
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní