BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS

Rozměr: px
Začít zobrazení ze stránky:

Download "BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS"

Transkript

1 BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS

2 BUNĚČNÝ CYKLUS CAULOBACTER CRESCENTUS C.crescentus: g - 15 % buněčných proteinů = periodická syntéza nebo syntéza specifická pro buněčný typ -mot + - receptory pro fágy na pólu s flagellem DIFERENCIACE: 1. Časová regulace genové exprese (regulace iniciace transkripce) 2. Posiční informace v buňce Polární flagellum blok reiniciace replikace DNA c Biosyntéza flagella - distribuce proteinů do specifických míst - distribuce mrna CS G2 (30 ) G1 (60 ) S (90 ) stk Ztráta pohyblivosti (mot - ) DNA i replikace Růst a septace B.cyklus - diferenciace sw = swarmer cell b. s flagellem stk = stalked cell b. se stonkem Ztráta flagella Tvorba stonku v místě flagella Replikace: - 1 ori, obousměrně - dnac (elongace) = periodická exprese v b.cyklu (konec G1) - dnak ddto

3 Mutanty: - nepohyblivé - tvorba flagella > 40 genů - časová regulace genů pro tvorbu flagella - postupná exprese - ovlivněna postupem skládání flagella - flg geny POSIČNÍ INFORMACE 1) Asymetrická distribuce proteinů (v buňce před dělením) - Proteiny flagella a pro chemotaxi = swarmer pól - specifické sekvence - např. receptorový protein pro chemotaxi - mutagenese C - konec nutný pro distribuci - flagellarní proteiny = segregace stejně ve fla + i fla - buňkách tvorba flagella není podmínkou segregace -Heat shock proteiny = segregace do stalk pólu -Regulační proteiny 2) Distribuce mrna (mrna pro tvorbu flagella) flagellin mrna = swarmer pól? mechanismus Sekvence nezbytné pro transport nebo degradaci a) mrna se přepisuje z obou nukleoidových DNA (po replikaci) - tj. v obou pólech a pak je specificky transportována do 1 pólu b) mrna se přepisuje z obou nukleoidových DNA (po replikaci) - tj. v obou pólech a pak je specificky degradována v 1 pólu c) mrna se přepisuje specificky z 1 nukleoidové DNA (po replikaci) - Experiment = Promotor + reporterový gen

4 Swarmer versus Stalked buňky: DNA se liší - v replikaci - v transkripci? Vliv struktury DNA ( transkripční a replikační aparát odliší nukleoidy) - odlišná sedimentace v sacharosovém gradientu -při přechodu swarmer stalked = změna sedimentace nukleoidů? Během cyklu - různá vazba proteinů změna topologie nukleoidů HU protein (histone-like protein) vazba = blok transkripce IHF protein = homolog USF transkripčního faktoru (EB) = stimulator transkripce, znemožní vazbu histonů? V cyklu - oscilace mezi HU-nukleoproteinovým komplexem (neaktivní) a IHF komplexem (aktivní)

5 ROLE 2-KOMPONENTOVÝCH REGULAČNÍCH SYSTÉMU Kontrolují genovou expresi, DNA replikaci a asymetrickou morfogenesi + regulace mezi procesy Ustanovení buněčné asymetrie: Regulační kaskáda centrální regulátory: 1. 2-komponent regulátor CtrA určuje odlišný osud dceřiných buněk

6 1. CtrA (cell-cycle transcriptional activator) = DNA vazebný protein, reguluje (aktivace i represe) >95 genů (např pro DNA methylaci, buněčné dělení, biosyntézu flagella) 1) Regulace biosyntézy flagella zapíná operony kódující komponenty basalní části flagella (vnitřní membrána) následně i další geny 2) Aktivace i jiných genů (nesouvisejících s flagellem) DNA methyltransferasa (regulována b.cyklem) 3) Represe - FtsZ gen - promotor v ori replikace (5 vazebných míst), transkripce nutná pro iniciaci replikace inhibice DNA replikace v swarmer buňce (inhibuje přechod do S-fáze) stalk buňka proteolytická degradace CtrA specifickou proteasou (ClpXP) iniciace replikace? Časová a místní regulace proteolysy swarmer buňka stalk buňka Inhibice replikace FtsZ CtrA transkripční faktor -Syntéza flagella - DNA methylace

7 LOKALISACE CtrA v průběhu buněčného cyklu (mrna přítomna v průběhu celého cyklu) CtrA syntetizován v závislosti na cyklu a začíná se akumulovat v buňce před dělením CtrA aktivita regulována i na posttranslační úrovni fosforylací a proteolýzou Iniciace replikace ~ P ~ P ~ P ~ P Proteolysa 1. FOSFORYLACE Proteolysa 2. SPECIFICKÁ PROTEOLYSA - závislá na C-konci - role ClpP a ClpX proteasového komplexu lokalizovaného na stalk konci buňky Proteolysa

8 Signální kaskáda zodpovědná za fosforylaci CtrA histidine kinasa CckA a histidine fosfotransferasa ChpT -Kromě CtrA aktivuje CpdR faktor nutný pro polární lokalizaci ClpXP (proteasa degradující CtrA) CckA (cell-cycle kinase A) = membránově vázana histidin-kinasa SENSOR -přítomna v průběhu celého b.cyklu - Modulace aktivity Změna lokalisace CckA v průběhu buněčného cyklu (GFP-CckA) swarmer pól Začíná syntéza CtrA (resp. přestává degradace) Fosforylace CtrA biosyntéza flagella

9 ?? Signál aktivující CckA X kinásová aktivita CckA závisí (nepřímo) na fosforylačním stavu dalšího regulátoru DivK součást centrálního check-point mechnismu monitorujícího stav buněčného cyklu - DivK aktivita regulovaná histidine kinasou DivJ a bifunkční histidine kinasou/fosfatasou PleC Swarmer buňka nízká hladina DivJ, PleC tvoří komplex na pólu s flagellem a funguje jako fosfatasa DivK -DivK (defosforylovaný) aktivuje CckA fosforylaci a akumulaci CtrA-P a následně blokuje replikaci? polární lokalizace proteasy ClpXP

10 Během přechodu do fáze stalk buňky polární PleC je nahrazen DivJ kinasou - zvýšení DivK-P, který interaguje s budoucím stalk pólem zvýšení lokální koncentrace DivK-P vede k další stimulaci DivJ aktivity a k přechodu PleC z fosfatázového do kinázového módu zajišťuje fosforylaci DivK v stalk buňce a tím eliminaci CtrA-P což umožní vstup do S-fáze X Zvýšení koncentrace DivK cyclic diguanylate sensor polární lokalizace proteasy ClpXP

11 Později v cyklu, PleC vytváří nový cluster na opačném pólu než je stopka a kolokalizuje s dalším, nově vytvořeným DivK-P clusterem (stále v kinásovém módu) Po kompartmentalizaci na dvě buňky DivK se rozděli na 2 subpopulace DivK ve swarmer buňce oddělen od kinasy DivJ a interaguje s PleC sníží se fosforylace DivK a uvolní se polární DivK komplex což vede ke změně PleC módu z kinasy na fosfatasu DivK defosforylovaný re-akumulace CtrA-P a zastavení v G1 fázi DivK v stalk buňce jsou dohromady s DivJ a zůstanou fosforylované což umožní další cyklus replikace swarmer stalk buňka buňka X Zvýšení koncentrace DivK?

12 LOKALISACE ParA a ParB - ParA, ParB = esenciální, poruchy v segregaci nukleoidů? Orientace oric? Vazba do specifických míst membrány LOKALISACE FtsZ FtsZ transkripce = reprimována CtrA? Replikace = signál pro FtsZ assembly FtsZ = rozdílná stabilita nestabilní v swarmer buňkách

13 Koordinace dynamiky nukleoidu a buněčného dělení FtsZ MipZ PopZ ParB G1-buňky: -1 nukleoid, ori uchycen do starého pólu prostřednictvím vazby ParB-parS nukleoproteinového komplexu s proteinem PopZ. -Regulator dělení MipZ interaguje s ParB tvoří lineární gradient omezující polymeraci FtsZ do nového pólu Vstup do S-fáze: -duplikace ori a segregace kopií 1 zůstává na původním místě, 2 uchycena na opačném pólu pomocí dalšího nově vytvořeného PopZ clusteru. -MipZ se dostává i do druhého pólu - Desintegrace polárního FtsZ komplexu posun FtsZ ring do oblasti nejnižší MipZ koncentrace centrální oblast

14

15 DIFERENCIACE STREPTOMYCES S.griseus, S.coelicolor 1. Myceliární růst (mnohobuněčné mycelium) 2. Tvorba vzdušných hyf 3. Sporulace (fragmentace hyf) Hydrofobní spóry - pouze na pevném médiu -2. a 3. fyziologické změny v kolonii produkce sekundárních metabolitů (antibiotik)

16 Vzdušné hyfy Substrátové hyfy Sporulující vzdušné hyfy

17 FYZIOLOGIE DIFERENCIACE:? Lokalisace a iniciace větvení hyf? Determinace směru růstu vzdušných hyf? Řízení prodlužování hyf Změny metabolismu: 1. Před tvorbou vzdušných hyf povrchové hyfy akumulují zásobní komponenty (glykogen) znaky začínající autolysy 2. Start diferenciace degradace zásobního materiálu (glykogen) zvýšení vnitrobuněčného turgoru zeslabená místa stěny růst větví (hyf) 3. Růst hyf do vzduchu povrchové hyfy sekretují hydrofobní látky hydrofobní povrchová vrstva v ní vzdušné hyfy a spóry SAPs (spore associated proteins) - isolované z vnějšku spór a vzdušných hyf, SapA mrna v místech iniciace vzdušných hyf 4. Zastavení růstu sporulace vyčerpání zásob substrátového mycelia limitace růstu akumulace zásobních komponent ve špičkách hyf pokles turgoru vchlípení membrány septace 5. Oddělení spór po septaci depolymerace glycogenu (inkorporace do stěn spór) růst turgoru oddělení spór

18 FEROMONY: S.griseus A-faktor (2S - isocapryloyl - 3S- hydroxymethyl - γ- butyrlactone) = 10-9 M - nutný pro sporulaci - nutný pro produkci streptomycinu - mutanty Af - defekt ve sporulaci, suprese dodáním A-faktoru aktivace receptoru ArpA AdpA transkripční aktivator aktivace StrR (streptomycin biosynthesis) a dalších genů Model: Část kolonie = hladovění produkce feromonu difuse do dalších částí kolonie - průnik do hyf (lipidický charakter feromonu) interakce s receptorem diferenciace Synchronní diferenciace celé populace AdsA kóduje σ AdsA, hraje roli v časných morfologických změnách SGMPII extracelulární metalloendopeptidasa mutace zpožďuje vývoj vzdušných hyf + další geny kódující extracelulární proteasy AmfS extracelulární peptidický morfogen - peptid 43 AK Amf cluster 5 ORF AmfT (transmembranový protein podobný Ser/Thr kinase), AmfB a AmfA (ABC transporter), AmfR (regulator 2 komponentového regulačního systému)? trankripční aktivátor

19 S.coelicolor A-faktor-like feromon x Afl mutanta sporuluje jiná mutanta nesporulující jiný faktor Velké spektrum feromonů různé chování různých streptomycet ve stejném prostředí speciace Feromony / antibiotika / diferenciace

20 MUTANTY: bld mutanty ( bald = plešaté) - netvoří vzdušné hyfy - často neprodukují antibiotika (kromě některých, např. bldc) bld A, D, G, H projev mutace závisí na zdroji C na manitolu normální vzdušné hyfy x pouze bldh produkuje antibiotika wt bldh Bld A gen kóduje trna pro Leu UUA (kodon TTA je vzácný ve streptomycetach) trna UUA je unikátní gen s TTA kodonem po vnesení do blda mutanty není exprimován, změna TTA cílenou mutagenesí + exprese navození sporulace blda mutanty jinými podmínkami růstu (manitol) - není exprese genu s TTA BldA trna není pro sporulaci na manitolu potřeba geny pro sporulaci neobsahují TTA a nepotřebují BldA trna gen s TTA asi regulační - pro navození diferenciace SIGNÁL (hladovění na AK) změny uvnitř buněk? Změny hladiny guaninových nukleotidů (např. ppgpp) transkripce BldA trna UUA exprese regulačního genu s TTA X Bld A se exprimuje i v mladé kultuře starší kultura hromadění BldA mrna s 5 upraveným koncem + antisense RNA z promotoru uvnitř BldA

21 Sporulačně specifické geny - whi mutanty, σ - faktory σ whig pro přepnutí vzdušné hyfy sporulace (mutanta nesporuluje) nadprodukce časná abortivní sporulace sporulace v substrátových hyfách sporulace v tekutém médiu homology B.subtilis (σ D ), Salmonella (σ F ), Pseudomonas (chemotaxe) Kaskáda regulací: whig whi A,B whi I

22 SAPs (spore associated proteins) SapB = surfactant role v proražení povrchu růst vzdušných hyf produkce záleží na řadě bld genů BldK SIGNÁL 1 S1 S2 S3 S4 S5 SapB odvozen z rams genu (kóduje protein 42 AK dlouhý) post-translačně modifikován (cástečně asi pomocí RamC) - získá strukturu podobnou lantibiotiku (2 cyklické struktury SapB) Podobná Spo0K B.subtilis SIGNÁL 1 = produkce závislá na bld261 akumulace extracelulárně Do buněk prostřednictvím BldK S1 ram cluster kóduje rams, ramc, ramab (komponenty ABC transporteru) a ramr ramr - kóduje regulátor aktivující ramcsab operon (vazba na operon), ramr není transkribován v blda, bldb, bldh a bldd mutantách ramr je aktivován bld kaskádou

23 Vzdušné hyfy na povrchu tenká vláknitá vrstva ( rodlet layer ) poté, co začnou vyrůstat z vodného prostředí tvořena dvojicemi vláken (8-12 nm silná, až 450 nm dlouhá) podobná vrstvě na povrchu vzdušných struktur vláknitých hub - mají na povrchu nerozpustnou vrstvu tvořenou proteiny hydrofobiny (selfassembly ) - mohou být ektrahovány SDS / kys. trifluorooctová (TFA) extrakce SDS/TFA vzdušných hyf Streptomycet směs dvou majoritních homologních proteinů RdlA a RdlB (RODLINS) Rodlins - lokalisovány na vnějším povrchu vzdušných hyf a spór = tvoří nerozpustnou vrstvu geny exprimovány v rostoucích vzdušných hyfách X ne ve spórách kmeny s delecí 1 nebo obou rdl genů nemají porušenu schopnost tvořit hydrofobní vzdušné hyfy X rodlet vrstva je disorganisovaná rdl mutanty nemají normální rodlet vrstvu x jsou pokryty tenkými fibrilami (průměr 4-6 nm). Podobné fibrily nalezeny v TFA extraktech amyloidy 5 proteinů ChpD-H (CHAPLINS - celkem 8 proteinů) exprese Chaplins závisí na σ-faktoru kódovanému bldn krátké ChpE a ChpH sekretovány do média před začátkem tvorby vzdušných hyf - pravděpodobně umožní únik hyf do vzduchu snížením povrchového napětí (podobně jako SapB) dlouhé chaplins ChpA-C nejsou esenciální pro tvorbu vzdušných hyf (asi pomáhají) - delece 5 chaplins (ΔchpABCDH) opožděná morfogenese delece 8 genů (ΔchpABCDEFGH kmen) netvoří vzdušné hyfy chaplins jsou důležité pro tvorbu struktury vzdušných hyf, orientaci do vzduchu a povrchovou hydrofobicitu Exprese rdla a chp genů není detekovatelná v bld mutantách bld kaskáda důležitá pro expresi X aktivace rdl genů vyžaduje další regulaci kmen ΔchpABCDEH tvoří malé množství vzdušných hyf, které ale produkují a lokalisují RdlA stejně jako wt kmen rdl exprese pravděpodobně začíná poté, co hyfa signalisuje opuštění vodného prostředí? existence detekčního (sensing) mechanismu = sky dráha

24 Model tvorby vzdušných hyf Streptomyces coelicolor Rodlins Chaplins Chaplins Sky sensor SapB extracelulární signály vliv na vývoj prostřednictvím bld kaskády indukce tvorby RamR, chaplins ChpE a ChpH a komponent sky dráhy (sensor růstu vzdušných hyf) RamR aktivuje syntézu RamS konverze na SapB (morfogenetický peptid) sekrece prostředníctvím RamAB transporteru -spolus ChpE a H snižuje povrchové napěti a iniciuje růst vzdušných hyf další vývoj regulován sky dráhou (měla by zahrnovat sensor vzdušného růstu) výsledkem je aktivace rodlin a chaplin genů (a dalších) rodlins a chaplins assembly do hydrofobního rodlet obalu na povrchu vzdušných hyf hydrofobicita (brání agregaci vzdušných hyf)

25 Extracelulární komplementace - SapB - i jiné peptidy: STREPTOFACTIN (S.tendae) HYDROPHOBIN (Schizophillum communae) surfactants spíš než signální molekula Bld221 mutanta SapB S. coelicolor růst substrátového mycelia produkce organických kyselin přepnutí na vzdušné hyfy? Přepnutí na alternativní metabolismus = neutralisace média? Re-absorbce extracelulárních kyselin camp mutanta nedochází k neutralisaci média suprese defektu camp nebo pufrováním média

BUŇEČNÝ CYKLUS A JEHO KONTROLA

BUŇEČNÝ CYKLUS A JEHO KONTROLA BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené

Více

Buněčný cyklus. Replikace DNA a dělení buňky

Buněčný cyklus. Replikace DNA a dělení buňky Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

7. Regulace genové exprese, diferenciace buněk a epigenetika

7. Regulace genové exprese, diferenciace buněk a epigenetika 7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

SPORULACE BACILLUS SUBTILIS

SPORULACE BACILLUS SUBTILIS SPORULACE BACILLUS SUBTILIS 1.Buňka 1 nebo více buněk odlišných DĚLENÍ EXTERNÍ SIGNÁLY (pokles zdrojů výživy, hustota populace) INTERNÍ SIGNÁLY (stádium buněčného cyklu) Signální transdukce SPORULACE HLADOVĚNÍ

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Buněčný cyklus a molekulární mechanismy onkogeneze

Buněčný cyklus a molekulární mechanismy onkogeneze Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich

Více

Bakteriální transpozony

Bakteriální transpozony Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym

Více

VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ

VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení

Více

Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)

Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 29.10.2008 Obsah Spojitý deterministický model transkripční regulace Obsah Spojitý deterministický model transkripční regulace Schema transkripční regulace

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 3.12.2008 Obsah Obsah Robustnost chemotaxe opakování model chemotaxe bakterií nerozliseny stavy aktivity represoru aktivita = ligandy a konc. represoru

Více

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus

Více

Apoptóza Onkogeny. Srbová Martina

Apoptóza Onkogeny. Srbová Martina Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu

Více

Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)

Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky) Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?

Více

TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis

TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v

Více

Regulace metabolizmu lipidů

Regulace metabolizmu lipidů Regulace metabolizmu lipidů Principy regulace A) krátkodobé (odpověď s - min): Dostupnost substrátu Alosterické interakce Kovalentní modifikace (fosforylace/defosforylace) B) Dlouhodobé (odpověď hod -

Více

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu

Více

Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií

Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Téma bakalářské práce: Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Nové odvětví molekulární biologie se zabývá RNA molekulami, které se nepřekládají do proteinů, ale slouží

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?

b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky? 1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'

Více

Souhrn 4. přednášky. Genetické metody

Souhrn 4. přednášky. Genetické metody Souhrn 4. přednášky Genetické metody Plasmidy (kvasinkové elementy) Integrace (plasmidy, PCR, kazety) Teplotně-sensitivní mutanty (esenciálních genů) Tetrádová analýza Syntetická letalita, epistase, suprese

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

MOLEKULÁRNÍ BIOLOGIE PROKARYOT

MOLEKULÁRNÍ BIOLOGIE PROKARYOT Informační makromolekuly MOLEKULÁRNÍ BIOLOGIE PROKARYOT Funkce a syntéza informačních makromolekul Regulace metabolické aktivity Nukleové kyseliny Proteiny Pořadí monomerních jednotek nese genetickou informaci

Více

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin

Více

TRANSLACE - SYNTÉZA BÍLKOVIN

TRANSLACE - SYNTÉZA BÍLKOVIN TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Auxin - nejdéle a nejlépe známý fytohormon

Auxin - nejdéle a nejlépe známý fytohormon Auxin - nejdéle a nejlépe známý fytohormon Auxin je nejdéle známým fytohormonem s mnoha popsanými fyziologickými účinky Darwin 1880, Went 1928 pokusy s koleoptilemi trav a obilovin prokázali existenci

Více

Systém HLA a prezentace antigenu. Ústav imunologie UK 2.LF a FN Motol

Systém HLA a prezentace antigenu. Ústav imunologie UK 2.LF a FN Motol Systém HLA a prezentace antigenu Ústav imunologie UK 2.LF a FN Motol Struktura a funkce HLA historie struktura HLA genů a molekul funkce HLA molekul nomenklatura HLA systému HLA asociace s nemocemi prezentace

Více

Příběh pátý: Auxinová signalisace

Příběh pátý: Auxinová signalisace Příběh pátý: Auxinová signalisace Co je auxin? Derivát tryptofanu Příbuzný serotoninu a melatoninu Všechny deriváty přítomny jak u živočichů, tak u rostlin IAA Serotonin Serotonin: antagonista auxinu Přítomen

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze

AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze AMPK (KINASA AKTIVOVANÁ AMP) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK PROTEINKINASA AKTIVOVANÁ AMP přítomna ve všech eukaryotních

Více

BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.

BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Buněčné jádro a viry

Buněčné jádro a viry Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace

Více

INTRACELULÁRNÍ SIGNALIZACE II

INTRACELULÁRNÍ SIGNALIZACE II INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády

Více

Regulace enzymových aktivit

Regulace enzymových aktivit Regulace enzymových aktivit Regulace enzymových aktivit: Změny množství enzymu v kompartmentu, buňce, orgánu: - změna exprese, degradace atd. - změna lokalizace Skutečné regulace: - aktivace/inhibice nízkomolekulárními

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

Intracelulární Ca 2+ signalizace

Intracelulární Ca 2+ signalizace Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

7) Dormance a klíčení semen

7) Dormance a klíčení semen 2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive

Více

Specifická imunitní odpověd. Veřejné zdravotnictví

Specifická imunitní odpověd. Veřejné zdravotnictví Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako

Více

Biosyntéza a degradace proteinů. Bruno Sopko

Biosyntéza a degradace proteinů. Bruno Sopko Biosyntéza a degradace proteinů Bruno Sopko Obsah Proteosyntéza Post-translační modifikace Degradace proteinů Proteosyntéza Tvorba aminoacyl-trna Iniciace Elongace Terminace Tvorba aminoacyl-trna Aminokyselina

Více

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním

Více

http://www.natur.cuni.cz/~zdenap/members/zdenateaching.htm

http://www.natur.cuni.cz/~zdenap/members/zdenateaching.htm http://www.natur.cuni.cz/~zdenap/members/zdenateaching.htm ŽIVOTNÍ CYKLUS X BUNĚČNÝ CYKLUS Alternativní programy EB: Meiosa, sporulace, párování diferenciace apoptosa PB: Sporulace diferenciace apoptosa-like

Více

Genetická kontrola prenatáln. lního vývoje

Genetická kontrola prenatáln. lního vývoje Genetická kontrola prenatáln lního vývoje Stádia prenatáln lního vývoje Preembryonální stádium do 6. dne po oplození zygota až blastocysta polární organizace cytoplasmatických struktur zygoty Embryonální

Více

Kontrola genové exprese

Kontrola genové exprese Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Syntéza a postranskripční úpravy RNA

Syntéza a postranskripční úpravy RNA Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující

Více

RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU. Jana Novotná

RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU. Jana Novotná RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU Jana Novotná Co jsou to cytokiny? Skupina proteinů a peptidů (glykopeptidů( glykopeptidů), vylučovaných živočišnými buňkami a ovlivňujících buněčný růst (též růstové

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny. DeoxyriboNucleic li Acid Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou

Více

Buněčný cyklus. When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants.

Buněčný cyklus. When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants. Buněčný cyklus When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants. (Rudolf Wirchow, 1858) Buněčný cyklus cyklus buněčných procesů začínajících

Více

8. Polysacharidy, glykoproteiny a proteoglykany

8. Polysacharidy, glykoproteiny a proteoglykany Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru: Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -

Více

The cell biology of rabies virus: using stealth to reach the brain

The cell biology of rabies virus: using stealth to reach the brain The cell biology of rabies virus: using stealth to reach the brain Matthias J. Schnell, James P. McGettigan, Christoph Wirblich, Amy Papaneri Nikola Skoupá, Kristýna Kolaříková, Agáta Kubíčková Historie

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny

Více

Struktura a funkce nukleových kyselin

Struktura a funkce nukleových kyselin Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební

Více

(Vývojová biologie) Embryologie. Jiří Pacherník

(Vývojová biologie) Embryologie. Jiří Pacherník (Vývojová biologie) Embryologie Jiří Pacherník jipa@sci.muni.cz Podpořeno projektem FRVŠ 524/2011 buňka -> tkáně -> orgány -> organismus / jedinec Základní procesy na buněčné úrovni dělení buněk proliferace

Více

Regulace enzymové aktivity

Regulace enzymové aktivity Regulace enzymové aktivity MUDR. MARTIN VEJRAŽKA, PHD. Regulace enzymové aktivity Organismus NENÍ rovnovážná soustava Rovnováha = smrt Život: homeostáza, ustálený stav Katalýza v uzavřené soustavě bez

Více

Globální pohled na průběh replikace dsdna

Globální pohled na průběh replikace dsdna Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový

Více

8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů

8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího

Více

Základní morfogenetické procesy

Základní morfogenetické procesy Základní morfogenetické procesy 502 Základní morfogenetické procesy Mechanismy, které se uplatňují v ontogenesi, tedy při vývoji jedince od zygoty k mnohobuněčnému organismu Buněčná úroveň diferenciace

Více

Terapeutické klonování, náhrada tkání a orgánů

Terapeutické klonování, náhrada tkání a orgánů Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací

Více

Výzkumný ústav veterinárního lékařství v Brně

Výzkumný ústav veterinárního lékařství v Brně LIPIDY: FUNKCE, IZOLACE, SEPARACE, DETEKCE FOSFOLIPIDY chemické složení a funkce v buněčných membránách; metody stanovení fosfolipidů fosfolipázy - produkty reakcí (ceramid, DAG = 2nd messengers) a stanovení

Více

Genová etiologie nemocí

Genová etiologie nemocí Genová etiologie nemocí 1. Obecná etiologie nemocí 1. Obecná etiologie nemocí 2. Mutace genů v germinativních a somatických buňkách 3. Molekulární fyziologie genu 4. Regulace aktivity genu (genové exprese)

Více

Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin

Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin SFZR 1 2016 Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin Hayat S, Ahmad A (2011) Brassinosteroids: a class of plant hormone. Springer, Berlin 2 Vývoj organismu regulují signály

Více

Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna

Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem

Více

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

Izolace RNA. doc. RNDr. Jan Vondráček, PhD..

Izolace RNA. doc. RNDr. Jan Vondráček, PhD.. Izolace RNA doc. RNDr. Jan Vondráček, PhD.. Metodiky izolace RNA celková buněčná RNA ( total RNA) zahrnuje řadu typů RNA, které se mohou lišit svými fyzikálněchemickými vlastnostmi a tedy i nároky na jejich

Více

Má tajemný clusterin u dětí v septickém stavu aktivitu chaperonu? J. Žurek, P.Košut, M. Fedora

Má tajemný clusterin u dětí v septickém stavu aktivitu chaperonu? J. Žurek, P.Košut, M. Fedora Má tajemný clusterin u dětí v septickém stavu aktivitu chaperonu? J. Žurek, P.Košut, M. Fedora Klinika dětské anesteziologie a resuscitace, Lékařská fakulta MU, Fakultní nemocnice Brno DNA transkripce

Více

Metody práce s proteinovými komplexy

Metody práce s proteinovými komplexy Metody práce s proteinovými komplexy Zora Nováková, Zdeněk Hodný Proteinové komplexy tvořeny dvěma a více proteiny spojenými nekovalentními vazbami Van der Waalsovy síly vodíkové můstky hydrofobní interakce

Více