Neurální kmenové buňky NSCs (Neural stem cells)
|
|
- Vítězslav Jaroš
- před 6 lety
- Počet zobrazení:
Transkript
1 Neurální kmenové buňky NSCs (Neural stem cells) a) b) Gl glomerularní vrstva Gr granulární vrstva EPl vnější plexiformní vrstva Mi vrstva mitral buněk IPL vnitřní plexiformní vrstva cc - corpus callosum LV - lateral ventricle CPu - caudate putamen (striatum) DG - dentate gyrus SN - substantia nigra lokalizace NSCs a) subventrikulátní zóna (SVZ), postranní komory b) subgranulární zóna DG
2 Neurogeneze v dospělosti! (hlodavci (savci obecně??), zpěvní ptáci) neurogeneze v důsledku březosti neurogeneze v době vábení neurogeneze regulovaná hormony RMS rostrální migrační tok (rostral migratory stream)
3
4 Oblast s NSCs obsahuje čtyři typy buněk 1) pomalu proliferující, astrocytům podobné (GFAP + /nestin + /SSEA1 + /CD133 + ) buňky - typ B = NSCs (přesný fenotyp není dosud úplně objasněn - ±GFAP??, ± nestin??) 2) spící, případě potřeby intenzivně proliferující buňky vzniklé z buněk B - typ C (TA progenitory, přechodně/transientně se dělící progenitory) 3) z buněk typu C vznikají buňky A = neuroblasty 4) ependymální buňky - typ E Shh; Delta/Notch -> Hes Sox1, 2, 3; Emx2; Zic1; Pax6 B (NSC)? STAT3 -> Delta radial glia* embryo E (ependym) EGF (in vitro) C (TA) EGF+FGF2 (in vitro) glia prekursor oligodendrocyt astrocyt A (neuroblast) migrace neurony *radiální glie embryo a časně postnatálně
5 Fenotyp neurálních kmenových buněk
6 Niche neurálních kmenových buněk Architektura v subventrikulární zóně (SVZ) Architektura v subgranulární zóně (SGZ) ra radiální astrocyty ha horizontální astrocyty D nezralá granulární buňka G novágranulárníbuňka
7 NSC přisedají na krevní kapiláry -přísun živin? - NSC exprimují HIF!?! (hypoxií indukovaný faktor)
8 Původ NSC - pozůstatek neurogenní populace z časné embryogeneze
9 Vertikální a horizontální dělení v neurogenním epiteliu Huttner 2005
10 Proporční změny v symetrii buněčného dělení mezi neurálními kmenovými buňkami (stem) a neurálními progenitory (neurogenic, transientně se dělícími buňkami TA) v půběhu neurogeneze u myši Haydar 2002
11 Radiální glie (RG) jako embryonální NSC Nestin+, Vimentin+, GFAP+, Sox2+, Pax6+ vrg bipolární RG, ventrikulární zóna org unipolární radial glia-like cells, vnější ventrikulární zóna IP přechodné progenitory Lui et al., 2011
12 A) Buňky exprimující znaky/markery charaktristické pro časné progenitory (Sox2) a neurony (NeuN a CTIP2) ve ventrikulární zóně neokortexu. B) Dělení org ve vnější vertikulární zóně C) RG/vRG dávají vznik jak vrg tak org, zda je vždy zachována délka radiál. fibril není známo D) org produkují přechodně/transietně se dělící buňky schopné dále diferencovat E) Diferenciace potomků org, ztráta exprese Sox2 a snižení aktivity Notch (snížení HES1), zvýšení exprese TBR2 org na rozdíl od vrg neexprimují CD133 (Prominin), Par3 (PARD3), apkcλ, tj. součásti apikální membrány charakteristické pro apikálně-bazálně polarizovaných buněk. -V průběhu ontogeneze intenzivní proliferace NSC (radiální glie) a TA progenitorů, stimulováno LIF a CNTF v mozkomíšním moku, produkovaných zejména z plexus choroideus, důležitá a dosud neobjasněná interakce s Notch drahou/signalizací. - LIF/gp130 signalizace působí pleiotropně, u zralejších progenitorů indukuje diferenciaci do glií, zejména astrocyty, a celkově podporuje maturaci neuronů, zejména motoneuronů.
13 Dvojitá úloha Notch a gp130/stat3 signalizace v neurogenezi - Notch a STAT3 aktivita se vzájemně podporují (STAT3 reguluje expresi ligandů Notch, Hes aktivuje STAT3) - oba v závislosti na dalších faktorech a statusu buněk podporují sebeobnovu NSC a indukci gliogeneze
14 Plexus choroideus
15 Schéma kortexu hlodavců (A) a člověka (B) Lui et al., 2011
16 Mechanismus regulace RG buněk - neurální progenitory/ip aktivují Notch dráhu u RG buněk a tím blokují jejich diferenciaci - Notch je dále regulován hladinou volného a s Par3 vázaného NUMB (úloha bazální membrány) Lui et al., 2011
17 Regulace klíčových signálních drah komponentami asociovanými s vazbou na bazální membránu Lui et al., 2011
18 V průběhu embryogeneze jsou NSC tzv. radiální glie ventrukulární zóny (vrg + org) Adultní NSC jsou: 1) radiální glie jako v průběhu embryogeneze? 2) adaptované/pozměněné časné přechodné progenitory (IP)? 3) v dospělém mozku nejsou kmenové buňky s neomezenou schopností sebeobnovy, existují pouze IP schopné několika cyklů dělení
19 Vlatnosti NSCs NSCs jsou široce multipotentní a experimenty s chimérami ukázaly, že NSCs dávají vznik buňkám všech tří zárodečných listů (netvoří pohlavní buňky, nebylo prokázáno) u chimér se také NSCs nepodílí na hematopoéze i přesto, že v případě likvidace hematopoézy zářením, injikované NSCs ji obnoví (obojí děláno s myšmi ROSA26) na druhou stranu není jasné, zda NSCs tvoří všechny typy nervů a glií (SC x TA) neurální multipotentní progenitory byly izolovány i z retiny, optického nervu, hypothalamu, čichových laloků, čichového epitelu, a míchy tyto směsné populace nejsou schopné dlouhodobé proliferace in vitro tak jako NSCs a také si zachovávají některé epigenetické znaky podle místa původu po poškození mozku je možno neurogenezi detekovat i v striatu, neokortexu nebo v místech kortiko-spinálních motoneuronů NSCs s věkem ubývá, podobně jako ostatní adultní SSCs, každopádně je lze izolovat z mozkové tkáně i několik hodin (4-6h) po diagnóze klinické smrti in vitro se NSCs kultivují v podobě tzv. neurosfér ve speciálních médiích určených pro expanzi neurálních progenitorů, bez séra, ale s nadbytkem FGF2 a EGF LIF-gp130 / Notch blokují diferenciaci NSC, a podporují jejich proliferaci neurosféry jsou plovoucí útvary s navýšeným množstvím neurálních progenitorů a NSCs, lze v nich detekovat již i množství zralejších typů nervů i glií i neurální progenitory (TA) lze dlouhodobě kultivovat
20 Příprava neurosfér, primární a sekundární neurosféry (Dirks, 2008)
21 In vitro kultivace NSC neurosféry c) EGFR + nestin; d) BrdU + buněčná jádra Clarke 2000 Chimerická blastocysta vytvořená po smíchání blastomer normální a ROSA26 myši a myší embrya (11 dpc) normální a s ROSA26 chimerické myši.
22 NSC jsou také schopny rekonstruovat hematopoézu (Bjornson 1999) A kolonie ze zdravé kostní dřeně; B,C kolonie z kostní drěně NSCs (ROSA) transplantovaných myší po ozáření; D,E GM-CFU z transplantovaných NSCs (ROSA); G,H - M-CFU z transplantovaných NSCs (ROSA); D,G a E,H bez a s X-Gal; F granulocyty + makrofágy & I makrofágy, stanovení May-Grunwald-Giemsa
Kmenové buňky, jejich vlastnosti a základní členění
Kmenové buňky, jejich vlastnosti a základní členění O kmenových buňkách se v současné době mluví velmi často v nejrůznějších souvislostech. Je do nich vkládána naděje, že s jejich pomocí půjde vyléčit
Úvod do studia biologie kmenových buněk. Jiří Pacherník tel:
Úvod do studia biologie kmenových buněk Jiří Pacherník e-mail: jipa@sci.muni.cz tel: 532 146 223 Co jsou kmenové buňky? - buňky schopné vlastní obnovy (sebeobnova) - buňky schopné dávat vznik jiným typům
VÝVOJOVÁ BIOLOGIE. I. Úvod do vývojové biologie. II. Základní principy a mechanismy vývojové biologie. III. Kmenové buňky
PŘEDNÁŠKOVÝ BLOK VÝVOJOVÁ BIOLOGIE I. Úvod do vývojové biologie II. Základní principy a mechanismy vývojové biologie III. Kmenové buňky IV. Růstové faktory a signální transdukce Kmenové buňky: definice
VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ
OBNOVA A REPARACE 1 VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ Příklad: Fyziologická obnova buněk: obnova erytrocytů Rychlost obnovy: 2 miliony nových erytrocytů/s (při průměrné době života erytrocytu
Mezonefros. Neokortex s glomeruly. Metanefrogenní blastém. dřeň s kanálky. Magn. x10. Henleovy kličky (nižší buňky) Sběrací kanálek (vyšší buňky)
Podpořeno grantem FRVŠ 524/2011 Ledviny NEFRON funkční jednotka Kůra - renální tělísko (glomerulus + Bowmanův váček) - proximální tubulus (zpětné vstřebávání) - distální tubulus Dřeň - Henleova klička
(Vývojová biologie) Embryologie. Jiří Pacherník
(Vývojová biologie) Embryologie Jiří Pacherník jipa@sci.muni.cz Podpořeno projektem FRVŠ 524/2011 buňka -> tkáně -> orgány -> organismus / jedinec Základní procesy na buněčné úrovni dělení buněk proliferace
Základní morfogenetické procesy
Základní morfogenetické procesy 502 Základní morfogenetické procesy Mechanismy, které se uplatňují v ontogenesi, tedy při vývoji jedince od zygoty k mnohobuněčnému organismu Buněčná úroveň diferenciace
Nádorové kmenové buňky - CSCs (Cancer stem cells)
Nádorové kmenové buňky - CSCs (Cancer stem cells) Původ CSCs? a) somatické kmenové buňky b) TA buňky (progenitory)* Podstatou je akumulace chyb v regulaci diferenciace, proliferace a apoptósy. Tyto chyby
Histogeneze příklady. 151 Kurs 5: Vývoj buněk a tkání
Histogeneze příklady 151 Kurs 5: Vývoj buněk a tkání Kurs 5: Vývoj buněk a tkání 137 Kasuistika: Thalidomide 138 Základní morfogenetické procesy 139 Regenerace a reparace 140 Ženský reprodukční systém
Diferenciace tkání. Diferenciace blastocysta: Cytotrofoblast. Trofoblast. Syncytiotrofoblast. Epiblast. Embryoblast. Hypoblast
Histogenese 511 Diferenciace tkání Diferenciace blastocysta: Trofoblast Cytotrofoblast Syncytiotrofoblast Embryoblast Epiblast Hypoblast Extraembryonální mesoderm Epiblast Diferenciace epiblastu: Gamety
Sekvenování genomu a bioinformatika Kmenové buňky vytvořené genetickou manipulací Materiálové a tkáňové inženýrství Editace genomu
Sekvenování genomu a bioinformatika Kmenové buňky vytvořené genetickou manipulací Materiálové a tkáňové inženýrství Editace genomu Nobelova cena za fyziologii a medicínu 2012 Oct4 Sox2 c-myc Klf4 Kmenové
Gastrulace, neurulace, somitogenese 508
Gastrulace, neurulace, somitogenese 508 Gastrulace Zásadní děj vývoje - 3. týden Tvorba intraembryonálního mesodermu: Proliferace epiblastu Kaudální morfogenetické centrum: o o Primitivní (Hensenův) uzel
Indukovaná pluripotence. Petr Vodička Liběchov 16/11/2016
Indukovaná pluripotence Petr Vodička Liběchov 16/11/2016 Totipotentní Pluripotentní Lidské ES Myší ES LIF + FBS Feeder = vrstva podpůrných buněk Myší embryonální fibroblasty, SNL, STO bfgf + SR Feeder
Patologie nervového systému. XI. histologické praktikum 3. ročník všeobecného směru
Patologie nervového systému XI. histologické praktikum 3. ročník všeobecného směru Malacie mozková Malacie mozková Hemoragie mozková Hemoragie mozková Subarachnoideální krvácení Hnisavá leptomeningitis
Přednáška v rámci cyklu přednášek pro střední školy
Přednáška v rámci cyklu přednášek pro střední školy 1. 12. 2010 www.lf1.cuni.cz Není buňka jako buňka (některá je kmenová) Význam a výzkum kmenových buněk Eliška Krejčí Anatomický ústav 1.LF UK Není buňka
MUDr. Kissová Jarmila, Ph.D. Oddělení klinické hematologie FN Brno
MUDr. Kissová Jarmila, Ph.D. Oddělení klinické hematologie FN Brno Krvetvorba představuje proces tvorby krvinek v krvetvorných orgánech Krvetvorba je nesmírně komplikovaný, komplexně řízený a dodnes ne
Intracelulární detekce Foxp3
Intracelulární detekce Foxp3 Ústav imunologie 2.LFUK a FN Motol Daniela Rožková, Jan Laštovička T regulační lymfocyty (Treg) Jsou definovány funkčně svou schopností potlačovat aktivaci a proliferaci CD4+
Hematologie. Nauka o krvi Klinická hematologie Laboratorní hematologie. -Transfuzní lékařství - imunohematologie. Vladimír Divoký
Hematologie Nauka o krvi Klinická hematologie Laboratorní hematologie -Transfuzní lékařství - imunohematologie Vladimír Divoký Fyzikální vlastnosti krve 3-4 X více viskózní než voda ph : 7.35 7.45 4-6
Jan Krejsek. Funkčně polarizované T lymfocyty regulují obranný i poškozující zánět
Funkčně polarizované T lymfocyty regulují obranný i poškozující zánět Jan Krejsek Ústav klinické imunologie a alergologie, FN a LF UK v Hradci Králové ochrana zánět poškození exogenní signály nebezpečí
EMBRYONÁLNÍ KMENOVÉ BUŇKY
Bi8120 Aplikovaná buněčná biologie EMBRYONÁLNÍ KMENOVÉ BUŇKY RNDr. Jakub Neradil, Ph.D. Ústav experimentální biologie PřF MU Program přednášky: vlastnosti kmenových buněk embryonální kmenové buňky linie
Indukce neurogeneze a gliogeneze po ischemickém poškození CNS
Přírodovědecká fakulta Univerzity Karlovy v Praze Katedra fyziologie živočichů Indukce neurogeneze a gliogeneze po ischemickém poškození CNS Bakalářská práce Autor: Marcela Filipová Vedoucí práce: Ing.
EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY
EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY 1 VÝZNAM EXTRACELULÁRNÍCH SIGNÁLNÍCH MOLEKUL V MEDICÍNĚ Příklad: Extracelulární signální molekula: NO Funkce: regulace vazodilatace (nitroglycerin, viagra) 2 3 EXTRACELULÁRNÍ
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
Dr. Kissová Jarmila Oddělení klinické hematologie FN Brno
Dr. Kissová Jarmila Oddělení klinické hematologie FN Brno Krvetvorba představuje proces tvorby krvinek v krvetvorných orgánech Krvetvorba je nesmírně komplikovaný, komplexně řízený a dodnes ne zcela dobře
RNDr. Jakub Neradil, Ph.D. Ústav experimentální biologie PřF MU
Bi8120 Aplikovaná buněčná biologie i EMBRYONÁLNÍ KMENOVÉ BUŇKY RNDr. Jakub Neradil, Ph.D. Ústav experimentální biologie PřF MU 1 Program přednášky: vlastnosti kmenových buněk embryonální kmenové buňky
Nervová tkáň. neurony. neuroglie centrální astrocyty oligodendrocyty mikroglie ependym periferní Schwannovy buňky satelitní buňky
Nervový systém Nervová tkáň neurony neuroglie centrální astrocyty oligodendrocyty mikroglie ependym periferní Schwannovy buňky satelitní buňky Nervový systém - CNS a PNS CNS mozek, mozkový kmen, mozeček,
Univerzita Karlova v Praze. Přírodovědecká fakulta
Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Biologie Studijní obor: Buněčná a vývojová biologie Bc. Veronika Dlouhá Neurogeneze a gliogeneze po ischemickém poškození mozku u EGFP/GFAP
HEMOPOESA. Periody krvetvorby, kmenové a progenitorové buňky; regulace hemopoesy. Ústav histologie a embryologie
HEMOPOESA Periody krvetvorby, kmenové a progenitorové buňky; regulace hemopoesy Ústav histologie a embryologie MUDr. Radomíra Vagnerová, CSc. Předmět: Obecná histologie a obecná embryologie B02241 Přednášky
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL - INTEGRINY LIGANDY) - SELEKTINY (SACHARIDOVÉ LIGANDY) - ADHEZIVNÍ MOLEKULY IMUNOGLOBULINOVÉ SKUPINY - MUCINY (LIGANDY SELEKTIN - (CD5, CD44, SKUPINA TNF-R AJ.) AKTIVACE
CHARAKTERIZACE A MECHANISMY
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV EXPERIMENTÁLNÍ BIOLOGIE CHARAKTERIZACE A MECHANISMY VZNIKU NEURÁLNÍCH PREKURZORŮ IN VITRO STUDIE Diplomová práce Veronika Pánská Vedoucí práce: RNDr.
MASARYKOVA UNIVERZITA
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav experimentální biologie Oddělení fyziologie a imunologie živočichů ÚLOHA INTRACELULÁRNÍ REDOXNÍ ROVNOVÁHY V NEUROGENEZI EMBRYONÁLNÍCH KMENOVÝCH BUNĚK
Embryonální období. Martin Špaček. Odd. histologie a embryologie
Modul IB Embryonální období Martin Špaček Odd. histologie a embryologie Zdroje obrázků: Moore, Persaud: Zrození člověka Rarey, Romrell: Clinical human embryology Scheinost: Digitální zobrazování počátků
Histologická praktika. Nervový systém
Histologická praktika Nervový systém NERVOVÝ SYSTÉM nejkomplexnější systém v lidském těle tvořen sítí více než 100 milionů neuronů každý neuron má tisíce mezispojů, což vytváří velmi efektivní komunikační
BUNĚČNÝ CYKLUS. OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky. Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí
(1 BUNĚČNÝ CYKLUS BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace kontrolní body molekulární brzdy Jednobuněčné
PŘEHLED OBECNÉ HISTOLOGIE
PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější
Kardiovaskulární systém a hematopoéza
Srdce x cévy x hematopoéza (společný původ) Kardiovaskulární systém a hematopoéza mezoderm => mezenchym hemangioblast endotel - hemocytoblast -myoblast/kardiomyoblast - myocyt -kardiomyocyt hnací motor
Nervový systém Martin Špaček
Modul A Nervový systém Martin Špaček Odd. histologie a embryologie Zdroje obrázků: Gray: Anatomy of the Human Body (http://www.bartleby.com/107/) Rarey, Romrell: Clinical human embryology Young, Heath:
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Chrupavka a kost. Osifikace 605
Chrupavka a kost Osifikace 605 Pojiva Pojiva jsou tkáň, která je složena z buněk a mezibuněčné hmoty. Rozdělení: Vazivo Chrupavka Kost Tuková tkáň Chrupavka Buňky: Chondroblasty Chondrocyty (Chondroklasty)
Vznik dřeva přednáška
Vznik dřeva přednáška strana 2 2 Rostlinné tělo a růst strana 3 3 Růst - nejcharakterističtější projev živých organizmů - nevratné zvětšování hmoty či velikosti spojené s činností živé protoplazmy - u
Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu
Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu Úvod Myelosuprese (poškození krvetvorby) patří mezi nejčastější vedlejší účinky chemoterapie.
Genetická kontrola prenatáln. lního vývoje
Genetická kontrola prenatáln lního vývoje Stádia prenatáln lního vývoje Preembryonální stádium do 6. dne po oplození zygota až blastocysta polární organizace cytoplasmatických struktur zygoty Embryonální
Živočišné tkáně. Vznik - histogeneze diferenciace proliferace
Živočišné tkáně Vznik - histogeneze diferenciace proliferace Soudržnost, adhezivita. Mezibuněčná hmota!! - vláknitá kolagen, elastin amorfní voda, anorg, ionty, glykosoaminoglykany a strukturální glykoproteiny
METABOLISMUS POJIVA PLICNÍCH CÉV PŘI CHRONICKÉ HYPOXII. Jana Novotná
METABOLISMUS POJIVA PLICNÍCH CÉV PŘI CHRONICKÉ HYPOXII Jana Novotná Hypoxie nedostatek O 2 v krvi (srdeční nebo plicní onemocnění). Plicní hypertenze zvýšení krevního tlaku v plicním cévním řečišti (plicní
MUDr. Iva Slaninová, Ph.D. Biologický ústav LF
MUDr. Iva Slaninová, Ph.D. Biologický ústav LF MU ipokorna@med. @med.muni.cz Hierarchie buněk v tkáních Kmenové buňky self-renewal - klon Progenitorové buňky s každým dělením více diferencované Progenitor
OBRANNÝ IMUNITNÍ SYSTÉM
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_04_BI2 OBRANNÝ IMUNITNÍ SYSTÉM Základní znaky: není vrozená specificky rozpoznává cizorodé látky ( antigeny) vyznačuje se
Kmenové buňky a tkáňové náhrady naděje moderní medicíny.
Kmenové buňky a tkáňové náhrady naděje moderní medicíny. RNDr. Pavla Jendelová PhD. Ústav experimentální medicíny AVČR Ústav neurověd, UK 2. lékařská fakulta Centrum buněčné terapie a tkáňových náhrad
Endocytóza o regulovaný transport látek v buňce
. Endocytóza o regulovaný transport látek v buňce Exocytóza BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace
Segmentální organizace těla
Embryologie 6 Neurulace Neuroektoderm neurální ploténka Neurální trubice, crista neuralis (neurální lišta) Uzávěr nervové trubice: Začíná v cervikální oblasti Neuroporus anterior 25. den Neuroporus posterior
Embryologie III. Vývoj žloutkového váčku, amnion, chorion. Extraembryonální coelom. Ústav pro histologii a embryologii 1.LF Univerzity Karlovy
Embryologie III Vývoj žloutkového váčku, amnion, chorion. Extraembryonální coelom. Ústav pro histologii a embryologii 1.LF Univerzity Karlovy Přednášející: Doc. MUDr. Tomáš Kučera, Ph.D. Předmět: Obecná
Bi8120 Aplikovaná buněčná biologie DIFERENCIACE BUNĚK. RNDr. Jakub Neradil, Ph.D. Ústav experimentální biologie PřF MU
Bi8120 Aplikovaná buněčná biologie DIFERENCIACE BUNĚK RNDr. Jakub Neradil, Ph.D. Ústav experimentální biologie PřF MU Program přednášky: diferenciační potenciál buněk diferenciační dráhy růstové faktory
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
Lidské embryonální kmenové buňky Biologie, technologie a další
Lidské embryonální kmenové buňky Biologie, technologie a další Aleš Hampl Ústav experimentální medicíny AV ČR, v.v.i. Lékařská fakulta, Masarykova Univerzita, Brno Centrum buněčné terapie a tkáňových náhrad,
doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU
Bi8120 Aplikovaná buněčná biologie - 4.5.2011 Buněčné terapie doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU Regenerativní medicína = lékařské ř ké postupy,
doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU
Bi8120 Aplikovaná buněčná biologie 18.4.2012 Buněčné terapie doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU Regenerativní medicína = lékařské ř ké postupy,
ANÉMIE CHRONICKÝCH CHOROB
ANÉMIE CHRONICKÝCH CHOROB (ACD anemia of chronic disease) seminář Martin Vokurka 2007 neoficiální verze pro studenty 2007 1 Proč se jí zabýváme? VELMI ČASTÁ!!! U hospitalizovaných pacientů je po sideropenii
ONTOGENETICKÝ VÝVOJ NERVOVÉ SOUSTAVY
ONTOGENETICKÝ VÝVOJ NERVOVÉ SOUSTAVY Složitost uspořádání a vzájemného spojení jednotlivých struktur vyskytujících se v nervové soustavě nenechává nikoho na pochybách, že se tento systém nemůže vytvořit
Buňky, tkáně, orgány, orgánové soustavy. Petr Vaňhara Ústav histologie a embryologie LF MU
Buňky, tkáně, orgány, orgánové soustavy Petr Vaňhara Ústav histologie a embryologie LF MU Dnešní přednáška: Koncept uspořádání tkání Embryonální vznik tkání Typy tkání a jejich klasifikace Orgánové soustavy
Výzkum kmenových buněk ve světle Úmluvy Martin Šolc 1/24
Výzkum kmenových buněk ve světle Úmluvy 2. 11. 2017 Martin Šolc 1/24 Obsah Kmenové buňky Přípustnost embryodestruktivního výzkumu Úmluva Zákon č. 227/2006 Sb., o výzkumu embryonálních kmenových buňkách
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
Regenerativní medicína
Regenerativní medicína Luděk Šefc L. Šefc, 2015 1 Regenerativní medicína Proces vytváření živé, funkční tkáně pro opravu nebo náhradu tkáně nebo orgánu, který ztratil funkci v důsledku stáří, nemoci, poškození
MTI Cvičení č. 2 Pasážování buněk / Jana Horáková
MTI Cvičení č. 2 Pasážování buněk 15.11./16.11.2016 Jana Horáková Doporučená literatura M. Vejražka: Buněčné kultury http://bioprojekty.lf1.cuni.cz/3381/sylabyprednasek/textova-verze-prednasek/bunecnekultury-vejrazka.pdf
Imunitní systém člověka. Historie oboru Terminologie Členění IS
Imunitní systém člověka Historie oboru Terminologie Členění IS Principy fungování imunitního systému Orchestrace, tj. kooperace buněk imunitního systému (IS) Tolerance Redundance, tj. nadbytečnost, nahraditelnost
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Ontogeneze živočichů
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Ontogeneze živočichů postembryonální vývoj 1/73 Ontogeneze živočichů = individuální vývoj živočichů, pokud vznikají
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Vývoj krvetvorby. lení klinické hematologie FN Brno
Vývoj krvetvorby Dr. Kissová Jarmila Oddělen lení klinické hematologie FN Brno Krvetvorba představuje p proces tvorby krvinek v krvetvorných orgánech. Krvetvorba je nesmírn rně komplikovaný, komplexně
ZÁKLADY FUNKČNÍ ANATOMIE
OBSAH Úvod do studia 11 1 Základní jednotky živé hmoty 13 1.1 Lékařské vědy 13 1.2 Buňka - buněčné organely 18 1.2.1 Biomembrány 20 1.2.2 Vláknité a hrudkovité struktury 21 1.2.3 Buněčná membrána 22 1.2.4
BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN
BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN Živočišná buňka lysozóm jádro cytoplazma plazmatická membrána centrozom Golgiho aparát ribozomy na drsném endoplazmatickém retikulu mitochondrie Živočišná tkáň soubor
Neurony a neuroglie /
Nervová tkáň Jedna ze 4 základních typů tkání Vysoce specializovaná - přijímá /dráždivost/, vede /vodivost/, porovnává, ukládá, vytváří informace, zabezpečuje přiměřenou reakci Původ: neuroektoderm CNS
Ženský pohlavní systém
Ženský pohlavní systém 419 Ženský pohlavní systém Oogonia primordiální zárodečná buňka z epiblastu - ve stěně žloutkového váčku migrace do základu gonád mitotické dělení pod vlivem medulárního rete ovarii
Muž 15 let Klinická dg.: Lymphadenopathia colli l. sin, Rezistence pozorována od 3/2013 Bez progrese růstu Krevní a serologické nálezy negativní
Muž 15 let Klinická dg.: Lymphadenopathia colli l. sin, Rezistence pozorována od 3/2013 Bez progrese růstu Krevní a serologické nálezy negativní Suspektní tuhá nerovná uzlina, velikosti 3,5 x 2,5 x 2 cm
NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly
NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité
Univerzita Karlova v Praze. Přírodovědecká fakulta. Studijní obor: Speciální chemicko-biologické obory
Univerzita Karlova v Praze Přírodovědecká fakulta Studijní obor: Speciální chemicko-biologické obory Studijní program: Molekulární biologie a biochemie organismů Tereza Pavlištová Diferenciační potenciál
Jaké máme leukémie? Akutní myeloidní leukémie (AML) Akutní lymfoblastická leukémie (ALL) Chronické leukémie, myelodysplastický syndrom,
Akutní myeloidní leukémie (AML) Jaké máme leukémie? Akutní lymfoblastická leukémie (ALL) Chronické leukémie, myelodysplastický syndrom, Chronické leukémie, mnohočetný myelom, Někdy to není tak jednoznačné
Imunitní systém. Získaná adaptivní specifická (je potřeba imunizace ) Vrozená imunita (není potřeba imunizace) řasinky)
Imunitní systém 629 Imunitní systém Vrozená imunita (není potřeba imunizace) o Fyzikální bariéry (kůže, sliznice, řasinky) o Biologické bariéry (symbionti) o Chemické bariery (ph, hlen) o Solubilní faktory
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
Kardiovaskulární systém a hematopoéza
Srdce x cévy x hematopoéza (společný původ) Kardiovaskulární systém a hematopoéza mezoderm => mezenchym hemangioblast endotel - hemocytoblast - myoblast/kardiomyoblast - myocyt - kardiomyocyt hnací motor
Specifická imunitní odpověd. Veřejné zdravotnictví
Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako
SKANÁ imunita. VROZENÁ imunita. kladní znalosti z biochemie, stavby membrán n a fyziologie krve. Prezentace navazuje na základnz
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Prezentace navazuje na základnz kladní znalosti z biochemie, stavby membrán n a fyziologie krve Rozšiřuje témata: Proteiny přehled pro fyziologii
Prokaryota x Eukaryota. Vibrio cholerae
Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky
Schéma epitelu a jeho základní složky
Schéma epitelu a jeho základní složky Těsný spoj Bazální membrána Transcelulární tok Paracelulární tok LIS - Laterální intercelulární prostor Spojovací komplexy epiteliálních buněk Spojovací komplexy epiteliálních
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Základní pojmy II. ONTOGENEZE. Ontogeneze = individuální vývin jedince během jeho života
Základní pojmy II. ONTOGENEZE Ontogeneze = individuální vývin jedince během jeho života!? 1957 2007 Základní otázky ONTOGENEZE Je ontogenetický vývin geneticky předurčen, nebo je dán vlivy prostředí? (nature
CYTOKINY, ADHESIVNÍ MOLEKULY - klíčové molekuly pro mezibuněčnou komunikaci, buněčná migrace a mezibuněčná signalizace. Ústav imunologie LF UP
CYTOKINY, ADHESIVNÍ MOLEKULY - klíčové molekuly pro mezibuněčnou komunikaci, buněčná migrace a mezibuněčná signalizace Ústav imunologie LF UP Mezibuněčná komunikace základ fungování organizmů K zajištění
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Živočišné tkáně I. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis struktury a funkce živočišných
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám
VY_32_INOVACE_ZDRK34060FIG Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření:
8. Rozmnožování a vývoj živočichů: vývoj, růst, stárnutí a smrt
8. Rozmnožování a vývoj živočichů: vývoj, růst, stárnutí a smrt Morfologie, histologie a ontogeneze rostlin a živočichů: Část 2: histologie a vývoj živočichů Typy vývoje = vývojové strategie ONTOGENEZE
HISTOLOGIE A MIKROSKOPICKÁ ANATOMIE PRO BAKALÁŘE
OBSAH 1. STAVBA BUŇKY (S. Čech, D. Horký) 10 1.1 Stavba biologické membrány 11 1.2 Buněčná membrána a povrch buňky 12 1.2.1 Mikroklky a stereocilie 12 1.2.2 Řasinky (kinocilie) 13 1.2.3 Bičík, flagellum
Roman Hájek Tomáš Jelínek. Plazmocelulární leukémie (PCL)
Roman Hájek Tomáš Jelínek Plazmocelulární leukémie (PCL) Definice (1) vzácná forma plazmocelulární dyskrázie nejagresivnější z lidských monoklonálních gamapatií incidence: 0,04/100 000 obyvatel evropské
Biologie - Sexta, 2. ročník
- Sexta, 2. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence občanská Kompetence sociální a personální Kompetence k podnikavosti Kompetence
Velikost živočišných buněk
Velikost živočišných buněk Živočišné buňky jsou co do velikosti značně rozmanité. Velikostí se mohou lišit i stejné buněčné typy u různých živočichů. Průměrná velikost živočišné buňky je 10-20 µm. Příklady
7. Rozmnožování a vývoj živočichů: osemenění, oplození a embryogeneze
7. Rozmnožování a vývoj živočichů: osemenění, oplození a embryogeneze Morfologie, histologie a ontogeneze rostlin a živočichů: Část 2: histologie a vývoj živočichů Osemenění (inseminace) = uvedení spermií
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Fyziologický vývoj mozku v dětském věku
Fyziologický vývoj mozku v dětském věku MUDr. Zuzana Ludvíková Konference Mensa ČR 19.11.2014 Lidský mozek Obsahuje přes 1000 miliard nervových buněk Pokud pracuje naplno odčerpávají neurony 20% z celkové
CNS. NEUROANATOMIE I. - Struktury centrálního nervového systému
CNS NEUROANATOMIE I. - Struktury centrálního nervového systému Opakování - organizace nervstva Centrální nervová soustava Chráněno kostí, integrační funkce Mozek mícha Periferní nervová soustava Efektorová
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Erytrocyty. Hemoglobin. Krevní skupiny a Rh faktor. Krevní transfúze. Somatologie Mgr. Naděžda Procházková
Erytrocyty. Hemoglobin. Krevní skupiny a Rh faktor. Krevní transfúze. Somatologie Mgr. Naděžda Procházková Formované krevní elementy: Buněčné erytrocyty, leukocyty Nebuněčné trombocyty Tvorba krevních
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Pluripotentní, odvozené kmenové buňky. EpiSC
Pluripotentní, odvozené kmenové buňky EPL ESC EpiSC EGC ECC Embryonální kmenové buňky (Embryonic stem cell ESC) Embryonální zárodečné buňky (Embryonic germ cell EGC) Embryonální nádorové buňky (Embryonal