STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ
|
|
- Peter Svoboda
- před 9 lety
- Počet zobrazení:
Transkript
1 Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového zapisovače průběh světelné intenzity na stínítku.. Stanovte mřížkovou konstantu mřížky s nejistotou. 3. Stanovte šířku štěrbiny a její nejistotu. 1. TEORETICKÝ ÚVOD 1.1 Interference Světlo je elektromagnetické vlnění vlnových délek, na něž je citlivé lidské oko. Projevem vlnových vlastností světla je interference a ohyb (difrakce). Dva zdroje záření jsou koherentní, jestliže rozdíl jejich fází je konstantní. Při interferenci koherentního záření dochází k zesilování a zeslabování intenzity záření. aser představuje koherentní zdroj záření: všechny body příčného průřezu svazku mají tutéž fázi. Interference dvou vlnových svazků je proto dobře pozorovatelná po průchodu monochromatického koherentního záření laseru dvojicí štěrbin (obr. 1a). Po průchodu dvojicí štěrbin se koherentní vlnění skládají a na vzdáleném stínítku pozorujeme maxima a minima intenzit (obr. 1a). Polohu bodu na stínítku můžeme charakterizovat úhlem θ nebo vzdáleností x od centrálního maxima. Podmínku pro úhly θ max, které odpovídají maximům intenzity pozorovaným na stínítku, dostaneme z požadavku, aby dráhový roz- d x r θ Intenzita Intenzita a) b) Obr. 1 Interference po průchodu a) dvojicí štěrbin, b) soustavou štěrbin Hofmann J., Urbanová M.: Fyzika I., Vydavatelství VŠCHT, Praha 1998, odd a
2 díl r paprsků prošlých štěrbinami byl celistvým násobkem vlnové délky světla λ. Použijeme-li označení jako na obr.1a, je tato podmínka d sinθ max, k = k λ k = 0, 1,,... (1) Polohy minim intenzity jsou dány vztahem λ d sin θ min, k = (k + 1) k = 0, 1,,... () Průběh intenzity pozorovaný na stínítku je schématicky znázorněn na obr. 1a. Difrakční mřížka představuje soustavu velkého množství ekvidistantních štěrbin, které jsou realizovány vrypy do rovinné desky. Existují mřížky na odraz a na průchod. Vzdálenost vrypů d se nazývá mřížková konstanta. Podmínka pro maximum intenzity pozorované na vzdáleném stínítku je totožná s podmínkou v případě dvojice štěrbin. Se zvětšujícím se počtem vrypů se zmenšuje pološířka maxim, mezi kterými se pak nacházejí slabá sekundární maxima (obr. 1b). Mřížka se používá v optických přístrojích jako disperzní element, který slouží k rozkladu záření podle vlnových délek, neboť pro k 1 závisí polohy interferenčních maxim na vlnové délce. Intenzita maxim vyšších řádů (pro vyšší hodnoty k) klesá v důsledku ohybového jevu. 1.. Ohyb (difrakce) Ohybem (difrakcí) rozumíme takové odchylky od přímočarého šíření světla, které nemohou být vysvětleny odrazem nebo lomem. Difrakční jevy jsou pozorovatelné v případě průchodu záření otvory nebo při interakci s překážkami, jejichž rozměry jsou srovnatelné s vlnovou délkou světla. V našem experimentálním uspořádání budeme dopadající záření považovat za rovinnou vlnu. V tomto případě hovoříme o Fraunhoferově ohybu. Po dopadu laserového záření na úzkou štěrbinu nebo překážku pozorujeme na vzdáleném stínítku (obr. ) kromě centrálního intenzitního maxima po jeho obou stranách soustavu dalších maxim s klesající intenzitou, která jsou oddělena minimy. Průběh závislosti pozorované intenzity na úhlu a x θ Intenzita Obr. Ohybový jev po průchodu rovinné vlny úzkou štěrbinou 88
3 odklonu (ohybový obrazec) je důsledkem interference všech infinitezimálních zdrojů uvnitř štěrbiny. Průběh intenzity ohybového jevu je schématicky znázorněn na obr. a dán následujícím vztahem : π asinθ sin λ I( θ ) = I(0). (3) π asinθ λ Minima intenzit v ohybovém obrazci odpovídají nulovým hodnotám čitatele ve vztahu (3): a sin θ min, k = k λ k = 1,,... (4) Mezi minimy se nacházejí maxima intenzit, jejichž velikost se vzrůstajícím řádem (hodnotou k) klesá. Pro intenzity prvních dvou dvojic maxim, které jsou symetricky rozloženy kolem centrálního maxima I (0), ze vztahu (3) dostaneme I (θ max, 1 ) = 0,047 I (0), I (θ max, ) = 0,0165 I (0). (5) Ohybový jev, který vzniká, jestliže se koherentní rovinná vlna setká s překážkou rozměrů srovnatelných s vlnovou délkou záření, má stejný průběh jako v případě štěrbiny. Z průběhu ohybového obrazce tak můžeme zjistit rozměry otvorů a překážek, jejichž rozměry jsou srovnatelné s vlnovou délkou použitého záření. 1.3 Koherentní zdroj monochromatického záření - laser Jestliže je soubor molekul nebo atomů v tepelné rovnováze, je obsazení energetických hladin dáno Boltzmannovým rozdělovacím zákonem. Z něho plyne, že populace energetických hladin s nižší energií je větší než populace hladin s vyšší energií. V laserech je však třeba vytvořit takovou situaci, aby pro určitou dvojici hladin platilo, že populace vyšší hladiny je vyšší než populace nižší hladiny. V tomto případě mluvíme o inverzní populaci hladin. Proces, při kterém je systému dodávána energie za účelem vytvoření inverzní populace, se nazývá čerpání laseru. Jestliže vstoupí do takovéhoto prostředí foton o vhodné energii, která odpovídá rozdílu energetických hladin s inverzní populací, dojde k přechodu na nižší energetickou hladinu při současném vyzáření fotonu o stejných vlastnostech, jako měl foton, který tento proces vyvolal (stimuloval). Tento pochod se nazývá stimulovaná emise. Proces stimulované emise se podél optické dráhy v laseru mnohokrát lavinovitě opakuje a dochází tak k výraznému zesílení záření. Výsledkem je koherentní záření vysoké intenzity a značného stupně monochromatičnosti. V laseru musí být tedy splněny následující podmínky: 1. Vytvoření inverzní populace v aktivním prostředí.. Aktivní prostředí musí být umístěno v resonátoru, kde se prodlužuje mnohonásobnými odrazy mezi koncovými zrcadly optická dráha, a tím se záření stimulovanou emisí zesiluje v žádaném směru. Zjednodušeně popíšeme činnost He-Ne laseru, který v úloze používáme. Urbanová M, Hofmann J.: Fyzika II, VŠCHT v Praze, Praha 000, odd
4 Aktivním prostředím je zde směs helia a neonu v poměru 9:1. Energetické hladiny systému, které se účastní při činnosti laseru, jsou schématicky znázorněny na obr. 3. He Ne Energie E 3 kolize E E 1 rychlé přechody zákl. stav Obr. 3 Schéma energetických hladin v He-Ne laseru Čerpání je realizováno elektrickým výbojem, při kterém dojde k excitaci atomů helia na vyšší energetickou hladinu E 3. Pravděpodobnost přechodu na nižší hladiny atomů helia je malá, tato hladina má tedy dostatečně dlouhou dobu života, je metastabilní. Protože energie hladiny E 3, je blízká hladině neonu, která je označena na obr. 3 jako E, dochází ke koliznímu přenosu excitační energie z hladiny E 3 helia na hladinu E neonu. Populace v hladině E neonu tak může být větší než populace v jeho nižší hladině E 1. Vytvoří se inverze populace mezi těmito hladinami. Pokud je nižší hladina E 1 rychlými procesy deexcitována, inverze populace zůstává. To je podmínka k tomu, aby zářivý přechod z hladiny E neonu na hladinu E 1 neonu vyvolal lavinovitou stimulovanou emisi, která je pak dále zesilována v optickém rezonátoru. aser použitý v úloze pracuje v kontinuálním režimu na vlnové délce 63,8 nm s výkonem 0,5 mw. He-Ne laser může pracovat mezi dalšími energetickými hladinami, které nejsou pro zjednodušení zobrazeny na obr. 3 a poskytovat laserové záření i např. v infračervené oblasti. aserové záření se vyznačuje následujícími vlastnostmi: 1. Je vysoce monochromatické, poskytuje záření s úzkou spektrální šířkou.. Je koherentní, což se projevuje tím, že v celém průřezu laserového svazku je fáze stejná. 3. U řady laserů má laserové záření vysoký stupeň polarizace. 4. aserový paprsek vykazuje malou prostorovou divergenci svazku. 1.4 Detekce světelného záření Jednoduchá metoda detekce světelného záření využívá vnitřního fotoefektu ve fotočláncích a hradlových fotočláncích. Vzniklý fotoproud se měří přes vhodný odpor citlivými voltmetry nebo zaznamenává zapisovačem. Ve vhodném pracovním režimu je měřené napětí lineární funkcí intenzity záření. 90
5 . POSTUP MĚŘENÍ A VYHODNOCENÍ 1. Prostudujte bezpečnostní předpisy pro práci s lasery, které jsou umístěny v laboratoři a postupujte podle nich. Zapněte laser podle pokynů a nechte ho 15 minut stabilizovat.. Na optickou lavici mezi laser a stínítko umísťujte postupně studované objekty: optickou mřížku, štěrbinu, vlas, popř. dvojitou štěrbinu. Pozorujte difrakční obrazce vytvořené na stínítku, kvalitativně je popište a diskutujte. 3. Určete mřížkové konstanty difrakčních mřížek a tloušťku štěrbiny. a) Seznamte se s obsluhou zapisovače a ovladače pohybu detektoru intenzity světla před stínítkem. b) Na zapisovači zaznamenejte průběh intenzity interferenčních obrazců pro mřížky č.1 a. Volte nejvhodnější polohu objektu na optické lavici tak, abyste pro mřížku č. 1 zaznamenali intenzity maxim v 0., 1. a. řádu (k = 0, 1, ) na obou stranách od maxima 0. řádu. Pro mřížku č. zaznamenejte průběh intenzity v 0. a 1. řádu. Ohybový obrazec štěrbiny nebo vlasu zaznamenejte tak, aby byly jasně patrné polohy minim 1. řádu. Doporučené hodnoty citlivosti zapisovače a rychlosti posunu papíru pro jednotlivé objekty jsou uvedeny v laboratoři.vzdálenost mřížek a štěrbiny od detektoru odečítejte pomocí měřítka na optické lavici (maximální chyba čtení z max = 1 mm). Zaznamenejte rovněž použitý rozsah r zapisovače. Parametry měření zapište do následující tabulky Objekt mřížka č. 1 mřížka č. štěrbina v z (cm/s) r (mv) c) Na záznamu zapisovače odečtěte vzdálenost p k maxima k-tého řádu od hlavního maxima (maximální chyba čtení z max = 0,5 mm). Hodnotu p k určete jako střední hodnotu poloh maxim pásů téhož řádu symetricky rozložených kolem maxima 0. řádu. Skutečnou vzdálenost x k maxim od hlavního maxima na stínítku určete podle vztahu x k = K p k. Koeficient K závisí na použité rychlosti posunu papíru zapisovače. Jeho hodnoty spolu s nejistotami typu B jsou uvedeny v laboratoři. Výsledky zapisujte do tabulky: Objekt mřížka č. 1 mřížka č. k p k K - (mm) (mm) d) K výpočtu mřížkové konstanty d použijte vztah (1), kde lze pro malé úhly θ a vzhledem k uspořádání experimentu považovat sinθ tgθ = xk. Hodnota d se získá jako výsledek nepřímého měření z měřených veličin p k a ze vztahu kλ d =. Kp k 91
6 Hodnoty vlnové délky záření laseru λ = 63,8 nm a řádu spektra k považujte za přesné. Mřížkovou konstantu pro mřížku č. 1 stanovte z polohy maxima. řádu, pro mřížku č. použijte polohu maxima 1. řádu. e) Vypočtěte šířku štěrbiny nebo tloušťku vlasu podle vztahu (4). Použijte polohu minim 1. řádu, které určíte postupem uvedeným v bodě b). 3. PŘESNOST MĚŘENÍ a) Určení nejistoty mřížkové konstanty d. Veličinu získáme s nejistotou u typu B podle vztahu (13), kap. IV ( z max = 1 mm, Θ = 3, u = 1/ 3 mm), nejistota u p veličiny p je rovněž nejistota typu B ( z max = 0,5 mm, Θ = 3, u p = 0,5/ 3 mm), hodnoty K převodního faktoru a nejistoty u K jsou udány v laboratoři. Nejistotu u d měření mřížkové konstanty d pro k = určíme pomocí vztahu (9), resp. odd , kap. IV: u d λ = p K u u + p p u K + K Výsledek uveďte ve tvaru d = ( d ± u d ) mm.. Nejistotu výsledku nepřímého měření mřížkové konstanty mřížky č. (k = 1) stanovte z nejistot typu B podobně jako u mřížky č. 1. b) Určení nejistoty šířky štěrbiny a. Určení nejistoty u a šířky štěrbiny a proveďte obdobně jako pro mřížkovou konstantu d. 9
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Praktikum školních pokusů 2
Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
Úloha 15: Studium polovodičového GaAs/GaAlAs laseru
Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud
Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
Vlnové vlastnosti světla. Člověk a příroda Fyzika
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,
1 Pracovní úkol 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřené závislosti zpracujte graficky. Stanovte prahový proud i 0. 2. Pomocí Hg výbojky okalibrujte
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
MĚŘENÍ PLANCKOVY KONSTANTY
Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
Úloha 10: Interference a ohyb světla
Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 29.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán
7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb
1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
Měření šířky zakázaného pásu polovodičů
Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 6 Název: Studium ohybových jevů v laserovém svazku Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 10.3.2014
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Úloha 3: Mřížkový spektrometr
Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím
Youngův dvouštěrbinový experiment
Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Interference a ohyb světla
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 10: Interference a ohyb
5.3.5 Ohyb světla na překážkách
5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Abstrakt: Úkolem bylo proměření základních charakteristik záření pevnolátkového infračerveného
27. Vlnové vlastnosti světla
27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 25.3.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Mikrovlny Abstrakt V úloze je
Člověk a příroda Fyzika Cvičení z fyziky Laboratorní práce z fyziky 4. ročník vyššího gymnázia
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie přednášející: Zdeněk Bochníček Tento text obsahuje příklady ke cvičení k předmětu F3100 Kmity, vlny, optika. Příklady jsou rozděleny
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.
PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem
- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla
VLNOVÁ OPTIKA - studium jevů založených na vlnové povaze světla: - interference (jev podmíněný skládáním vlnění) - polarizace - difrakce (ohyb) - disperze (jev související se závislostí n n ) - studium
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]
Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev
Fotoelektrické snímače
Fotoelektrické snímače Úloha je zaměřena na měření světelných charakteristik fotoelektrických prvků (součástek). Pro měření se využívají fotorezistor, fototranzistor a fotodioda. Zadání 1. Seznamte se
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické
Úloha č. 1 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické
Fyzika. 8. ročník. LÁTKY A TĚLESA měřené veličiny. značky a jednotky fyzikálních veličin
list 1 / 7 F časová dotace: 2 hod / týden Fyzika 8. ročník (F 9 1 01.1) F 9 1 01.1 (F 9 1 01.3) prakticky změří vhodně vybranými měřidly fyzikální veličiny a určí jejich změny elektrické napětí prakticky
INSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
Teorie rentgenové difrakce
Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární
Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Úvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
Interference na tenké vrstvě
Úloha č. 8 Interference na tenké vrstvě Úkoly měření: 1. Pomocí metody nterference na tenké klínové vrstvě stanovte tloušťku vybraného vlákna nebo vašeho vlasu. 2. Pomocí metody, vz bod 1, stanovte ndex
Light Amplification by Stimulated Emission of Radiation.
20. Lasery Asi 40 let po zveřejnění Einsteinovy práce o stimulované emisi vyzkoušeli princip v oblasti mikrovln (tzv. maser) ruští fyzikové N. G. Basov a A. M. Prochorov a americký fyzik C. H. Townes.
5.3.6 Ohyb na mřížce. Předpoklady: 5305
5.3.6 Ohy na mřížce Předpoklady: 5305 Optická mřížka = soustava rovnoěžných velmi lízkých štěrin. Realizace: Skleněná destička s rovnoěžnými vrypy, přes vryp světlo neprochází, prochází přes nepoškraaná
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU Měřicí potřeby 1) spektrometr ) optická mřížka 3) sodíková výbojka 4) Balmerova lampa Teorie Optická mřížka na průchod světla je skleněná destička, na níž
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Studium ultrazvukových vln
Číslo úlohy: 8 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 12. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Studium ultrazvukových
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Stavba Michelsonova interferometru a ověření jeho funkce
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 20 Název: Stavba Michelsonova interferometru a ověření jeho funkce Pracoval: Lukáš Vejmelka obor (kruh) FMUZV
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
Spektrometrické metody. Reflexní a fotoakustická spektroskopie
Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.
1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Metody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
OPTIKA. I. Elektromagnetické kmity
OPTIKA Optika se studuje elektromagnetické vlnění v určitém intervalu vlnových délek, které můžeme vnímat zrakem, a sice jevy světelné Rozlišujeme základní pojmy: Optické prostředí prostředí, kterým se
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako
Úkoly 1. Změřte divergenci laserového svazku. 2. Z optické stavebnice sestavte Michelsonův interferometr. K rozšíření svazku sestavte Galileův teleskop. Ze známých ohniskových délek použitých čoček spočtěte,
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Vlnové vlastnosti světla
Vlnové vlastnosti světla Odraz a lom světla Disperze světla Interference světla Ohyb (difrakce) světla Polarizace světla Infračervené světlo je definováno jako a) podélné elektromagnetické kmity o frekvenci
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V
28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika
336 28 NELINEÁRNÍ OPTIKA Nelineární optické jevy Holografie a optoelektronika Světelná vlna (jako každá jiná vlna) vyjádřená ve tvaru y=y o sin (út - ) je charakterizována základními charakteristikami:
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 6. března 2007 Obor: Fyzika Ročník: III Semestr:
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Lasery Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png http://cs.wikipedia.org/wiki/ Soubor:Spectre.svg Bezkontaktní termografie 2 Součásti laseru
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
Balmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
Vznik a šíření elektromagnetických vln
Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův
Základní experimenty s lasery
Základní experimenty s lasery O. Hladík 1, V. Ţitka 2, R. Homolka 3, J. Kadlčík 4 Gymnázium Vysoké Mýto 1, Gymnázium Jeseník 2, Gymnázium Botičská 3, SPŠ Třebíč 4 hlad.on@centrum.cz 1, ladiczitka@gmail.com
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V
Sada Optika. Kat. číslo 100.7200
Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
P5: Optické metody I
P5: Optické metody I - V klasické optice jsou interferenční a difrakční jevy popisovány prostřednictvím ideálně koherentních, ideálně nekoherentních, později také částečně koherentních světelných svazků
Jednoduchý elektrický obvod
21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod
Elektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
Měření indexu lomu kapaliny pomocí CD disku
Měření indexu lomu kapaliny pomocí CD disku Online: http://www.sclpx.eu/lab4r.php?exp=1 Tento experiment vychází svým principem z klasického experimentu měření vlnové délky světla pomocí CD disku, který