ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE"

Transkript

1 ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE Atomic Absorption Spectrometry (AAS) (c) Měří se úbytek intenzity elektromagnetického záření (absorbance) způsobený absorpcí volnými atomy v plynném stavu. Atomy se ze vzorku dostávají do plynné fáze během atomizace. Využívá se zejména rezonanční přechody ze základní E hladiny e - (používají se výhradně čárové zdroje záření!). AAS pro kvantitativní analýzu asi 65 převážně kovových prvků v nízkých koncentracích (stopová analýza). BLOKOVÉ SCHÉMA: ZDROJ ATOMIZÁTOR MONOCHRO- MÁTOR DETEKTOR V AAS a AFS je monochromátor umístěn až za vzorek. Atomy absorbují ve velmi úzkých čarách (10-3 nm), které monochromátory nedokáží vydělit. 1

2 AAS je nejrozšířenější metodou anorganické prvkové analýzy. Má relativně nízké investiční i provozní náklady. Zásadní nevýhoda: obvykle není možná multielementární analýza. Založena na platnosti Kirchhoffova zákona: rozdíl E při přechodu mezi 2 energetickými hladinami při pohlcení a vyzáření fotonu je co do absolutní hodnoty stejný a liší se jen znaménkem. Optické uspořádání AA spektrometrů a) Jednopaprskový systém: větší propustnost záření, nižší šum a lepší LOD; nižší stabilita nelze eliminovat kolísání intenzity zdroje záření. b) Dvoupaprskový systém: vysoká stabilita (je možné eliminovat kolísání intenzity záření); větší ztráty záření. 2

3 Multielementární a CS AAS Simultanní analýza v AAS: ETA s echelle monochromátorem a plošným detektorem umožňuje současně analyzovat až 6 prvků s podobnými atomizačními podmínkami. Continuum Source AAS (CS AAS): kontinuální zdroj záření + monochromátor s vysokým rozlišením a plošný CCD detektor. Zdroje primárního záření Téměř výhradně se používají čárové zdroje záření: Výbojka s dutou katodou (HCL hollow cathode lamp) Superlampa Bezelektrodová výbojka (EDL electrodeless discharge lamp) Okrajově se používají kontinuální zdroje záření: laditelné laserové diody, Xe lampy (CS AAS). Pološířka čáry 0,002 nm Převažují rezonanční čáry Princip: doutnavý výboj Jedno- i víceprvkové Výbojka s dutou katodou 3

4 Zdroje primárního záření Doutnavý výboj v dutině katody HCL: e - přitahovány k anodě srážky s Ar Ar + Ar + přitahován ke katodě vyráží z katody atom atom je excitován nebo ionizován a emituje charakteristické záření Superlampa (boosted lamp) Vnitřní prostor katody je bombardován e - z emitoru intenzivní buzení. Nutný přídavný elektrický zdroj. Potlačena samoabsorpce vyšší intenzita záření. Superlampa David MILDE,

5 Zdroje primárního záření Bezelektordová výbojka Dochází k prstencovému výboji, radiofrekvenční buzení MHz. Náplň křemenné baničky (těkavá sloučenina kovu: I - ). Vyrábí se pouze pro některé prvky (rezonanční čáry pod 220 nm). Porovnání s HCL. AAS zbývající instrumentace ATOMIZÁTOR zdroj a rezervoár volných atomů, absorpční prostředí, 2 základní typy: Plamenová atomizace vzorek je kontinuálně přiváděn do atomizátoru vyhodnocuje se výška signálu. Elektrotermická atomizace vzorek je dávkován diskontinuálně vyhodnocuje se plocha nebo výška atomizačního píku. MONOCHROMÁTOR Mřížkové monochromátory. Nejrozšířenější mřížkový v uspořádání Czerny-Turner. U CS-AAS uspořádání echelle monochromátoru. DETEKTOR Převážně se používá fotonásobič (PMT), u nejnovějších spektrometrů CCD detektory. David MILDE,

6 SPECIFICKÁ A NESPECIFICKÁ ABSORPCE Specifická absorpce je způsobena volnými atomy. Nespecifická absorpce, označovaná jako absorpce pozadí může být způsobena: Překryvem spektrálních čar v AAS se vyskytuje zřídka, všechny možné překryvy jsou tabelovány a řešením je volba jiné spektrální čáry. Rozptylem záření při atomizaci často dochází ke vzniku jemných nevypařených kapalných nebo pevných částic, na kterých může docházet k rozptylu záření: Plamenová atomizace nedokonale vypařené kapky aerosolu. Elektrotermická atomizace částice vzniklé kondenzací vypařených látek v chladnějších částech atomizátoru. Molekulární absorpcí je nejčastější formou nespecifické absorpce a je způsobena přítomností nedisociovaných molekul (např. SO, PO, NO, CaO, NaCl). Má širokopásmový charakter a projevuje se v celé oblasti sledovaného spektra. Absorpce pozadí způsobuje kladnou chybu! KOREKCE POZADÍ SEKVENČNÍ měří se celková absorpce na analytické čáře a následně se měří absorpce pozadí na čáře blízké, kde analyt neabsorbuje. Nelze použít pro korekci pozadí měnícího se s časem nebo výrazně s λ. (Dnes se tento způsob již nepoužívá.) SIMULTANNÍ moderní spektrometry jsou vybaveny alespoň jedním typem korekce pozadí: pomocí zdroje kontinuálního záření, s využitím Zeemanova jevu (Z-korekce), metoda samozvratu čáry zdroje primárního záření, modulace vlnové délky (u CS AAS). Správné provedení korekce vyžaduje měření na stejné λ, ve stejném místě a stejném čase. Takto dokonale žádný korekční systém však nepracuje. 6

7 Korekce pomocí kontinuálního zdroje záření Nejrozšířenější způsob korekce, prostředí atomizátoru je střídavě ozařováno čárovým primárním a kontinuálním zdrojem záření s frekvencí Hz. Kontinuální zdroj: UV D 2 výbojka, Vis W žárovka. Záření dopadající z čárového zdroje odpovídá celkové absorpci (specifická + nespecifická) a záření z kontinuálního zdroje odpovídá absorpci pozadí. Specifickou absorpci získáme odečtením signálů. Výhody: nízká cena, vysoká frekvence odečítání signálu. Nevýhody: neměří se ve stejném čase, špatná korekce strukturovaného pozadí, kdy dochází k velkým chybám. Δλ = 0,005 nm Δλ = 0,2 nm Korekce pomocí kontinuálního zdroje záření Začátek měření I HCL = I D2 Specifická absorpce I HCL <I D2 Snížení I D2 zanedbatelné Absorpce pozadí I HCL = I D2 Snížení I stejné Specifická i nespecifická absorpce I HCL = celková abs, I D2 = abs pozadí 7

8 Korekce pomocí s využitím Zeemanova jevu Zeemanův jev: štěpení energetických stavů e - u atomů nacházejících se v silném magnetickém poli. Normální Zeemanův jev: 1 π složka neposunutá a 2 σ složky posunuty. Anomální Zeemanův jev: složitější a jemnější štěpení obou složek. TRANSVERZÁLNÍ ZEEMAN Siločáry magnetického pole jsou kolmo k optické ose spektrometru. π-složka je polarizována v rovině mag. pole, σ-složky polarizovány kolmo k mag. poli. LONGITUDÁLNÍ ZEEMAN π-složka není ve spektru pozorovatelná, σ-složky jsou cirkulárně polarizovány. 8

9 Korekce pomocí s využitím Zeemanova jevu Magnetické pole může být stálé nebo proměnné a aplikováno na emitující e - nebo absorbující atomy: Přímá Zeemanova korekce: magnet umístěn na zdroji záření. Technicky velmi obtížné problémy se stabilitou a životností výbojek. Inverzní Zeemanova korekce: magnet umístěn na atomizátoru. V současnosti se používají 3 systémy s inverzním uspořádáním. Transverzální Zeeman s konstantním magnetickým polem Při průchodu záření paralelně polarizovaného s mag. polem absorbuje π- složka celková absorpce. Při průchodu záření kolmo polarizovaného absorbuje pozadí. Korekce pomocí s využitím Zeemanova jevu Transverzální Zeeman s proměnným magnetickým polem Statický polarizační filtr propouští pouze σ-složku. Magnet vypnutý celková absorpce. Magnet zapnutý absorpce pozadí. Longitudální Zeeman s proměnným magnetickým polem Magnet vypnutý celková absorpce. Magnet zapnutý absorpce pozadí. 9

10 A Korekce pomocí s využitím Zeemanova jevu Výhody: korekce přesně v místě spektrální čáry, jako jediný koriguje strukturované pozadí. Nevýhody: snížení citlivosti, spektrální rušení, nelinearita kalibrační křivky. Modulace vlnové délky U spektrometrů s kontinuálním zdrojem záření, monochromátorem s vysokým rozlišením a plošným detektorem. Pozadí se koriguje z časového záznamu spektra v digitální formě derivace absorpčních profilů. c Korekce s využitím samozvratu čáry (metoda Smith-Hieftje Hieftje) Využívá se rozšíření a samozvratru čáry primárního zdroje vlivem samoabsorpce při přežhavení HCL. Střídá se: Normální žhavení (3-20 ma) měří se celková absorpce. Přežhavení (až 300 ma) po krátkou dobu měří se absorpce pozadí. Uklidňovací fáze výboj se vrací no normálního režimu. Nevýhody: snížení citlivosti, snížení životnosti HCL, pro některé prvky nelze dosáhnout samozvratu, nelinearita kalibračních křivek. λ 0 λ 0 10

11 Metody atomové absorpční spektrometrie atomizační techniky AAS Plamenová atomizace Generování těkavých sloučenin Elektrotermická atomizace Plamenová atomizace Flame Atomization AAS (FA-AAS) AAS) David MILDE,

12 Roztok vzorku je ve zmlžovači převeden na aerosol a ten je zavede do laminárně předmíchaného plamene. Plamen: probíhá hoření, tj. chemická reakce mezi palivem a oxidovadlem. Plamen musí být průzračný v užívané spektrální oblasti ( nm), mít slabou vlastní emisi, co největší účinnost atomizace a nízký stupeň ionizace. 3 základní části u FA-AAS Štěrbinový hořák: -Ti, nerez - délka štěrbiny ZMLŽOVAČE Pneumatické nízká účinnost; spotřeba vzorku asi 5ml/min. Ultrazvukové vysoká účinnost Hydraulický vysokotlaký zmlžovač Koncentrický pneumatický zmlžovač Babingtonův zmlžovač 12

13 Hydraulický vysokotlaký zmlžovač Účinnost zmlžování okolo 90 %. David MILDE, 2008 PLAMEN V AAS se nejčastěji používají laminární předmíchané plameny. Plamen se skládá z paliva (téměř výhradně C 2 H 2 ) a oxidovadla (vzduch nebo N 2 O). C 2 H 2 vzduch: C 2 H 2 + 5/2 O N 2 2 CO 2 + H 2 O + 10 N 2 C 2 H 2 N 2 O: C 2 H N 2 O 2 CO 2 + H 2 O + 5 N 2 Plameny se liší přítomnosti radikálů a teplotou, plamen se vzduchem dosahuje 2200 C a plamen s N 2 O 2700 C. Chemické reakce v plameni plamen obsahuje řadu radikálů a atomů, které se podílejí na reakci s analytem a vedou k tvorbě oxidů, hydroxidů, hydridů apod.: disociace závisí na teplotě a povaze molekuly, redukce disociace oxidů a jejich redukce v mezireakční zóně, ionizace prvků (je v AAS nežádoucí). 13

14 Struktura plamene Předehřívací zóna zahřátí plynů na zápalnou teplotu ( K). Primární reakční zóna (zvětšuje se s množstvím paliva) probíhá zde hoření a radikálové reakce, které způsobují molekulární emisi. Mezireakční zóna (REDUKČNÍ PODMÍNKY) není ovlivňována O 2 z okolní atmosféry a oxidovadlo bylo spotřebováno v primární zóně. Redukční radikály: CO, CN, C 2, CH, NH. Sekundární reakční zóna dohořívání způsobené difusí O 2 z atmosféry. Tvoří se oxidační radikály: O, OH, NO, NCO. Analytické využití: mezireakční zóna a těsně nad ní. Optimalizace: optimální výška pozorování a složení plamene pro každý prvek. Základní pochody při atomizaci 14

15 Koncentrační trubice STAT Zásadní nevýhody FA-AAS: nízká citlivost, vysoká spotřeba vzorku. Zlepšení detekčních limitů: použití ETA-AAS koncentrační trubice STAT zejména pro lehce atomizovatelné prvky INTERFERENCE Interference = efekt rozdílné velikosti signálu, kterou získáme pro stejnou koncentraci analytu v čistém standardu a za přítomnosti doprovodných složek (matrice). Interference se dělí na: SPEKTRÁLNÍ NESPEKTRÁLNÍ vliv matrice Z hlediska výskytu se dělí na: interference v kondenzované a plynné fázi. Z hlediska studia interferencí se dělí na fyzikální a chemické. Interferenční křivka: Abs fyzikální chemické c interferntu 15

16 Interference v FA-AAS AAS Interference v kondenzované fázi: Interference transportu změny v rychlosti sání a účinnosti zmlžování vliv viskozity, povrchového napětí a solnosti roztoků. Interference vypařování: VZNIK MÉNĚ TĚKAVÉ SLOUČENINY snížení signálu VZNIK TĚKAVĚJŠÍ SLOUČENINY zvýšení signálu ELIMINACE: volba podmínek (složení plamene), úprava výšky pozorování, uvolňovací činidla (např. LaCl 3, EDTA). Interference v plynné fázi: Posun disociační rovnováhy Posun ionizační rovnováhy ionizační interference; ELIMINACE: ionizační pufr zvýšení tlaku e - v plameni. Identifikace nespektrálních interferencí: porovnání směrnic kalibrační přímky a přímky u standardních přídavků. Elektrotermická atomizace Electrothermal atomization AAS (ETA-AAS) AAS) 16

17 C W FA nedosahuje detekčních mezí potřebných pro chemickou praxi (FA mg/l, ETA μg/l). ETA: atomizátor obvykle ve tvaru trubičky (Massmannova konstrukce) je zahříván na teplotu potřebnou pro vznik volných atomů pomocí elektrického proudu: Odporově vyhřívané vkládá se napětí na konce atomizátoru. Kapacitně vyhřívané vkládají se opačné elektrické náboje. Indukční využívá se indukce elektromagnetického pole. Jako materiál atomizátoru se používají zejména různé modifikace grafitu a okrajově některé těžkotavitelné kovy, např. Ta a W. Max. teplota 3000 C 3200 C Max. rychlost ohřevu K/s K/s Měrný el. odpor 2,0 W.cm ,005 W.cm.10-3 Atomizační hlavice 17

18 Modifikace a úpravy grafitu Polykrystalický elektrografit chemicky odolný a mechanicky pevný; velká viskozita povrchu umožňuje vsakování vzorku do struktury grafitu paměťové efekty. Dále dochází ke tvorbě karbidů s některými prvky (Ti, Zr,W, Ta ty nelze stanovit). Elektrografit potažený pyrolytickou vrstvou vrstva je téměř neporézní, je snížena reaktivita povrchu, paměťové efekty i tvorba karbidů. Problémy způsobuje prokorodování pyrolytické vrstvy zejména působením kyselin. TPC kyvety zhotoveny z pyrolytického grafitu, jejich rozšíření brání vysoká cena. Kromě dobrých vlastností povrchu mají také delší životnost. Kyvety s prodlouženou životností silnější pyrolytická vrstva. Karbidování elektrografit je pokryt karbidy, např. Ti,W. Wolframové atomizátory WETA Ochranná atmosféra: Ar + H 2 zabránění oxidace povrchu. Netvoří se karbidy, eliminace paměťových efektů, nenasákavý povrch, nízká cena atomizátorů. Atomizátor poškozuje organická matrice, rekrystalizace W; vysoká rychlost ohřevu vyžaduje spektrometry s vysokou frekvencí snímaní signálu (přechodové signály) vysoká cena. 18

19 Atomizátory Porovnání účinnosti grafitových atomizátorů: 100 μg Mo + 1% HN ,5 % Fe a HClO 4 ; T = 2750 C David MILDE, 2008 Dávkování vzorků do ETA Kapalné vzorky (95% aplikací): V = μl, automatické podavače lepší RSD, depozice aerosolu do ETA. Suspenzní technika: (Slurry sampling) pevný vzorek se namele na definovanou velikost a dávkuje se v podobě homogenní suspenze pomocí automatického podavače. Komplikace s kalibrací. 19

20 Dávkování vzorků do ETA Pevné vzorky (tzv. Direct Solid Sampling): Tento způsob není příliš běžný zejména kvůli problematické kalibraci vhodné kalibrační standardy. Používá se pro obtížně či zdlouhavě rozložitelné vzorky, např. keramika, Al 2 O 3, TiO 2, ZrO 2, SiC, BN, TiC. U těchto vzorků výrazně zkracuje čas analýzy, dosahované LOD ppb. Časový průběh absorbance atomizační pík T ap teplota objevení signálu τ 1 doba atomizace, τ 2 střední doba setrvání atomů Vyhodnocení absorbance plocha či výška píku. 20

21 Základní pochody při atomizaci v ETA 2 skupiny dějů: děje vedoucí ke vzniku volných atomů, děje vedoucí k zániku nebo odstranění atomů z optické osy. Dělení z hlediska časové posloupnosti: 1. Vypařování analytu v molekulární a atomární formě. 2. Disociace molekulárních forem analytu v plynné fázi a následné reakce volných atomů se složkami atmosféry v atomizátoru. 3. Reakce mezi povrchem atomizátoru a složkami plynné atmosféry. 4. Fyzikální transportní děje v atomizátoru. Mechanismy atomizace grafit (ad 1 a 2) 1. Vypaření jako oxid, následná disociace: M X O Y (s,l) M X O Y (g) xm(g) + yo(g) 2. Termický rozklad v pevné fázi: MO (s) M (g) + O (g) 3. Redukce na kov v kondenzované fázi, následné vypaření: M X O Y (s,l) + yc xm(s,l) + yco(g) xm(g) 4. Vypaření halogenidu a jeho následná disociace: MX Y (s,l) MX Y (g) M(g) + yx(g) 21

22 Mechanismy atomizace wolfram (ad 1 a 2) 1. Redukce oxidu wolframem v Ar atmosféře: 3 MO(s,l) + W(s) 3M(s,l,g) + WO 3 (s,g) 2. Mechanismy za přítomnosti H 2 vatmosféře: MO(s,l) + H 2 (g) M(s,l,g) + H 2 O(g) 2 MO(s,l,g) + 1/3 W + H 2 2M(s,l,g)+1/3 WO 3 (s,g) + H 2 O(g) 3. Vypaření oxidu a jeho následná disociace v plynné fázi: M x O y (s,l) M x O y (g) xm (g) + yo (g) INTERAKCE ANALYTU S MATERIÁLEM ATOMIZÁTORU (ad 3) Povrch grafitu je za vysokých teplot vysoce reaktivní, je pravděpodobná celá řada reakcí s analytem i složkami matrice vzorku. Sorpce kyslíku tvoříse různé oxidy stabilní do 950 o C. Chemisorpce a tvorba termicky stabilních sloučenin. Interakce grafitu s analytem za tvorby lamelárních sloučenin reagující složka vstupuje mezi jednotlivé acénové vrstvy grafitu. VÝSTUP VOLNÝCH ATOMŮ Z ATOMIZÁTORU (ad 4) Zánik atomů ve vnitřním prostoru atomizátoru. Výstup atomů na koncích atomizátoru či dávkovacím otvorem: Konvekce uplatňuje se, proudí-li ve fázi atomizace vnitřní inert. Expanze tepelná nebo vývin plynů vznikajících při rozkladu matrice. Difúzní transport je rozhodující u gas stop programů; vzniká díky koncentračním gradientům v atomizátoru a jeho okolí. 22

23 Teplotní program v ETA Analýza v ETA má několik fází (teplotních kroků), které musí být důkladně optimalizovány. Teplotní krok je charakterizován: rychlostí nárůstu teploty, dobou zdržení (tj. doba, po kterou je teplota udržována), typem inertního plynu. Spojení teplotních kroků = teplotní program: 1. Fáze sušení Abs 2. Fáze pyrolýzy (rozkladu) 3. Fáze atomizace 4. Fáze čištění 5. (Fáze chlazení) T Teplotní program v ETA David MILDE,

24 Teplota atomizátoru Rozhodující faktor ovlivňující atomizační mechanismus je teplota v atomizátoru její časový průběh a rozložení v prostoru. Teplota atomizátoru na počátku atomizace po určitou dobu roste a pak je konstantní v čase ale ne v prostoru teplotní gradient podél osy atomizátoru. Neizotermičnost atomizačního děje je příčinou negativních jevů (kondenzace v chladnější části, reakce volných atomů s matricí). Odstranění neizotermičnosti: prostorová příčně vyhřívané atomizátory, časová L vovova platforma. Parametry charakterizující podmínky atomizace: teplota atomizačního povrchu a teplota plynné fáze, rychlost ohřevu atomizátoru. Prostorová neizotermičnost Podélně vyhřívaný atomizátor = nekonstantní teplota. Příčně vyhřívaný atomizátor = prostorově konstantní teplota; zhoršení LOD kvůli kratší optické dráze. David MILDE,

25 Časová neizotermičnost Vzorek se vypařuje do atmosféry o konstantní teplotě platforma zpozdí vypařování, dokud stěna a plyn nejsou teplejší. Vyhřívání platformy 3 složky: zářivé teplo ze stěn atomizátoru, horký inertní plyn (má být co největší), tepelná vodivost dotykem platformy a kyvety (má být co nejmenší). ETA další vývoj Slavin zavedl (80. léta) STPF koncept Stabilized Temperature Platform Furnace. Koncept zahrnuje: rychlý ohřev, zastavení vnitřního inertu během atomizace, vyhodnocování abs pomocí plochy píku. Další vývoje atomizátorů (nezavedeny komerčně): dvoustupňový atomizátor, grafitový atomizátor sloužící jako reaktor, atomizace ze sondy: 25

26 Interference v ETA-AAS AAS Interference v kondenzované fázi: Změna rozložení analytu na atomizační podložce. Změna nasákavosti atomizační podložky koroze HClO 4. Vznik snadno těkavé sloučeniny a ztráty analytu během termické úpravy. Vznik termicky stabilní sloučeniny a její nedostatečná atomizace. Interference v plynné fázi: Posun disociační rovnováhy. Změna rychlosti výstupu analytu z atomizátoru. ELIMINACE: většinu interferencí lze eliminovat použitím modifikátorů a zvýšením izotermičnosti atomizace příp. použitím jiného atomizačního povrchu. MODIFIKÁTORY MATRICE Jsou to látky, které jsou schopny ovlivnit průběh termické úpravy nebo atomizační mechanismus, přičemž nesmí obsahovat stanovovaný prvek. Principy působení modifikátorů: Pokles neselektivní absorpce během atomizace tím, že matrice je převedena na těkavější formu o vytěká z atomizátoru před atomizací. Zvýšení účinnosti atomizace pomocí stabilizace analytu do vyšších teplot. Je možné použít vyšší atomizační teplotu a lépe rozložit matrici. Př. modifikátorů: Pd, Ni ve formě NO 3-, Mg(NO 3 ) 2 NH 4 H 2 PO 4, askorbová kyselina Směsné modifikátory, např.: Pd + Mg(NO 3 ) 2 26

27 PŮSOBENÍ MODIFIKÁTORŮ a) Redukce na kov a tvorba intermetalických sloučenin: Pd + Pb Pd 3 Pb nebo Pd 3 Pb 2. b) Oxidace matrice NO 3- (např. Mg(NO 3 ) 2 ) zvyšují těkavost matrice, zvláště organických sloučenin. c) NH 4 H 2 PO 4 stabilizuje analyt tvorbou termicky stabilních solí: Pb 3 (PO 4 ) 2. d) Tvorba těkavých komponent převedení těžce těkavé matrice v lehce těkavou: NaCl + NH 4 NO 3 NH 4 Cl + NaNO 3 e) Organická činidla (askorbová kyselina, EDTA) tvorba komplexů s analytem či matricí. f) Tvorba lamelárních sloučenin s grafitem. Generování těkavých sloučenin v AAS 27

28 Pro generování těkavých sloučenin se používá: generování těkavých hydridů: As, Se, Bi, Ge, Sn, Te, In, generování málo těkavých hydridů: In, Tl, Cd, Zn, metoda studených par generování par Hg, generování těkavých nanočástic Ag a Au. generování těkavých organokovových sloučenin (VIII. B), halidů, oxidů a chelátů. Fáze generování těkavých sloučenin: převedení analytu na těkavou formu (např. hydrid) v kapalné fázi, převod těkavé formy do plynné fáze a její transport, atomizace těkavé sloučeninu (např. z SeH 2 Se). VÝHODY: Separace analytu od matrice vyšší koncentrace analytu v absorpčním prostředí a významné potlačení interferencí. Možnost zařazení kolekčního prvku zakoncentrování analytu a následná atomizace. Nízké LOD nejlepší ze všech atomizačních technik v AAS. David MILDE, 2010 Generování hydridů Hydride generation AAS (HG-AAS) Jedná se o nejrozšířenější metodu generování těkavých sloučenin, v praxi se používá zejména pro stanovení As, Se, Sb a Sn. Generování hydridů převedení na plynný hydrid 1. Reakce s NaBH 4 v kyselém prostředí BH H 2 O + H + H 3 BO 3 + 8H (atomární vodík) M m+ + (m+n)h MH n + mh + Př.: 3BH H 2 SeO 3 + 3H + 3H 3 BO 3 +4SeH 2 +3H 2 O 2. Reakce kov/kyselina (Zn/HCl) ke tvorbě H (okrajové použití). 3. Elektrochemické generování hydridů redukce analytu na hydrid na povrchu katody, není nutno používat žádná redukční činidla. 4. Fotochemické generování hydridů. David MILDE,

29 Podmíky pro generaci (s NaBH 4 ) NaBH 4 se používá jako 0,5-1 % roztok v alkalickém prostředí (NaOH, KOH). Vzorek je v kyselém prostředí: 0,1-6 M HCl. Analyt musí být ve vhodné oxidační formě pro redukci, tedy anorganické formě, př: As 3+ se v 0,1-2 M HCl redukuje na AsH 3 Se 4+ se ve 2-6 M HCl redukuje na SeH 2 Sb 3+ se v 0,1-3M HCl redukuje na SbH 3 Je-li analyt ve vyšším oxidačním stavu (As 5+, Sb 5+, Se 6+ ) musí se provést předredukce: As a Sb reakce s KI, Se zahřátí na vodní lázni. Uspořádání generátorů 1. Kontinuální generátor (signál má konstantní charakter). 2. Dávkový generátor (časově závislý tvar signálu). 1 2 David MILDE,

30 Uspořádání generátorů 3. Dávkování do proudu FIA (flow injection analysis). Příprava vzorku i dávkování probíhá automaticky v uzavřeném systému. David MILDE, 2010 Transport a kolekce hydridů Separátory fází: hydrostatický, využívající rozdílu specifických hmotností, membránové. Transport hydridů nucený tok inertním plynem Ar, N 2. Kolekce hydridů (zakoncentrování): vymrazováním U trubice ponořená do kapalného N 2, in situ v ETA. David MILDE,

31 Atomizace hydridů techniky používané pro výzkum Difuzní plamen Ar+H 2 připojení ke zmlžovači a v plameni dochází k velkému zředění hydridu (okrajové použití). V ETA grafitový i W atomizátor: Zachycení v atomizátoru (in situ trapping) C. Atomizace ~ 2200 C. Plamínek v křemenné trubici atomizace je způsobena H radikály v plameni H 2 +O 2, atomizátor není vyhříván, teplotu pro atomizaci hydridu zabezpečuje plamen. David MILDE, 2010 Atomizace hydridů křemenná trubice technika pro běžné použití Vyhřívaná křemenná trubice tvar T, t = C. Hydridy jsou přiváděny inertním plynem. Kompletní atomizace v oblaku H radikálů vznikajících reakcí H 2 s O 2 (z roztoku); H radikály jen v malé části trubice. Multiatomizátor: Přívod O 2, ten reaguje s H 2 a při zvýšené teplotě vznikají H radikály, které jsou pak v prostoru celé trubice. Lepší LOD, opakovatelnost i linearita kalibrací. MULTIATOMIZÁTOR David MILDE,

32 Interference v HG-AAS Interference v kondenzované fázi: Nedokonalá mineralizace vzorku analyt není v potřebném oxidační stavu + uhlíkaté zbytky, které snižují účinnost tvorby hydridů. Přítomnost oxidačních činidel (No x, Cl). ELIMINACE: dokonalá mineralizace, odpaření zbytků kyselin. Přítomnost anorganických iontů ve vysokých koncentracích snížení účinnosti uvolnění hydridů. Interference v plynné fázi: Vzájemné ovlivnění hydridotvorných prvků. Stanovení Hg pomocí AAS Hg má dostatečnou tenzi par i za laboratorní teploty. FA a ETA nemají dostatečnou citlivost pro stopovou analýzu, v praxi se nepoužívají. Uhlíkový povrch grafitového atomizátoru redukuje Hg 2+ na Hg 0 a tak dochází k úniku par Hg z atomizátoru. Metoda studených par (cold vapor AAS, CV-AAS) redukční vyvíjecí metoda pro vydestilování par Hg: P 0 REDUKCE Hg 2+ + SnCl 2 Hg 0 TRANSPORT PAR Ar, N 2,vzduch SUŠENÍ silikagel ZAKONCENTROVÁNÍ amalgamátor MĚŘENÍ Abs P 32

33 Stanovení Hg pomocí AAS Termooxidační stanovení Hg: Analyzátory TMA 254, AMA 254. Termooxidační rozklad vzorku v proudu O 2 a následné zachycení a zkoncentrování Hg v amalgamátoru. 33

OES S BUZENÍM V PLAZMATU

OES S BUZENÍM V PLAZMATU OES S BUZENÍM V PLAZMATU (c) -2010 PLAZMA PLAZMA = ionizovaný plyn obsahující dostatečný počet kladně nabitých (iontů) a záporně nabitých částic (e - ), který je navenek elektroneutrální. Celá soustava

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Absorpční fotometrie

Absorpční fotometrie Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)

Více

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Laboratoř Metalomiky a Nanotechnologií Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Vyučující: Ing. et Ing. David Hynek, Ph.D., Prof. Ing. René

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

Využití UV/VIS a IR spektrometrie v analýze potravin

Využití UV/VIS a IR spektrometrie v analýze potravin Využití UV/VIS a IR spektrometrie v analýze potravin Chemické laboratorní metody v analýze potravin MVDr. Zuzana Procházková, Ph.D. MVDr. Michaela Králová, Ph.D. Spektrometrie: základy Interakce záření

Více

Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie UV-vis oblast Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Absorpční spektro(foto)metrie - v ultrafialové (UV) a viditelné (VIS)

Více

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY.1Úvod Autor: Ing. František Svoboda Csc. Zvážení rizik tvorby vedlejších produktů desinfekce (DBP) pro úpravu konkrétní vody je podmíněno návrhem

Více

Minerální látky a stopové prvky

Minerální látky a stopové prvky Minerální látky a stopové prvky Vymezení: složky obsažené v popelu potraviny (zbytek po úplné oxidaci organické hmoty) K, Na, Mg, Ca, P, Cl, Fe, Zn, Cu, Mn, Ni, Co, Mo, Cr, V, Se, I, F, B, Si, Pb, Cd,

Více

1. Zdroje a detektory optického záření

1. Zdroje a detektory optického záření 1. Zdroje a detektory optického záření 1.1. Zdroje optického záření výkon a jeho časový průběh spektrální charakteristika a její stabilita v čase koherenční vlastnosti 1.1.1. Tepelné zdroje velmi malá

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

Plynové lasery pro průmyslové využití

Plynové lasery pro průmyslové využití Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

FTIR analýza plynných vzorků, vzorkovací schémata.

FTIR analýza plynných vzorků, vzorkovací schémata. FTIR analýza plynných vzorků, vzorkovací schémata. Dr. Ján Pásztor, Ing. Karel Šec Ph.D., Nicolet CZ s.r.o., Klapálkova 2242/9, 149 00 Praha 4 Tel./fax 272760432,272768569,272773356-7, nicoletcz@nicoletcz.cz

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Fe 3+ Fe 3+ Fe 3+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ 2) Vyber správné o rtuti:

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

06. Plynová chromatografie (GC)

06. Plynová chromatografie (GC) 06. Plynová chromatografie (GC) Plynová chromatografie je analytická a separační metoda, která má výsadní postavení v analýze těkavých látek. Mezi hlavní výhody této techniky patří jednoduché a rychlé

Více

Molekulová spektrometrie

Molekulová spektrometrie Molekulová spektrometrie Přednášky každé pondělí 10-13 hod Všechny potřebné informace k předmětu včetně PDF verzí přednášek: http://holcapek.upce.cz/vyuka-molekul-spektrometrie.php Pokyny ke zkoušce Seznam

Více

Obor Aplikovaná chemie ŠVP Aplikovaná chemie, životní prostředí, farmaceutické substance Maturitní témata Chemie

Obor Aplikovaná chemie ŠVP Aplikovaná chemie, životní prostředí, farmaceutické substance Maturitní témata Chemie STŘEDNÍ ŠKOLA INFORMATIKY A SLUŽEB ELIŠKY KRÁSNOHORSKÉ 2069 DVŮR KRÁLOVÉ N. L. Obor Aplikovaná chemie ŠVP Aplikovaná chemie, životní prostředí, farmaceutické substance Maturitní témata Chemie Školní rok:

Více

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí. Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Ročník Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie anorganická výskyt a zpracování kovů 2. ročník Datum tvorby 22.4.2014

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Koloidní zlato. Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti?

Koloidní zlato. Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti? Koloidní zlato Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti? Dominika Jurdová Gymnázium Velké Meziříčí, D.Jurdova@seznam.cz Tereza Bautkinová Gymnázium Botičská, tereza.bautkinova@gybot.cz

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Základy analýzy potravin Přednáška 10. Definice: složky potraviny, které zbývají po úplné oxidaci organické matrice vzorku (složky popela potraviny).

Základy analýzy potravin Přednáška 10. Definice: složky potraviny, které zbývají po úplné oxidaci organické matrice vzorku (složky popela potraviny). MINERÁLNÍ LÁTKY Definice: složky potraviny, které zbývají po úplné oxidaci organické matrice vzorku (složky popela potraviny). Klasifikace podle množství: příklady podle příklady významu: majoritní prvky

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA (c) -2008 ABSORPČNÍ SPEKTROMETRIE 1 Absorpce záření ve Vis oblasti Při dopadu bílého světla na vzorek může být záření zcela odraženo látku

Více

Úvod do studia organické chemie

Úvod do studia organické chemie Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:

Více

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda Zdroje iont používané v hmotnostní spektrometrii Miloslav Šanda Ionizace v MS Hmotnostní spektrometrie je fyzikáln chemická metoda, pi které se provádí separace iont podle jejich hmotnosti a náboje m/z

Více

Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou

Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou Základní parametry procesů likvidace odpadních vod s obsahem těžkých kovů Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou Technologie likvidace OV z obsahem těžkých kovů lze rozdělit na 3 skupiny:

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

REDOXNÍ REAKCE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 27. 2. 2012. Ročník: devátý

REDOXNÍ REAKCE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 27. 2. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková REDOXNÍ REAKCE Datum (období) tvorby: 27. 2. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí s redoxními reakcemi.

Více

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS)

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS) 1 Úvod... 1 2 Cíle úlohy... 2 3 Předpokládané znalosti... 2 4 Autotest základních znalostí... 2 5 Základy práce se systémem GC-MS (EI)... 3 5.1 Parametry plynového chromatografu... 3 5.2 Základní charakteristiky

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část II. - 9. 3. 2013 Chemické rovnice Jak by bylo možné

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B)

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B) Hmotnostní jednotka: Atomová relativní hmotnost: Molekulová relativní hmotnost: Molární hmotnost: Hmotnost u = 1,66057.10-27 kg X) Ar(X) = m u Y) Mr(Y) = m u Mr(AB)= Ar(A)+Ar(B) m M(Y) = ; [g/mol] n M(Y)

Více

1 Prvky 1. skupiny (alkalické kovy )

1 Prvky 1. skupiny (alkalické kovy ) 1 Prvky 1. skupiny (alkalické kovy ) Klíčové pojmy: alkalický kov, s 1 prvek, sodík, draslík, lithium, rubidium, cesium, francium, sůl kamenná, chilský ledek, sylvín, biogenní prvek, elektrolýza taveniny,

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

MOŽNÉ PŘÍČINY VZNIKU KOROZE PŘI POUŽITÍ ELEKTROLÝZY SOLI ČI ZAŘÍZENÍ NA STEJNOSMĚRNÝ PROUD

MOŽNÉ PŘÍČINY VZNIKU KOROZE PŘI POUŽITÍ ELEKTROLÝZY SOLI ČI ZAŘÍZENÍ NA STEJNOSMĚRNÝ PROUD MOŽNÉ PŘÍČINY VZNIKU KOROZE PŘI POUŽITÍ ELEKTROLÝZY SOLI ČI ZAŘÍZENÍ NA STEJNOSMĚRNÝ PROUD Elektrolýza soli sama o sobě korozi kovových částí v bazénu nezpůsobuje. Znamená to, že při správném fungování

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

STANOVENÍ VYBRANÝCH PRVKŮ V PLODECH LÍSKY TURECKÉ POMOCÍ ATOMOVÉ ABSORPČNÍ SPEKTROMETRIE

STANOVENÍ VYBRANÝCH PRVKŮ V PLODECH LÍSKY TURECKÉ POMOCÍ ATOMOVÉ ABSORPČNÍ SPEKTROMETRIE Středoškolská odborná činnost 2004/2005 Obor 03 - Chemie STANOVENÍ VYBRANÝCH PRVKŮ V PLODECH LÍSKY TURECKÉ POMOCÍ ATOMOVÉ ABSORPČNÍ SPEKTROMETRIE AUTOŘI: Klára Veselská, Jiřina Procházková, Petra Drozdová

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide Metody tepelného dělení, problematika základních materiálů Tepelné dělení materiálů je lze v rámci strojírenské

Více

APLIKACE FOTOKATALYTICKÝCH PROCESŮ PRO ČIŠTĚNÍ KONTAMINOVANÝCH VOD

APLIKACE FOTOKATALYTICKÝCH PROCESŮ PRO ČIŠTĚNÍ KONTAMINOVANÝCH VOD APLIKACE FOTOKATALYTICKÝCH PROCESŮ PRO ČIŠTĚNÍ KONTAMINOVANÝCH VOD Ywetta Maléterová Simona Krejčíková Lucie Spáčilová, Tomáš Cajthaml František Kaštánek Olga Šolcová Vysoké požadavky na kvalitu vody ve

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Sbohem, paní Bradfordová

Sbohem, paní Bradfordová Sbohem, paní Bradfordová aneb IČ spektroskopie ve službách kvantifikace proteinů Mgr. Stanislav Kukla Merck spol. s r. o. Agenda 1 Zhodnocení současných možností kvantifikace proteinů Bradfordové metoda

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

Ozonizace vody - výhody současných technických řešení

Ozonizace vody - výhody současných technických řešení Ozonizace vody - výhody současných technických řešení Ing. Petr Hořava, Ing. Jiří Beneš DISA v.o.s. Brno Úvod Ozonizace vody je jedna z nejstarších dezinfekčních metod a počátkem 20 stol. byla před nástupem

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Kovy I. A skupiny alkalické kovy

Kovy I. A skupiny alkalické kovy Střední průmyslová škola Hranice - 1 - Kovy I. A skupiny alkalické kovy Lithium Sodík Draslík Rubidium Cesium Francium Jsou to kovy s jedním valenčním elektronem, který je slabě poután, proto jejich sloučeniny

Více

Oxidy dusíku (NOx/NO2)

Oxidy dusíku (NOx/NO2) Oxidy dusíku (NOx/NO2) další názvy číslo CAS chemický vzorec ohlašovací práh pro emise a přenosy noxy, oxid dusnatý, oxid dusičitý 10102-44-0 (NO 2, oxid dusičitý) NO x do ovzduší (kg/rok) 100 000 do vody

Více

Vybrané kapitoly z praktické NMR spektroskopie

Vybrané kapitoly z praktické NMR spektroskopie Vybrané kapitoly z praktické NMR spektroskopie DRX 500 Avance SPECTROSPIN 500 Způsob snímání dat, CW versus FT CW frekvence RF záření postupně se mění B eff 2 efektivní magnetické pole zůstává konstantní

Více

atomová hmotnost S + O 2 -> SO 2 Fe + S -> FeS

atomová hmotnost S + O 2 -> SO 2 Fe + S -> FeS PRVKY ŠESTÉ SKUPINY - CHALKOGENY Mezi chalkogeny (nepřechodné prvky 6.skupiny) zařazujeme kyslík, síru, selen, tellur a radioaktivní polonium. Společnou vlastností těchto prvků je šest valenčních elektronů

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Analýza kofeinu v kávě pomocí kapalinové chromatografie

Analýza kofeinu v kávě pomocí kapalinové chromatografie Analýza kofeinu v kávě pomocí kapalinové chromatografie Kofein (obr.1) se jako přírodní alkaloid vyskytuje v mnoha rostlinách (např. fazolích, kakaových bobech, černém čaji apod.) avšak nejvíce je spojován

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Střední škola obchodu, řemesel a služeb Žamberk

Střední škola obchodu, řemesel a služeb Žamberk Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 11.2.2013

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Produkce emisních složek výfukových plynů

Produkce emisních složek výfukových plynů Produkce emisních složek výfukových plynů zážehové a vznětové motory Složky výfukových zplodin CO oxid uhelnatý Jedná se o bezbarvý jedovatý plyn, který je bez zápachu a již 0,5 objemového procenta ve

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE -samostatně - strukturní analýza, identifikace látek - kvalitativní i kvantitativní detekce v GC a LC - prvková analýza kombinace s ICP - pyrolýzní hmotnostní spektrometrie - analýza

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011 FeCoNi Prvky 8. B skupiny FeCoNi Valenční vrstva: x [vzácný plyn] ns 2 (n-1)d 6 x [vzácný plyn] ns 2 (n-1)d 7 x [vzácný plyn] ns 2 (n-1)d 8 Tomáš Kekrt 17.12.2011 SRG Přírodní škola o. p. s. 2 FeCoNi Fe

Více

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK - zařadí chemii mezi přírodní vědy - uvede, čím se chemie zabývá - rozliší fyzikální tělesa a látky - uvede příklady chemického děje ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické

Více

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Úpravy povrchu Pozinkovaný materiál Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Aplikace žárově zinkovaných předmětů Běžnou metodou ochrany oceli proti korozi jsou ochranné povlaky,

Více

Optika Emisní spektra různých zdrojů Mirek Kubera

Optika Emisní spektra různých zdrojů Mirek Kubera Výstup RVP: Klíčová slova: informace pro učitele Optika Mirek Kubera žák využívá poznatky o kvantování energie záření a mikročástic k řešení fyzikálních problémů optický hranol, spektrum, emisní spektrum,

Více

Osvědčily se požadavky 30. BImSchV. v praxi?

Osvědčily se požadavky 30. BImSchV. v praxi? Osvědčily se požadavky 30. BImSchV (spolkové nařízení o ochraně před imisemi) v praxi? Prof. Dr.-Ing. Rainer Wallmann HAWK Vysoká škola užité vědy a umění Vysoká odborná škola Hildesheim/Holzminden/Göttingen

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS 1 Rozsah a účel Postup je určen pro stanovení obsahu melaminu a kyseliny kyanurové v krmivech. 2 Princip

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

Při průchodu proudu iontovými vodiči dochází k transportním, tedy nerovnovážným jevům. vodivost elektrolytů elektrolytický převod I I U

Při průchodu proudu iontovými vodiči dochází k transportním, tedy nerovnovážným jevům. vodivost elektrolytů elektrolytický převod I I U TNSPOTNÍ JEVY V OZTOCÍCH ELETOLYTŮ Při průchodu proudu iontovými vodiči dochází k transportním, tedy nerovnovážným jevům. vodivost elektrolytů elektrolytický převod Ohmův zákon: VODIVOST ELETOLYTŮ U I

Více

Produkce emisních složek výfukových plynů

Produkce emisních složek výfukových plynů Produkce emisních složek výfukových plynů zážehové a vznětové motory Složky výfukových zplodin CO oxid uhelnatý Jedná se o bezbarvý jedovatý plyn, který je bez zápachu a již 0,5 objemového procenta ve

Více

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice Látkové množství Symbol: n veličina, která udává velikost chemické látky pomocí počtu základních elementárních částic, které látku tvoří (atomy, ionty, molekuly základní jednotkou: 1 mol 1 mol kterékoliv

Více

test zápočet průměr známka

test zápočet průměr známka Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

DRYON Sušení / chlazení ve vynikající kvalitě

DRYON Sušení / chlazení ve vynikající kvalitě DRYON Sušení / chlazení ve vynikající kvalitě Úkol: Sušení a chlazení jsou elementární procesní kroky ve zpracování sypkých materiálů ve všech oblastech průmyslu. Sypké materiály jako je písek a štěrk,

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více