1. podzimní série. KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "1. podzimní série. KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti"

Transkript

1 1. podzimní série Téma: Triky Datumodeslání: ½½º Ò ¾¼½¼ ½º ÐÓ Ó Ýµ Miško vymyslel trik! Nejdříve požádá Tomáška, ať si vybere osmičku nebo devítku. Potom mu řekne, aby zvolené číslo vynásobil jakýmkoliv sudým číslem, to nevybrané jakýmkoliv lichým číslem, výsledky sečetl a součet mu oznámil nazpět. Miško pak dokáže určit, které číslo si Tomášek původně vybral. Jak to dělá? ¾º ÐÓ Ó Ýµ Předpokládejme,žemámenapapířenapsanávšechnapřirozená 1 čísla.násobkyčísla2010zakroužkujeme modrou fixou, násobky čísla 2011 červenou. Potom ještě zakroužkujeme fialovou fixouvšechnačísla,kterájsousoučtemnějakého modrého anějakého červeného čísla.dokažte, že mezi milionem a dvěma miliony(obojí včetně) je přirozené číslo, které fialovou fixou zakroužkované není. º ÐÓ Ó Ýµ KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti a b+c, b c+a, c a+b, paktatočíslaužnutněmusísplňovat a+b+c=0.dokažteto. Možná jste už zaslechli, že existuje 1000 po sobě jdoucích přirozených čísel, mezi nimiž se nenacházížádnéprvočíslo jsoutotřeba !+2,1001!+3,...,1001!+1001.Ukažte,žesedá najít i takových 1000 po sobě jdoucích přirozených čísel, že je mezi nimi prvočísel právě pět. Dokažte, že rovnice a 2 + b 5 = c 3 má v oboru přirozených čísel nekonečně mnoho řešení. Franta zkoumal funkci f(x)= 9x 3+9 x. Pochvilcepřišelnato,žekdyžza xpostupnědosadíčísla funkční hodnoty sečíst. Jaký součet Frantovi vyšel? 1 Nuluzapřirozenéčíslonepovažujeme. 2 Číslo n!(čti enfaktoriál )jedefinovánojako n!=1 2 3 n , ,..., ,umízískané

2 Honzík má celá čísla raději než reálná, a tak tráví mnoho času zaokrouhlováním. Teď se zrovna snažízjistit,kolikje 3 j (1+ 2) 2010! k,aleprotožejetoužopravduvelkéčíslo,takbyrádvěděl aspoňto,zdajesudéneboliché.pomůžetemu? KennysPepousedomluvili,ževečerpřiohnipředvedoutrik.PepanechalOlinavybratpět písnízezpěvníkuse124písněmi.sámpakztěchtopětipísnívybralčtyřiaurčil,vjakémpořadí sebudouhrát.natozavolalikennyhoaonyčtyřipísněmuvdanémpořadízazpívali.jakmile dozpívali,kennyihnedzačalzpívatzbývajícípátou.jaktopepaskennymmohliudělat? 4 3 Symbol x značí celoučástreálnéhočísla x,tj.největšíceléčíslo,kteréjemenšínebo rovno x. 4 PepaKennymuvprůběhunicnenaznačoval,Kennypátoupíseňurčiljenomzezazpívaných písní, jejich pořadí a perfektní znalosti zpěvníku.

3 Řešení 1. podzimní série 1. úloha Miško vymyslel trik! Nejdříve požádá Tomáška, ať si vybere osmičku nebo devítku. Potom mu řekne, aby zvolené číslo vynásobil jakýmkoliv sudým číslem, to nevybrané jakýmkoliv lichým číslem, výsledky sečetl a součet mu oznámil nazpět. Miško pak dokáže určit, které číslo si Tomášek původně vybral. Jak to dělá? (Miško Szabados) Označmečísla,ktorépoužijeTomášekprinásobení,ako2ka2l+1(k, l Z).Pozrimesana výsledok, keď si Tomášek vyberie číslo 8: 8 2k+9 (2l+1)=2 (8k+9l+4)+1, čo je zjavne nepárne(liché). V prípade výberu čísla 9 dostávame 9 2k+8 (2l+1)=2 (9k+8l+4) atoječíslopárne(sudé). Vidíme,žeTomášekpoviepárnyvýsledokprávevprípade,žesizvolilčíslo9.Miškovisateda stačí pozrieť na paritu výsledku a podľa nej určí zvolené číslo. 2. úloha Předpokládejme,žemámenapapířenapsanávšechnapřirozená 5 čísla.násobkyčísla2010zakroužkujeme modrou fixou, násobky čísla 2011 červenou. Potom ještě zakroužkujeme fialovou fixouvšechnačísla,kterájsousoučtemnějakého modrého anějakého červeného čísla.dokažte, že mezi milionem a dvěma miliony(obojí včetně) je přirozené číslo, které fialovou fixou zakroužkované není. (Pepa Tkadlec) První řešení: Všechnafialovězakroužkovanáčíslajsoutvaru2010k+2011l,kde k, l N.Abybylotakové číslomenšínež ,musíbýt k a l ,tj. k 995al 994.Fialově zakroužkovaných čísel tedy rozhodně nebude více než a to je méně než počet přirozených čísel v intervalu od jednoho do dvou milionů. Některá z nich tedy fialově zakroužkovaná být nemohou. Druhé řešení: Dokážeme, že žádné číslo mezi jedním a dvěma miliony, které je zakroužkované modře, už nemůže být zakroužkované fialově. Uvažme číslo c, které je modře zakroužkované, tj. c = 2010m pronějaképřirozené m,azároveňfialovězakroužkované,tedysedázapsattakéjako c=2010k lpronějakápřirozená k, l.zrovnosti2010m=2010k+2011lvidíme,žečíslo2011lmusí býtdělitelné2010,aprotožečísla2010a2011jsounesoudělná,je ldělitelné2010.proto l 2010 (nuluzapřirozenéčíslonepovažujeme,jakjstesevzadánídočetli).potomale c l ,cožjeněcopřesčtyřimiliony,actedyneležívevytyčenémintervalu. Obdobně bychom mohli dokázat, že ani žádné červeně zakroužkované číslo mezi jedním a dvěma miliony nemůže být zakroužkované fialově. 5 Nuluzapřirozenéčíslonepovažujeme.

4 Poznámka(třetí řešení): Fialově nezakroužkovaných čísel je ale ještě mnohem více. Každé fialově zakroužkované číslo jetvaru2010k+2011l=2010(k+ l)+l.abytakovéčíslonepřevyšovalodvamiliony,můžebýt k+lnejvýšerovno994,tedy l 993,atudížnapříkladvšechnačíslamezimilionemadvěma miliony, která dávají po dělení 2010 zbytek větší než 993, nemohou být fialově zakroužkovaná. Obecně čím menší čísla uvažujeme, tím menší musí mít zbytek po dělení 2010, aby byla fialově zakroužkovaná. 3. úloha KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti a b+c, b c+a, c a+b, paktatočíslaužnutněmusísplňovat a+b+c=0.dokažteto. (LenkaSlavíková) Umocněním zadaných nerovností získáme novou soustavu(ekvivalentní s tou původní) a 2 b 2 +2bc+c 2, b 2 c 2 +2ca+a 2, c 2 a 2 +2ab+b 2. Všechny tři nerovnosti nyní sečteme a vzniklou nerovnost upravíme pomocí známého vzorce prodruhoumocninusoučtutříčlenů(a+b+c) 2 = a 2 + b 2 + c 2 +2(ab+bc+ca).Dostáváme tedy a 2 + b 2 + c 2 2(a 2 + b 2 + c 2 )+2(ab+bc+ca), 0 (a+b+c) 2. Protožekaždýčtverecjenezáporný,mámedvojicinerovností0 (a+b+c) 2 0.Zdeale musínastatrovnost,atedy a+b+c=0,cožjsmechtělidokázat. 4. úloha Možná jste už zaslechli, že existuje 1000 po sobě jdoucích přirozených čísel, mezi nimiž se nenacházížádnéprvočíslo jsoutotřeba !+2,1001!+3,...,1001!+1001.Ukažte,žese dá najít i takových 1000 po sobě jdoucích přirozených čísel, že je mezi nimi prvočísel právě pět. (Michal Kenny Rolínek) V zadání jsme dostali 1000 po sobě jdoucích přirozených čísel, mezi nimiž se nenachází žádné prvočíslo(1001!+2,...,1001!+1001).uvědomímesi,žemeziprvními1000přirozenýmičísly 1,...,1000jeprvočíselvícenež5(konkrétně168).Dohodněmese,žeposunutímojednabudeme mysletpřechododtisícice(k+1, k+2,..., k+1000)ktisícici(k+2, k+3,..., k+1001). Posunutím o jedna přibereme do tisícice jedno číslo a jedno číslo ztratíme, takže počet prvočíselvtisícicisezměnínejvýšeojedna. 6 Číslo n!(čti enfaktoriál )jedefinovánojako n!=1 2 3 n.

5 Když se teď posouváním o jedna dostaneme od tisícice obsahující 168 prvočísel k tisícici s 0 prvočísly, musíme při tom někdy narazit na tisícici po sobě jdoucích přirozených čísel obsahující právě pět prvočísel. Tím je tvrzení dokázáno. 5. úloha Dokažte, že rovnice a 2 + b 5 = c 3 má v oboru přirozených čísel nekonečně mnoho řešení. (Franta Konopecký) Nejdřívsivšimneme,žeřešenímjenapříkladtrojice a=10, b=3, c=7.ztétojednétrojice teď vyrobíme nekonečně mnoho dalších trojic, které budou také řešením. Definujme a n= a n 15, b n= b n 6, c n= c n 10, kde n N.Čísla a n, b n, c njsouřešenímpůvodnírovnice,cožzjistímedosazením.opravdutotiž a 2 n+ b 5 n= a 2 n 30 + b 5 n 30 =(a 2 + b 5 ) n 30 = c 3 n 30 = c 3 n. Jelikož za n můžeme dosadit libovolné přirozené číslo, existuje nekonečně mnoho různých řešení. 6. úloha Franta zkoumal funkci f(x)= 9x 3+9 x. Pochvilcepřišelnato,žekdyžza xpostupnědosadíčísla funkční hodnoty sečíst. Jaký součet Frantovi vyšel? , ,..., ,umízískané (Franta Konopecký) Nejprve se podívejme, jak bude vypadat součet libovolných dvou funkčních hodnot oné funkce: f(x)+f(y)= 9x 9y 3+9x+ 3+9 y = 3 9x +3 9 y +2 9 x+y 3 9 x +3 9 y +9 x+y +9. Jestliženynípoložíme x+y=1,dostanemetaké f(x)+f(y)=1(trik!).takovédvojicezískáme, pokud spárujeme první dosazenou hodnotu s poslední, druhou s předposlední atd. Celkem takvytvoříme1004dvojic,přičemžnámzbydečlen = 1 2,pronějžzvlášťvypočteme,že f( 1 2 )= 1 2. Součetvšechfunkčníchhodnotjepakroven = úloha Honzík má celá čísla raději než reálná, a tak tráví mnoho času zaokrouhlováním. Teď se zrovna snažízjistit,kolikje 7 j (1+ 2) 2010! k,aleprotožejetoužopravduvelkéčíslo,takbyrádvěděl aspoň to, zda je sudé nebo liché. Pomůžete mu? (Honzík Vaňhara) 7 Symbol x značí celoučástreálnéhočísla x,tj.největšíceléčíslo,kteréjemenšínebo rovno x.

6 Hlavnímtrikemtétoúlohybylopřijítnato,žečíslo N= ! ! 2 jeceléanavícsudé.todokážemetak,žesipomocíbinomickévětyrozložíme: != 2010! 2010! 2010! 2010! 2010! , ! != 2010! 2010! 2010! 2010! ( 2) 2010! ! Když rovnice sečteme, dostáváme 2010! 2010! 2010! «N= Uvnitřzávorkyjsouceláčísla,tedy N jesudé,stejnějakočíslo2010!.pakužstačívyužít toho,že1 2jezápornéčíslovětšínež 1.Jehosudámocninatakbudekladnáamenšínež 1, tedy 0 < ! 2 <1. Zrovnosti ! 2 = N ! 2 vidíme, že zkoumáme dolní celou část ze sudého čísla, od kterého jsme odečetli něco mezi nulou ajedničkou.vyjdenámtedy,žehonzíkovočíslo N 1jeliché. Alternativní důkaz sudosti N (přes rekurentní posloupnost) Označíme si a=1+ 2, b=1 2, N k = a k + b k, tedy N= N 2010!. Teďsivšimneme,že a, bjsoukořenykvadratickérovnice x 2 2x 1,takže a 2 =2a+1, b 2 =2b+1. Vynásobenímtěchtorovnicčísly a k, b k obdržíme a k+2 =2a k+1 + a k, b k+2 =2b k+1 + b k, takže N k+2 =2N k+1 + N k. Mámetakrekurentnívztahproposloupnost N k,zekteréhovyplývá,žepokudjsoučísla N k i N k+1 sudá,pakin k+2 jesudé.stačínámprotoověřitsudostprvníchdvouhodnot.tojevšak snadné, neboť N 0 =1+1=2, N 1 = =2. 8. úloha KennysPepousedomluvili,ževečerpřiohnipředvedoutrik.PepanechalOlinavybratpět písnízezpěvníkuse124písněmi.sámpakztěchtopětipísnívybralčtyřiaurčil,vjakémpořadí

7 sebudouhrát.natozavolalikennyhoaonyčtyřipísněmuvdanémpořadízazpívali.jakmile dozpívali,kennyihnedzačalzpívatzbývajícípátou.jaktopepaskennymmohliudělat? 8 (Pepa Tkadlec) Množinu písniček označme P a jednotlivým písničkám přiřaďme čísla od 1 do 124. Čísla přiřazenápětiolinemvybranýmpísničkámoznačímebúno 9 p 0 < p 1 < p 2 < p 3 < p 4.Pepa určízbytek isoučtučísel p 0,..., p 4 podělenípětiavynechápíseň p i. Pokudoznačímeještěsoučetčtyřostatníchpísníjako j (mod5) 10,pakztohoplyne,že p i i j (mod5). Ze zpěvníku nyní odeberme čtyři zazpívané písně a ty zbylé(příslušnou množinu označme Q) přečíslujme čísly od 1 do 120 tak, abychom zachovali pořadí z původního číslování. Kennym hledanápíseňbudemítvmnožině Qčíslooimenšínežvmnožině P,protoževQchybípísničky p 0 až p i 1.Číslohledanépísničkyvnovémčíslovánídávátedypodělenípětizbytek(i j) i= j (trik!). Toto číslo Kenny zná, neboť zná součet čísel odpovídajících čtyřem zazpívaným písním. Číselod1do120,kterádávajípodělenípětizbytek j,je120:5=24.abybylkenny schopen určit hledanou píseň jednoznačně, zbývá pomocí pořadí čtyř zpívaných písní zakódovat číslozmnožiny {1,2,...,24}.Tojevšaksnadné,neboť4různěvelkáčíslalzeuspořádatprávě 4! = 24 různými způsoby. Kennymu a Pepovi se tak stačí předem dohodnout, které pořadí odpovídá kterému číslu. Kennyužtedyznáčíslohledanépísněvnovémčíslování.Nazávěrpřičtením i(cožjepočet zpívanýchpísní,kterémajívqmenšíčíslonežpíseňnezpívaná)dostanejejíčíslovmnožině P. 8 PepaKennymuvprůběhunicnenaznačoval,Kennypátoupíseňurčiljenomzezazpívaných písní, jejich pořadí a perfektní znalosti zpěvníku. 9 Bezújmynaobecnosti. 10 Tentozápisznačízbytekčísla jpodělenípěti.podobnězápis a b(mod d)značí,žečísla a, b dávají stejný zbytek po dělení číslem d. Takovému zápisu se říká kongruence a vše podstatné o něm nalezneš v naší knihovně na stránkách

1. série. Iracionální čísla. Téma: Datumodeslání: Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální.

1. série. Iracionální čísla. Téma: Datumodeslání: Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální. Téma: Datumodeslání: 1. série Iracionální čísla ¾½º Ò ½ ½º ÐÓ Ó µ Dokažte, že 0,12345678910111213... (píšeme za sebou všechna přirozená čísla) je iracionální. ¾º ÐÓ Ó µ Dokažte,že 2+ 3+ 4+ 5jeiracionálníčíslo.

Více

Kongruence na množině celých čísel

Kongruence na množině celých čísel 121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

2. jarní série. Rovnice a soustavy

2. jarní série. Rovnice a soustavy Téma: Datumodeslání:. jarní série Rovnice a soustavy ½ º ÞÒ ¾¼½¼ ½º ÐÓ Ó Ýµ Kája našla na kraji svého sešitu napsanou tuto soustavu pěti rovnic: ab=, bc=, cd=, de=4, ea=6. Pomoztejíjivyřešit,tzn.najdětevšechnypěticečísel

Více

3. podzimní série. ... {z }

3. podzimní série. ... {z } 3. podzimní série Téma: Kombinatorika Datumodeslání: º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Ó Ýµ Monča potřebuje zatelefonovat Pepovi, avšak nemá u sebe svůj telefonní seznam PraSátek. Zná však předvolbu 723 a vzpomněla si,

Více

2. série. Prvočísla. Téma: Datumodeslání: Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo.

2. série. Prvočísla. Téma: Datumodeslání: Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo. 2. série Téma: Datumodeslání: Prvočísla º Ð ØÓÔ Ù ¾¼¼ ½º ÐÓ Ó Ýµ Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo. ¾º ÐÓ Ó Ýµ Mějme libovolné přirozené číslo n,

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 68. ročník matematické olympiády Úlohy krajského kola kategorie C. Každé pole tabulky 68 68 máme obarvit jednou ze tří barev (červená, modrá, bílá). Kolika způsoby to lze učinit tak, aby každá trojice

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 68. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými. (Michal Rolínek) Řešení. Pokud by

Více

3. série. Nerovnosti. Téma: Termínodeslání:

3. série. Nerovnosti. Téma: Termínodeslání: Téma: Termínodeslání: 3. série Nerovnosti º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Óݵ Nechť a, b jsou délky odvěsen pravoúhlého trojúhelníka, c buď délka jeho přepony. Dokažte, že prokaždépřirozenéčíslo nvětšíneždvaplatí c

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

1. seriálová série. Teorie čísel. Řešení 1. seriálové série

1. seriálová série. Teorie čísel. Řešení 1. seriálové série 1. seriálová série Téma: Datumodeslání: Teorie čísel ½º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Ó µ Naleznětevšechna x Z,abyplatilo x 2 +1 x (mod21). ¾º ÐÓ Ó µ Nechť manjsoupřirozenáčísla.dokažte,že2 m 1a2 n 1jsounesoudělná,právěkdyž

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

PŘEDNÁŠKA 7 Kongruence svazů

PŘEDNÁŠKA 7 Kongruence svazů PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

8. série. Finální myš(maš)

8. série. Finální myš(maš) Téma: Datumodeslání: 8. série Finální myš(maš) ½ º Ú ØÒ ¾¼¼ ½º ÐÓ (a) V růžovém království pěstují nový záhon růží. Záhon má tvar obdélníku 2 0, rozděleného na čtverce. Aby záhon potěšil oko krále, je

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

65. ročník matematické olympiády III. kolo kategorie A. Pardubice, dubna 2016

65. ročník matematické olympiády III. kolo kategorie A. Pardubice, dubna 2016 65. ročník matematické olympiády III. kolo kategorie A Pardubice, 3. 6. dubna 2016 MO 1. Nechť p > 3 je dané prvočíslo. Určete počet všech uspořádaných šestic (a, b, c, d, e, f) kladných celých čísel,

Více

Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné

Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné Cifry 3. jarní série Termín odeslání: 10. dubna 2017 Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné k a n přirozená čísla. Úloha 1. Nechť S(k) značí

Více

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012 61. ročník matematické olympiády III. kolo kategorie Hradec Králové, 5. 8. března 01 MO 1. Najděte všechna celá čísla n, pro něž je n 4 3n + 9 prvočíslo. (leš Kobza) Řešení. Zadaný výraz lze jednoduchou

Více

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018 67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015

64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015 64. ročník matematické olympiády III. kolo kategorie Praha, 22. 25. března 2015 O 1. Najděte všechna čtyřmístná čísla n taková, že zároveň platí: i) číslo n je součinem tří různých prvočísel; ii) součet

Více

1. podzimní série. Zlomky

1. podzimní série. Zlomky . podzimní série Téma: Datumodeslání: Zlomky º Ò ¾¼¼ ½º ÐÓ Ó Ýµ Třem malým PraSátkům, Myregovi, Vejtkovi a Šavlíkovi, se zjevil sáček plný bonbonů. Dohodli se,žesijerozdělí,avšichništěstímspokojeněusnuli.vnociseprvnívzbudilmyreg.když

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami

Více

Návody k domácí části I. kola kategorie B

Návody k domácí části I. kola kategorie B Návody k domácí části I. kola kategorie B 1. Najděte všechna osmimístná čísla taková, z nichž po vyškrtnutí některé čtveřice sousedních číslic dostaneme čtyřmístné číslo, které je 2 019krát menší. (Pavel

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Argumentace a ověřování Gradovaný řetězec úloh Autor: Stanislav Trávníček Úloha 1 (úroveň 1)

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Povídání ke 3. podzimní sérii

Povídání ke 3. podzimní sérii Povídání ke 3. podzimní sérii Třetí série je věnována kružnicím. Každý ví, jak taková kružnice vypadá je to množina bodů se stejnou vzdáleností r od nějakého středu S. Kružnice však mají i další vlastnosti,

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Úlohy domácího kola kategorie A

Úlohy domácího kola kategorie A 49. ročník Matematické olympiády Úlohy domácího kola kategorie A 1. Nechť P (x), Q(x) jsou kvadratické trojčleny takové, že tři z kořenů rovnice P (Q(x)) = 0 jsou čísla 22, 7, 13. Určete čtvrtý kořen této

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 65. ročník matematické olympiády Úlohy krajského kola kategorie B 1. Určete všechny trojice celých kladných čísel k, l a m, pro které platí 3l + 1 3kl + k + 3 = lm + 1 5lm + m + 5. 2. Je dána úsečka AB,

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Internetová matematická olympiáda listopadu 2008

Internetová matematická olympiáda listopadu 2008 Internetová matematická olympiáda - 5. listopadu 008 ŘEŠENÍ ÚLOH 1. Obrazec na Obrázku 1 je složen z 44 čtverců o straně 6 mm. Bodem A veďte jedinou přímku, která daný obrazec rozdělí na dva obrazce o

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechna prvočísla p, pro něž existuje přirozené číslo n takové, že p n + 1 je třetí mocninou některého přirozeného čísla. 1. Určete všechny trojice

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C 61. ročník Matematické olympiády Návody k domácí části I. kola kategorie C 1. Najděte všechny trojčleny p(x) = ax 2 + bx + c, které dávají při dělení dvojčlenem x + 1 zbytek 2 a při dělení dvojčlenem x

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =

Více

4. série. Funkcionální rovnice. Téma: Datumodeslání: Najdětevšechnyfunkce f: R Rtakové,žeprovšechnydvojicereálnýchčísel xayplatí:

4. série. Funkcionální rovnice. Téma: Datumodeslání: Najdětevšechnyfunkce f: R Rtakové,žeprovšechnydvojicereálnýchčísel xayplatí: 4. série Téma: Datumodeslání: Funkcionální rovnice ¾º Ð Ò ¾¼¼ ½º ÐÓ Ó Ýµ 1+f(x+y=2f(xf(y. ¾º ÐÓ Ó Ýµ Najdětevšechnyfunkce f: R Ntakové,že x < y f(x f(yaprokaždéreálnéčíslo xa pro každé přirozené číslo

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

Důkazové metody v teorii čísel

Důkazové metody v teorii čísel Důkazové metody v teorii čísel Michal Kenny Rolínek ØÖ ØºPříspěveknejenukazujeklasickátvrzenízelementárníteoriečísel, ale především ukazuje obvyklé postupy při jejich používání, a to převážně na úlohách

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

10. cvičení - LS 2017

10. cvičení - LS 2017 10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

49. roënìk matematickè olympi dy, III. kolo kategorie A. BÌlovec, 9.ñ12. dubna 2000

49. roënìk matematickè olympi dy, III. kolo kategorie A. BÌlovec, 9.ñ12. dubna 2000 49. roënìk matematickè olympi dy, III. kolo kategorie BÌlovec, 9.ñ. dubna 000 . Nechť n je přirozené číslo. Dokažte, že součet 4 n + 4 n je dělitelný třinácti, právě když n je sudé. (J. Šimša) Řešení.

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

( ) a n.10 n + +a 1.10+a 0

( ) a n.10 n + +a 1.10+a 0 Číselné soustavy Dříve než zadáme příklady této série, musíme učinit několik dohod. Zřejmě nikdo z vás nepochybuje o tom, že každé přirozené číslo se dá jednoznačně vyjádřit v desítkové soustavě, tj že

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572

Více

Limita posloupnosti a funkce

Limita posloupnosti a funkce Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti

Více

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39 Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá

Více

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že Jak rozeznáváme nekonečné množiny. Nejprve něco o zobrazeních: Nášvýkladbudezaložennaintuitivnípředstavězobrazení f: A Bjakoněčeho,cokaždému prvku a Apřiřazujenějakýprvek f(a) B. Mějmezobrazení f: A B.Řekneme,že

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

66. ročníku MO (kategorie A, B, C)

66. ročníku MO (kategorie A, B, C) Příloha časopisu MATEMATIKA FYZIKA INFORMATIKA Ročník 25 (2016), číslo 3 Úlohy I. kola (domácí část) 66. ročníku MO (kategorie A, B, C) KATEGORIE A A I 1 Najděte všechna prvočísla p, pro něž existuje přirozené

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Kritéria dělitelnosti Divisibility Criterions

Kritéria dělitelnosti Divisibility Criterions VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Kritéria dělitelnosti Divisibility Criterions 2014 Veronika Balcárková Ráda bych na tomto místě poděkovala

Více

Číselné posloupnosti

Číselné posloupnosti Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

Rovnice se separovanými proměnnými

Rovnice se separovanými proměnnými Rovnice se separovanými proměnnými V této kapitole se budeme zabývat následující diferenciální rovnicí: y = g(y)f(x), (1) kde f a g jsou reálné funkce reálné proměnné. Tato rovnice se nazývá rovnice se

Více

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost.

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost. Úloha. V Americe se pro měření teploty používají místo Celsiových stupňů stupně Fahrenheitovy. PřepočetzCelsiovýchstupňůnaFahrenheitovylzeprovéstpodlevzorce f = 9 5 c+32(cjsoustupně Celsiovy, f Farenheitovy).

Více