15. Goniometrické funkce

Rozměr: px
Začít zobrazení ze stránky:

Download "15. Goniometrické funkce"

Transkript

1 @ Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě.

2 @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou nebo mírou obloukovou Stupňová míra - plný úhel rozdělíme na 360 dílků stupně každý stupeň rozdělíme na 60 dílků minuty každou minutu rozdělíme na 60 dílků vteřiny 1 o ~ jeden stupeň 1 ~ jedna minuta 1 ~ jedna vteřina Oblouková míra - je to délka oblouku jednotkové kružnice příslušné danému úhlu. Je to reálné číslo. Jednotkou je jeden radián. Plný úhel má radiánů. převodní tabulka, kterou byste měli znát více méně zpaměti (lze ji rychle odvodit) stupně 0 o 30 o 45 o 60 o 90 o 180 o 70 o 360 o radiány 0 /6 /4 /3 / 3/

3 @16

4 @164a

5 @164b Goniometrické funkce obecně

6 @164c

7 @167 Známe hodnoty sin x a cos x pro I. kvadrant (významné hodnoty zpaměti, tabulky, kalkulačka). Jak vypočteme hodnoty sin x a cos x pro úhly v II. kvadrantu? cos 150 o = - cos(180 o 150 o ) = - cos 30 o = - 3/

8 @170 Určete následující hodnoty a) sin 150 o = sin(180 o o ) = sin 30 o = 1/ b) cos 10 o = - cos(180 o - 10 o ) = - cos 60 o = - 1/ c) sin 300 o = - sin(360 o o ) = - sin 60 o = - / d) cos 315 o = cos(360 o o ) = cos 45 o = / e) sin 5 o = - sin(5 o o ) = - sin 45 o = / f) cos 40 o = - cos(40 o o ) = - cos 60 o = - 1/ Úkol: Znovu si připomeňte definici funkcí sin, cos, tg, cotg a určete definiční obory a obory hodnot. výsledek

9 @173 Určete následující funkční hodnoty cos(70 o ) = 0 cos(1575 o ) = - / sin(-385 o ) = / cotg(-3030 o ) = 3 sin(1380 o ) = - 3/ cos(-160 o ) = - 1 Úkol: Pokuste se určit u funkcí sin, cos, tg, cotg, zda jsou sudé, liché nebo ani jedno ani druhé. výsledek

10 @176 průběh funkce tg a cotg

11 @179 Mezi goniometrickými funkcemi existuje mnoho různých vztahů - identit, vzorců. Při nejrůznějších příležitostech je nutné si umět poradit a převádět jeden výraz v druhý. Příklad: Dokažte, že platí (cos x 0) 1 + tg x = cos - x Řešení: Identity se dokazují tak, že se vyjde z jedné strany a postupnými úpravami si dojde ke straně druhé. Nebo se vyjde z obou stran nezávisle a dojde se ke stejnému (třetímu) výrazu. sin L 1 tg x 1 cos x x cos x sin cos x x 1 cos x cos x P Příklad: Dokažte, že platí (cos t 0, sin t 1) cost 1 sin t 1 sin t cost Řešení: cost cost 1 sin t cost(1 sin t) L 1 sin t 1 sin t 1 sin t 1 sin t cost(1 sin t) 1 sin t P cos t cost Úkol: Dokažte, že platí (mají-li obě strany smysl) a) (sin x + cos x) + (sin x - cos x) = b) cos 4 x - sin 4 x = cos x - 1 cotg t 1 c) 1 sin t 1 cotg t d) 1 1 cos x 1 1 cos x sin x e) tg t. cos t + cos t = 1 výsledek

12 @18 Velmi důležité vztahy mezi goniometrickými funkcemi formuluje následující věta. Věta: Součtové vzorce Pro každé a platí: i) sin(+ ) = sin cos + sin cos ii) sin(- ) = sin cos - sin cos iii) cos(+ ) = cos cos - sin sin iv) cos(- ) = cos cos + sin sin důkaz

13 @185a Ověření podle iv) a známých hodnot cos(x - /) = cos x cos / + sin x sin / = = cos x. 0 + sin x. 1 = sin x Zaveďme substituci = x + / tj. x = / Z právě dokázaného plyne sin x = sin( - /) = cos(x - /) = cos( - / - /) = cos( - ) = = cos cos + sin sin = = cos. (-1) + sin. 0 = - cos Úkol: Z platnosti cos(x - /) = sin x a sin(x - /) = - cos x dokažte platnost i) sin(+ ) = sin cos + sin cos výsledek

14 @185b L = sin(+ ) = cos(+ - /) = cos(+ (- /)) = = cos cos(- /) - sin sin( - /) = = cos sin - sin (-cos ) = = cos sin + sin cos = P Tím je dokázána identita i) sin(+ ) = sin cos + sin cos Úkol: Zbývá dokázat poslední identitu. Dokažte identitu ii) sin(- ) = sin cos - sin cos výsledek

15 @189 Platí cos(x + /) = -sinx? Ano, platí! L = cos(x + /) = cosx cos(/) sinx sin(/) = cosx. 0 sinx. 1 = -sinx = P Věta: Vzorce pro poloviční úhel Pro každé platí sin cos 1 cos 1 cos Důkaz: Víme: pro každé x platí cos x + sin x = 1 a cos x sin x = cosx Použijeme substituci x = /, abychom do vzorců dostali poloviční úhel sečteme odečteme cos (/) + sin (/) = 1 cos (/) sin (/) = cos cos (/) = 1 + cos sin (/) = 1 - cos a nyní stačí vydělit a odmocnit Úkol: Proč je ve vzorcích absolutní hodnota? výsledek

16 @193 Důkaz se provede prostou aplikací součtových vzorců L = sin(+ ) + sin( ) = cos sin + sin cos + cos sin sin cos = = sin cos= P ATD. Zaveďme substituci x = + a y = součtem a rozdílem substitučních vzorců dostaneme = (x+y)/ a = (x-y)/ Tedy předchozí identitu lze také psát takto: x sin x sin y sin y x cos y Úkol: Přepište dle tohoto vzoru i zbývající identity a zformulujte do matematické věty. výsledek

17 @196 Víte, že platí (; 3/), (/; ), cotg = 1/5 a sin = 15/17. Určete tg( - ). Tedy úhel je ve III. kvadrantu a je ve II. kvadrantu (toto ovlivňuje znaménka). Máme určit tg tg tg ) tg( ( )) 1 tg tg ( (změna znamének, tg je lichá) Potřebujeme tedy určit tg a tg, k čemuž užijeme vztahy tg = 1/cotg = 5/1 a tg = sin /cos. sin b je zadáno a cos b musíme určit ze vztahu cos + sin = 1 cos = 1 sin = (1 - sin )(1 + sin ) = (1-15/17)(1 + 15/17) = 8 /17 Pro správné odmocnění musíme uvážit, že je ve II. kvadrantu a tam je cos záporný, tedy cos = -8/17 => tg = sin /cos = (15/17)/(-8/17) = -15/8 Nyní stačí jen dosadit to vzorce a zlomek upravit tg( ) = 0/1 Úkol: Víte, že platí (/; ), (0; /), sin = 3/5 a cotg = 8/15. Určete cos(- ). výsledek

18 @158 Úkol: Dokažte, že platí sin + cos = 1. výsledek

19 @160a Zde je ilustrace vztahu mezi obloukovou a stupňovou mírou v sadě obrázků, kružnice má, a musí mít, poloměr 1 (slovy jedna).

20 @160b

21 @160c

22 @160d

23 @160e

24 @160f

25 @160g

26 @160h Číselnou osu můžeme klidně natáčet dále

27 @163 Orientovaný úhel Až dosud jste chápali úhel jako průnik či sjednocení dvou polorovin. Takový úhel se nazývá neorinetovaný a jeho velikost může být pouze od 0 o do 360 o stupňů včetně. V matematice a aplikacích fyziky používáme ještě jiný mechanizmus vzniku úhlu. Vezmeme dvě polopřímky s počátkem ve stejném bodě. Jednu polopřímku zafixujeme - počáteční rameno, druhou polopřímkou pohybujeme - koncové rameno. Rozlišujeme i směr, jak úhel vznikne otáčením polopřímky, i dovolujeme otočit polopřímkou několikrát kolem dokola. Takový úhel se nazývá orientovaný. Otočit ramenem lze i několikrát kolem dokola

28 @165 V různých kvadrantech mají funkce sin, cos, tg, cotg různá znaménka. Je to dáno znaménky souřadnic u a v. Úkol: Doplňte znaménka do tabulky kvadrant I. II. III. IV. interval (0; /) (/; ) (3/) (3/; ) sin x cos x tg x cotg x výsledek

29 @168a Známe hodnoty sin x a cos x pro I. kvadrant. Jak vypočteme hodnoty sin x a cos x pro úhly v III. kvadrantu? sin 00 o = - sin(00 o 180 o ) = - sin 0 o

30 @168b Známe hodnoty sin x a cos x pro I. kvadrant. Jak vypočteme hodnoty sin x a cos x pro úhly v IV. kvadrantu? cos 300 o = cos(360 o 300 o ) = cos 60 o = - 1/

31 @171 Funkce sin: úhel může být libovolný => definiční obor R. souřadnice bodu na jednotkové kružnici může být od -1 do 1 => obor hodnot <-1,1> Funkce cos: úhel může být libovolný => definiční obor R 1. souřadnice bodu na jednotkové kružnici může být od -1 do 1 => obor hodnot <-1,1> Funkce tg: musíme vyloučit případy, kdy je cos roven 0, což je v lichých násobcích čísla / označme k zastupující libovolné celé číslo => definiční obor R\{(k+1)/, kc} podíl, kdy čitatel je omezen a jmenovatel může nabývat hodnoty libovolně blízké 0, může být jakékoli reálné číslo => obor hodnot R Funkce cotg: musíme vyloučit případy, kdy je sin roven 0, což je v sudých násobcích čísla / = celočíselné násobky čísla označme k zastupující libovolné celé číslo => definiční obor R\{k, kc} podíl, kdy čitatel je omezen a jmenovatel může nabývat hodnoty libovolně blízké 0, může být jakékoli reálné číslo => obor hodnot R Poznámka: Funkce periodická je taková, která se pravidelně opakuje. To platí i o funkcích sin, cos, tg, cotg. Jde jen o to, kolikrát otočíme číselnou osou kolem jednotkové kružnice. Úkol: Vyslovte přesnou definici periodické funkce a určete periodu funkcí sin, cos, tg, cotg. výsledek $

32 @174

33 @177 Platí vztahy pro záměnu funkcí sin a cos mezi sebou cos x sin( x ) sin x cos( x )

34 @180 Dokažte, že platí a) (sin x + cos x) + (sin x - cos x) = L = (sin x + cos x) + (sin x - cos x) = = sin x +sinxcosx +cos x +sin x -sinxcosx +cos x = = (sin x + cos x) = = P b) cos 4 x - sin 4 x = cos x - 1 L = cos 4 x - sin 4 x = = (cos x + sin x)(cos x - sin x) = = 1.(cos x - (1 - cos x)) = cos x - 1 = P cotg t 1 c) 1 sin t 1 cotg t pro cotg t ±1, sin x 0 cotg t 1 L 1 cotg t 1 sin t P cos t sin t cos 1 sin 1 cos sin t t t sin t t cos t (1 sin t) sin t d) 1 1 cos x 1 1 cos x sin x pro cos x ±1, sin x 0 L cos x 1 cos x 1 cos x 1 cos x 1 cos x sin x P e) tg t. cos t + cos t = 1 pro cos t 0 L tg t.cos sin t cos t cos t 1 P sin t cos t cos t t cos t

35 @183 Důkaz provedeme postupně v opačném pořadí. Je to tak snazší, text věty je zase zvykem uvádět tak, jak jsme to udělali i my. V důkazu iv) se vychází s porovnání vzdálenosti bodů A,B a C,D viz obrázek. Souřadnice bodů jsou A = [cos sin], B = [cos sin], C = [cos(- ); sin(- )], D = [1; 0] Je zřejmé, že vzdálenost bodů AB je stejná jako bodů CD. Abychom se nemuseli trápit s odmocninou ve vzorci o vzdálenosti bodů, budeme pracovat s její druhou mocninou. AB = CD AB = (cos - cos) + (sin - sin) = = cos - coscos + cos + sin - sinsin + sin = = (cos + sin ) + (cos + sin ) - (coscos + sinsin) = = [1 - (coscos + sinsin)] CD = (cos(- ) - 1) + sin (- ) = cos (- ) - cos(- ) sin (- ) = = (cos (- ) + sin (- )) cos(- ) = [1 - cos(- )] Porovnáním těchto dvou výrazů dostáváme platnost identity iv) iv) cos(- ) = cos cos + sin sin Úkol: Použijte právě dokázanou identitu iv) a znalost o sudosti, lichosti goniometrických funkcí a dokažte platnost iii) cos(+ ) = cos cos - sin sin výsledek

36 @186 L = sin(- ) = sin(+(-)) = sin cos(-) + sin(-) cos = = sin cos - sin cos = P Tím je dokázána identita ii) sin(- ) = sin cos - sin cos Zopakujme ještě jednou čtyři vzorce, které je žádoucí se naučit zpaměti: Součtové vzorce Pro každé a platí: i) sin(+ ) = sin cos + sin cos ii) sin(- ) = sin cos - sin cos iii) cos(+ ) = cos cos - sin sin iv) cos(- ) = cos cos + sin sin Úkol: Pomocí součtových vzorců vyjádřete sin a cos pomocí sin a cos. Výsledek zformulujte do matematické věty. výsledek

37 @191 Protože pro každé xr platí 0 x x a nikdy jinak. Úkol: Vypočtěte pomocí dokázaných vzorců následující výrazy a) cos(/6 x) cos(/6 + x) b) sin(/4 + x) sin(/4 x) c) sin 105 o d) cos (/1) výsledek

38 @194 Věta: Vzorce pro součty Pro každé x, y R platí x y x y i) sin x sin y sin cos x y x y ii) sin x sin y cos sin x y x y iii) cos x cos y cos cos x y x y iv) cos x cos y sin sin Úkol: Mají-li obě strany smysl, dokažte, že platí tgx tgy tg( x y) 1 tgx tgy výsledek

39 @159

40 @161 Ať se vám to líbí nebo nelíbí, ať máte kalkulačku nebo počítač vždy při ruce, některé hodnoty je nutné znát zpaměti. Následující tabulku se zpaměti naučte, nebudete litovat. stupně 0 o 30 o 45 o 60 o 90 o radiány 0 /6 /4 /3 / 1 sin 0 cos K zapamatování je to celkem snadné. Všimněte si, že jde o posloupnost zlomků, kde je ve jmenovateli stále číslo a v čitateli druhá odmocnina z čísel postupně 0, 1,, 3, 4. sin U funkce cos jsou to táž čísla jen čteno zprava doleva. Úkol: Dokažte z definice (tj. z pravoúhlého trojúhelníka), že platí výsledek cos /4 = sin /4 =

41 @164

42 @166 kvadrant I. II. III. IV. interval (0; /) (/; ) (3/) (3/; ) sin x cos x tg x cotg x

43 @169 Úkol: Určete následující hodnoty. Využijte právě získané vzorce. a) sin 150 o b) cos 10 o c) sin 300 o d) cos 315 o e) sin 5 o f) cos 40 o výsledek

44 @17 Definice: Mějme funkci f, pro kterou je splněno tvrzení (její funkční hodnoty stále stejně opakují) p>0 xd f : f(x+p) = f(x) Pokud lze ze všech takových čísel p nalézt minimum, tj. nalézt nejmenší kladné číslo p>0 splňující definiční vztah, funkce se nazývá periodická a číslo p se nazývá perioda. Funkce sin a cos mají periodu (360 o ) Funkce tg a cotg mají periodu (180 o ), sin = sin(+k) cos = cos(+k) tg = tg(+k) cotg = cotg(+k) Příklad: Určete hodnotu cos(1500 o ), tg(400 o ), cotg(-750 o ). Řešení: Nejprve se přesuneme do základního intervalu: přičítáním, odečítáním celočíselných násobků periody: pro sin a cos <0 o ; 360 o ) pro tg a cotg <0 o ; 180 o ) cos(1500 o ) = cos(1500 o o ) = cos(60 o ) tg(400 o ) = tg(400 o o ) = tg(60 o ) cotg(-750 o ) = cotg(-750 o o ) = cotg(150 o )

45 Pak případně převedeme úhel do I.kvadrantu, tj. <0 o ; 90 o >, musíme již sledovat znaménka cotg(150 o ) = - cotg(30 o ) Nakonec určíme hodnotu zpaměti, z tabulek, pomocí kalkulačky. Pomocí kalkulačky můžeme hodnoty získat přímo. Těžko však poznáme, jaký úhel to asi je, a pak mnoho úloh těží z přesných hodnot (viz tabulka), které z kalkulačky nedostaneme. cos(1500 o ) = cos(60 o ) = - 1/ tg(400 o ) = tg(60 o ) = sin(60 o )/ cos(60 o ) = (3/)/(1/) = 3 cotg(-750 o ) = - cotg(30 o ) = - cos(30 o )/sin(30 o ) = - (3/)/(1/) = -3 Úkol: Určete následující funkční hodnoty cos(70 o ) cos(1575 o ) sin(-385 o ) cotg(-3030 o ) sin(1380 o ) cos(-160 o ) výsledek

46 @175 průběh funkce sin a cos

47 @178 Vztahy (vzorce) mezi goniometrickými funkcemi Definice: Funkce sin, cos, tg, cotg se nazývají goniometrické funkce. Shrnutí: základní vztahy mezi goniometrickými funkcemi sin x tgx cos x cos x cotg x sin x sin x + cos x = 1 očividně platí cotg x = 1/tg x = tg -1 x => tgx. cotgx = 1 cos x sin( x ) sin x cos( x ) nebo ve stupních cos = sin( + 90 o ) sin = cos( - 90 o )

48 @181 Součtové vzorce Poznámka: Vzdálenost dvou bodů v soustavě souřadnic se vypočítá na základě Pythagorovy věty. 1 a1 ) ( b ) AB ( b a

49 @184 Máme dokázáno pro každé a platí cos(- ) = cos cos + sin sin a víme, že sinus je lichý sin(-x) = - sin x a cosinus je sudý cos(-x) = cos x L = cos(+ ) = cos(- (-)) = cos cos(-) + sin sin(-) = Tím je dokázána identita = cos cos - sin sin = P iii) cos(+ ) = cos cos - sin sin Úkol: Již víme, že platí sin(x - /) = - cos x cos(x - /) = sin x. Ověřte to podle iv) a dokažte, že také platí výsledek

50 @187 Věta: dvojnásobný úhel Pro každé a platí i) sin = sincos ii) cos = cos - sin Řešení: i) L = sin = sin(+ ) = sin cos + sin cos = sincos = P ii) L = cos = cos(+ ) = cos cos - sin sin = cos - sin = P Úkol: Dokázali jsme, že pro každé x platí sin( x ) cos x sin( x ) cos x Platí také cos( x ) sin x? cos( x ) sin x ano ne

51 @19 Vypočtěte pomocí dokázaných vzorců následující výrazy a) cos(/6 x) cos(/6 + x) = sin x - stačí použít součtové vzorce L = [cos(/6) cosx + sin(/6) sinx] [cos(/6) cosx - sin(/6) sinx] = = sin(/6) sin x = sinx = P b) sin(/4 + x) sin(/4 x) = sinx - stačí použít součtové vzorce c) sin 105 o = (6 + )/4 - rozložíme na známé hodnoty 105 o = 60 o + 45 o L = sin 105 o = sin(60 o + 45 o ) = sin 60 o cos 45 o + sin 45 o cos 60 o = = 3/. / + /. 1/ = (6 + )/4 d) cos (/1) = ( + 6)/4 - rozložíme na známé hodnoty /3 /4 = /1 L = cos (/1) = cos(/3 /4) = cos(/3) cos(/4) + sin(/3) sin(/4) = = 1/. / + 3/. / = ( + 6)/4 = P NEBO použijeme vzorce pro poloviční úhel, neboť /1 = (/6)/ a I. kvadrantu je cos(/1) > 0 a proto můžeme přidat absolutní hodnotu bez problémů L cos( ) 1 cos( ) 1 1 cos( 6) Tím jsme mimoděk dokázali, že platí Úkol: Dokažte, že pro každé a platí i) sin(+ ) + sin( ) = sin cos ii) sin(+ ) sin( ) = cos sin iii) cos(+ ) + cos( ) = cos cos iv) cos(+ ) cos( ) = - sin sin výsledek

52 @195 Máme dokázat, že platí tgx tgy tg x y) 1 tgx tgy (, pokud mají obě strany smysl (tzn. není-li ve jmenovateli zlomku nula a hodnoty funkce tg jsou konečné). Řešení: K úpravě použijeme součtové vzorce a vztahy mezi goniometrickými funkcemi sin( x y) sin xcos y sin ycos x L tg( x y) cos( x y) cos xcos y sin xsin y sin xcos y sin ycos x cos xcos y( ) cos xcos y cos xcos y tgx tgy P sin xsin y cos xcos y(1 ) 1 tgx tgy cos xcos y Úkol: Víte, že platí (; 3/), (/; ), cotg = 1/5 a sin = 15/17. Určete tg( - ). výsledek

53 @197 Víte, že platí (/; ), (0; /), sin = 3/5 a cotg = 8/15. Určete cos(- ). Tedy úhel je ve II. kvadrantu a je v I. kvadrantu (toto ovlivňuje znaménka). Máme určit cos( - ) = cos cos + sin sin. sin = 3/5 známe, zbývá určit cos sin a cos cos = 1 sin = (1 - sin )(1 + sin ) = (1-3/5)(1 + 3/5) = 4 /5 Pro správné odmocnění musíme uvážit, že je ve II. kvadrantu a tam je cos záporný, tedy cos = -4/5 Dále platí (na začátku této kapitoly jsme to dokázali) 1 + tg x = cos - x, tedy cos = 1/(1 + tg ) = 1/(1 + 1/cotg ) = 1/( /8 ) = 8 /17 a proto cos = 8/17 sin = 1 cos a je v I. kvadrantu => sin = 15/17 Už máme všechno a tak zbývá závěrečný výpočet cos( ) = 13/85 KONEC LEKCE

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

4.3.3 Základní goniometrické vzorce I

4.3.3 Základní goniometrické vzorce I 4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE

4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE V této kapitole se dozvíte: GONIOMETRICKÉ FUNKCE vztah mezi stupňovou a obloukovou mírou; jak jsou definovány čtyři základní goniometrické funkce:

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0 Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306 ..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

ELEMENTÁRNÍ GONIOMETRICKÉ A TRIGONOMETRICKÉ VĚTY

ELEMENTÁRNÍ GONIOMETRICKÉ A TRIGONOMETRICKÉ VĚTY Gymnázium F. X. Šaldy PŘEDMĚTOVÁ KOMISE MATEMATIKY ELEMENTÁRNÍ GONIOMETRICKÉ A TRIGONOMETRICKÉ VĚTY Učební text pro druhý ročník a sextu gymnázia a pro matematický seminář v těchto třídách Honsoft Liberec

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Goniometrické rovnice

Goniometrické rovnice Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u

Více

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4. ..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. @121 12. Mocninné funkce a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. řekli: 1. Je-li exponent r přirozené číslo, může

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Řešené příklady ze starých zápočtových písemek

Řešené příklady ze starých zápočtových písemek Řešené příklady ze starých zápočtových písemek Úloha. Najděte všechna reálná řešení rovnice log x log x 3 = log 6. Řešení. Nebot logaritmus je definovaný pouze pro kladné hodnoty dostáváme ihned podmínku

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

4.3.2 Goniometrické nerovnice

4.3.2 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel. Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat

Více

Řešení 5. série kategorie Student

Řešení 5. série kategorie Student Řešení 5 série kategorie Student Řešení S-I-5-1 Aby byl daný trojúhelník (ozn trojúhelník A) pravoúhlý, musí podle rozšířené Pythagorovy věty (pravidelné 9-úhelníky jsou podobné obrazce) platit, že obsah

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4.. Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 4, 48 Pedagogická poznámka: Tato kapitola nepřináší nic nového a nemá ekvivalent v klasických učebnicích. Cílem hodiny je uspořádat v hlavách

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Neurčitý integrál. Robert Mařík. 4. března 2012

Neurčitý integrál. Robert Mařík. 4. března 2012 Neurčitý integrál Robert Mařík 4. března 0 V tomto souboru jsou vysvětleny a na příkladech s postupným řešením demonstrovány základní integrační metody. Ikonka za integrálem načte integrál do online aplikace

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, Trojúhelníky a čtyřúhelníky, Výrazy I, Hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE . LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její

Více

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE Slovo kvadrát vzniklo z latinského slova quadratus které znamená: čtyřhranný, čtvercový. Obsah čtverce se vypočítá, jako druhá mocnina délky

Více

Konzultace z předmětu MATEMATIKA pro druhý ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro druhý ročník dálkového studia - - Konzultace z předmětu MATEMATIKA pro druhý ročník dálkového studia ) Pojem funkce, základní pojmy ) Grafy funkcí, druhy funkcí ) Druhy funkcí lineární, lomená ) Kvadratická funkce, mocninné funkce

Více

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Číslo mate riálu Datum Třída Téma hodiny Ověřený materiál - název Téma, charakteristika Autor Ověřil 1. 2.5. 2012 VI.B I. Sestavení

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

4.3.1 Goniometrické rovnice

4.3.1 Goniometrické rovnice .. Goniometrické rovnice Předpoklady: 6, 7 Názvosloví: Goniometrické rovnice: rovnice, ve kterých se neznámá objevuje uvnitř goniometrických funkcí. g x = a, kde Základní goniometrická rovnice: každá rovnice

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára 9... ZLOMKY A RACIONÁLNÍ ČÍSLA Pojem zlomku Zlomek zápis části celku a b a je část, b je celek, zlomková čára Každé číslo zapsané zlomkem lze vyjádřit jako číslo desetinné 7 Zlomková čára je dělící čára

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Z těchto kurzů shrneme poznatky, které budeme potřebovat: výčtem prvků

Z těchto kurzů shrneme poznatky, které budeme potřebovat: výčtem prvků @00. Základní poznatky Umět řešit rovnice a nerovnice je jedna ze stěžejních úloh středoškolské matematiky. Řešit bez problémů základní rovnice by měl umět každý středoškolák, který získal maturitu (jakoukoli,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

ŘEŠENÍ JEDNODUCHÝCH GONIOMETRICKÝCH ROVNIC

ŘEŠENÍ JEDNODUCHÝCH GONIOMETRICKÝCH ROVNIC ŘEŠENÍ JEDNODUCHÝCH GONIOMETRICKÝCH ROVNIC V tomto krátkém pojednání si ukážeme, jak řešit goniometrické rovnice, které lze převést na tvar f () = c, kde c R a f je některá goniometrická funkce. To se

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více