1. série. Iracionální čísla. Téma: Datumodeslání: Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální.

Rozměr: px
Začít zobrazení ze stránky:

Download "1. série. Iracionální čísla. Téma: Datumodeslání: Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální."

Transkript

1 Téma: Datumodeslání: 1. série Iracionální čísla ¾½º Ò ½ ½º ÐÓ Ó µ Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální. ¾º ÐÓ Ó µ Dokažte,že jeiracionálníčíslo. º ÐÓ Ó µ V každém otevřeném intervalu(a, b) leží nekonečně mnoho iracionálních čísel. Dokažte. º ÐÓ Ó µ Najdětevšechnačísla α 0,2π taková,ževšechnačtyřičíslasin α,cos α,tg αacotg αjsou racionální. º ÐÓ Ó µ Existujíiracionálníčísla a, btak,že a b jeracionální?

2 Řešení 1. série 1. úloha Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální. Má-li racionální číslo nekonečný desetinný rozvoj, je tento rozvoj nutně periodický. Předpokládejmetedyprospor,žečíslo A=0, jeracionálnísperiodoudélky n.včísle A však zajisté nalezneme(libovolně daleko, tedy i za případnou předperiodou) posloupnost alespoň n devítek za sebou, tedy perioda je nutně tvořena samými devítkami. Bohužel stejnou úvahou pro osmičky dostáváme, že perioda je tvořena osmičkami, a to je hledaný spor. Tím jsme ukázali, že číslo A je iracionální. Poznámky k došlým řešením: Většina řešitelů došla ke sporu tak, že našla dlouhý řetězec nul (někteří (Pavel Příhoda, Jan Vybíral: +2i) včetně důkazu věty: Pokud má číslo nekonečný neperiodickýrozvoj,pakjeiracionální ).Coseminelíbilo: Pokudmáčísloperiodudélky n,máiperiodudélky kn,bylobytedyslušnémluvit o nejmenší(primitivní) periodě(v některých případech je to nutné). Někteří zapomněli, že číslo může mít předperiodu. Předpokládáme-li periodu délky n, stačí nám najít řetězec n nul, abychom dokázali, že perioda obsahuje samé nuly. Drtivá většina řešitelů hledala řetězec délky 2n úloha Dokažte,že jeiracionálníčíslo. Vzhledemktomu,žečíslo 4jeracionální,stačíukázat,žečíslo jeiracionální. Nechťprospor =r,kde rjeracionálníčíslo.pakpojednoduchýchúpraváchmáme (rovnicivpodstatědvakrátumocnímenadruhou,abychomsezbaviliodmocnin) 2+ 3= r 5,tj =r 2 2r 5+5, popřeskupeníčlenů r 2 =2(r 5+ 6)opětrovniciumocnímenadruhou r 4 =4(5r 2 +2r 30+6), apoúpravě r 4 20r 2 24=8r 30.Povyděleníposlednírovnostičíslem8rvidíme,že 30je racionální.tojeovšemsporslemmatemvřešeníúlohy5. 3. úloha V každém otevřeném intervalu(a, b) leží nekonečně mnoho iracionálních čísel. Dokažte. (podle Karla Koláře) Lemma 1. Součin iracionálního a nenulového racionálního čísla je iracionální. Lemma 2. Součet iracionálního a racionálního čísla je iracionální. Důkazylemmatpřenechávámpilnémučtenáři.Mějmeinterval(a, b), a < b, a, b R. 1) ajeracionální Zvolmesinějakékladnéiracionálníčíslo c(zřejměnějakéexistuje,např. 2,vizlemmavřešení pátéúlohy;případně Azprvníúlohy).Utvořmenekonečnouposloupnostčísel c n= c/10 n.dle

3 lemmatu 1 jsou všechny členy posloupnosti iracionální. Nekonečný počet členů je menší než b a, c konkrétnějsoutočlenysindexemvětšímneborovnýmlog 10 b a.podlelemmatu2tedyinterval (a, b)obsahujenekonečněmnohoiracionálníchčíseltvaru a+c npro n > n 0. 2) a je iracionální Zvolme si nějaké kladné racionální číslo c(třeba jedničku). Můžeme aplikovat týž postup jako včásti1)azestejnýchdůvodůdostanemeshodnýzávěr,tedyžena(a, b)existujenekonečně mnoho iracionálních čísel. 4. úloha Najdětevšechnačísla α 0,2π taková,ževšechnačtyřičíslasin α,cos α,tg αacotg αjsou racionální. Vzhledemktomu,žeplatítg x= sin x cos x,cotg x= cos x sin x,vidíme,žestačíhledatjentačísla α (0,2π),prokterájsousin α,cos αracionální.omezmesenejprvenainterval(0, π/2),na kterémjsoufunkcesinacoskladné.nechťmámetedytakové α,žesin αicos αjsouracionální, tedysin α=p/q,cos α=r/s,kde p, q, r, sjsoupřirozenáčísla, p, qnesoudělná, r, snesoudělná, pakzeznáméhovztahusin 2 x+cos 2 x=1vidíme,že p 2 r2 q2+ s 2 =1. Označíme-li nejmenší společný násobek čísel q, s jako přirozené číslo z a položíme-li x= pz q, y= rz s, jsou x, y, zpodvounesoudělná(rozmysletesi,proč)přirozenáčíslasplňujícípodmínku x 2 + y 2 = z 2.Nadruhoustranu,máme-litakovápřirozenáčísla x, y, z,kterásplňují x 2 + y 2 = z 2, apoložíme-liarcsin α=x/zleží αvintervalu(0, π/2)amápožadovanévlastnosti. Uvažujeme-li nyní α v intervalech(π/2, π),(π, 3π/2),(3π/2, 2π), dostáváme až na znaménka čísel x, y stejný výsledek. Zbývá nám tedy charakterizovat nesoudělná přirozená čísla x, y, z, kterásplňujívztah x 2 + y 2 = z 2.Ktomunámpomůženásledujílemma. Lemma. Obecnéřešenídiofantickérovnice 1 x 2 + y 2 = z 2 propřirozenáčísla x, y, zsplňující podmínky 2 (1) (x, y)=1, 2 x je tvaru (2) x=2ab, y= a 2 b 2, z= a 2 + b 2, kde a, bjsoupřirozenáčíslaopačnéparity 3 a (3) (a, b)=1, a > b >0. 1 tj.rovnice,kterouřešímevcelýchčíslech 2 Pro a, b Nznačímesymbolem(a, b)jejichnejvětšíspolečnýdělitel. 3 Jednosudé,druhéliché.

4 Důkaz: Nejprvepředpokládejme,žeplatí(1)ax 2 + y 2 = z 2.Jelikož2 xa(x, y)=1,jsou yaz licháa(y, z)=1.proto(z+ y)/2,(z y)/2jsoupřirozenáa z y, z+ y = Jelikož x 2 = z 2 y 2 máme x 2= z+ y z y, a oba činitelé na pravé straně nerovnosti musí být čtverce(jsou totiž nesoudělní). Tedy z+ y = a 2 z y, = b 2, 2 2 kde a > b >0, (a, b)=1.jelikož a+b a 2 +b 2 = z 1(mod2),jsoučísla a, bopačnéparity. Protokaždéřešení x 2 + y 2 = z 2 splňující(1)jetvaru(2),aa, bjsouopačnéparitysplňující(3). Dálepředpokládejme,že a, bjsouopačnéparityasplňují(3).pak x 2 + y 2 =4a 2 b 2 +(a 2 b 2 ) 2 =(a 2 + b 2 ) 2 = z 2, x, y, zpřirozená,2 x.pokudje(x, y)=d,pak d z,atedy d y=a 2 b 2, d z= a 2 + b 2,aproto d 2a 2, d 2b 2.Jelikož(a, b)=1, dmusíbýt1nebo2,aledruháalternativanenímožná,protože yjeliché.tedy(x, y)=1. c.b.d Nyní se vraťme k naší úloze. Řeší-li nějaká nesoudělná přirozená čísla x, y, z diofantickou rovnici x 2 +y 2 = z 2,jsoučísla xayopačnéparity.platítedybuď2 x,nebo 4 2 y.protoznašeho lemmatudostáváme,žesin α,cos α,tg α,cotg αjsouvšechnyracionálnípro α (0, π/2)tehdy ajentehdy,když 2ab α=arcsin a 2 + b 2, nebo α=arcsin a2 b 2 a 2 + b 2, kde a, bjsoupřirozenáčíslaopačnéparitysplňující(3).výsledekpro αzintervalu(π/2, π) dostanemejako π αprovyhovující αzintervalu(0, π).vintervalech(π,3π/2)a(3π/2,2π) se nám(kromě vhodného posunutí) změní znaménka výrazů za arcsin-y. To si však již laskavý čtenář rozmyslí sám. Poznámky k došlým řešením: Nejvážnější chybou bylo nevyjádření hledaného α někteří řešitelé jen konstatovali, že řešení je nekonečně mnoho, případně že řešení odpovídají úhlům v Pythagorejskémtrojúhelníku 5.Mnozítéžnedokázali,ženalezlivšechnařešení,někteříjeaninenašli zapomněli totiž na některé části intervalu 0, 2π. Část řešitelů se domnívala, že z racionality goniometrickýchfunkcíplyneracionalitastranvtrojúhelniku.(stranymohoubýttřeba3 2, 4 2,5 2avšechnypoměryvyjdouracionální). Někteří řešitelé přišli na řešení, které je o dost kratší, než vzorové řešení. Všimli si totiž následujícíhofaktu.nechť A [0,1]jebodnajednotkovékružnici(tj.nakružnicisestředem vpočátku)aa jejehostředovýprůmět(sestředem[0,1])naosu x.pakbod Amáracionální souřadniceprávětehdy,kdyžbod A máracionálnísouřadnice.odtudjižsnadnoplyneřešení úlohy(bližší rozmyšlení přenechávám na Tobě). 5. úloha Existujíiracionálníčísla a, btak,že a b jeracionální? 4 Vevylučovacímsmyslu. 5 takříkámepravoúhlémutrojúhelníkusceločíselnýmistranami

5 Lemma. Číslo njeiracionální,nebopřirozené. Důkaz: Předpokládejmeprospor,žečíslo njeracionální,avšaknenípřirozené.existujítedy nesoudělná 6 přirozenáčísla p, q 1taková,že Umocněním této rovnosti na druhou vidíme, že n= p q. nq 2 = p 2. V tomto vztahu se však v prvočíselném rozkladu pravé strany vyskytují všechna prvočísla v sudé mocnině, ne tak již v prvočíselném rozkladu strany levé. Tím dostáváme kýžený spor. Nyní k samotné úloze. Ukážeme, že odpověď na naši otázku je kladná. Víme(dle lemmatu), že 2jeiracionální.Pokudječíslo x= 2 2 racionální,mámevyhráno,neboťjsmenalezli takovádvěiracionálníčísla a, b,že a b jeracionální.nechťtedy xjeiracionální,pakuvažujme číslo y= 2 2 x 2 = 2 = 2 2 =2, tedy yjeracionálníčísloačísla x, 2majípožadovanévlastnosti. Poznámky k došlým řešením: Nejčastější chybou bylo to, že mnozí nedokázali iracionalitu čísel a 2, e,loga b, b,... Podletoho,ojakéčíslosejednaloacodalšíhořešeníobsahovalo,jsem zatotoopomenutístrhnul1až4body.æ 6 Jsou-lisoudělná,mohuzlomek p/qkrátitnazákladnítvar.

6. série. Všehochuť úloha Dokažte, že rovnice x x 9 99 =0. má dva různé reálné iracionální kořeny.

6. série. Všehochuť úloha Dokažte, že rovnice x x 9 99 =0. má dva různé reálné iracionální kořeny. 6. série Všehochuť 1. úloha Zeměkoulejepronásinadáleneprůhlednákouleopoloměru R=6378.Nadmístem ozeměpisnýchsouřadnicíchα 1,β 1 )vevýšce h 1 jeteleviznívysílač.jakvysokomusí býtvmístěozeměpisnýchsouřadnicíchα

Více

1. podzimní série. KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti

1. podzimní série. KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti 1. podzimní série Téma: Triky Datumodeslání: ½½º Ò ¾¼½¼ ½º ÐÓ Ó Ýµ Miško vymyslel trik! Nejdříve požádá Tomáška, ať si vybere osmičku nebo devítku. Potom mu řekne, aby zvolené číslo vynásobil jakýmkoliv

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že Jak rozeznáváme nekonečné množiny. Nejprve něco o zobrazeních: Nášvýkladbudezaložennaintuitivnípředstavězobrazení f: A Bjakoněčeho,cokaždému prvku a Apřiřazujenějakýprvek f(a) B. Mějmezobrazení f: A B.Řekneme,že

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami

Více

2.8.6 Čísla iracionální, čísla reálná

2.8.6 Čísla iracionální, čísla reálná .8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

2. série. Prvočísla. Téma: Datumodeslání: Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo.

2. série. Prvočísla. Téma: Datumodeslání: Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo. 2. série Téma: Datumodeslání: Prvočísla º Ð ØÓÔ Ù ¾¼¼ ½º ÐÓ Ó Ýµ Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo. ¾º ÐÓ Ó Ýµ Mějme libovolné přirozené číslo n,

Více

Relativní Eulerova funkce

Relativní Eulerova funkce MUNDUS SYMBOLICUS 25 (2017) Relativní Eulerova funkce J. Nečas Abstract. The article deals with the sequence of ratios between values of the Euler function of the natural number n and that number n. Klíčová

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

2. jarní série. Rovnice a soustavy

2. jarní série. Rovnice a soustavy Téma: Datumodeslání:. jarní série Rovnice a soustavy ½ º ÞÒ ¾¼½¼ ½º ÐÓ Ó Ýµ Kája našla na kraji svého sešitu napsanou tuto soustavu pěti rovnic: ab=, bc=, cd=, de=4, ea=6. Pomoztejíjivyřešit,tzn.najdětevšechnypěticečísel

Více

Povídání k první sérii

Povídání k první sérii Povídání k první sérii První série se zabývá racionálními a iracionálními čísly. Pravděpodobně tyto pojmy již znáš, pro úplnost je však připomeneme. Racionálním číslem rozumíme každé takové číslo q, kteréjemožnozapsatvetvaru

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

PŘEDNÁŠKA 7 Kongruence svazů

PŘEDNÁŠKA 7 Kongruence svazů PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

16 Fourierovy řady Úvod, základní pojmy

16 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 65. ročník matematické olympiády Úlohy krajského kola kategorie B 1. Určete všechny trojice celých kladných čísel k, l a m, pro které platí 3l + 1 3kl + k + 3 = lm + 1 5lm + m + 5. 2. Je dána úsečka AB,

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

( ) a n.10 n + +a 1.10+a 0

( ) a n.10 n + +a 1.10+a 0 Číselné soustavy Dříve než zadáme příklady této série, musíme učinit několik dohod. Zřejmě nikdo z vás nepochybuje o tom, že každé přirozené číslo se dá jednoznačně vyjádřit v desítkové soustavě, tj že

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4. ..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

4.3.1 Goniometrické rovnice I

4.3.1 Goniometrické rovnice I 4.. Goniometrické rovnice I Předpoklady: 4, 4, 46, 47 Pedagogická poznámka: Úspěšnost této hodiny zcela závisí na tom, jak rychle jsou studenti schopni hledat ke známým hodnotám goniometrických funkcí

Více

Číselné posloupnosti

Číselné posloupnosti Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a

Více

x + 6 2x 8 0. (6 x 0) & (2x 8 > 0) nebo (6 x 0) & (2x 8 < 0).

x + 6 2x 8 0. (6 x 0) & (2x 8 > 0) nebo (6 x 0) & (2x 8 < 0). Opáčko - Řešení. a) Podíl vlevo není definovaný pro x 8 = 0, a tedy dostáváme podmínku na řešení x. Jedničku převedeme na levou stranu nerovnosti, převedeme na společný jmenovatel a dostáváme Nerovnost

Více

Základy aritmetiky a algebry I

Základy aritmetiky a algebry I Základy aritmetiky a algebry I Základní literatura k předmětu: [BeDla] Bečvář J., Dlab V.: Od aritmetiky k abstraktní algebře. Serifa, Praha, 2016. Další literatura k předmětu: [Be] Bečvář J.: Lineární

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S. 1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +

Více

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39 Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

19. Druhý rozklad lineární transformace

19. Druhý rozklad lineární transformace Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Úmluva. Všude P = C. Vpřednášce o vlastních vektorech jsme se seznámili s diagonalizovatelnými

Více

1. seriálová série. 2. seriálová série

1. seriálová série. 2. seriálová série . seriálová série Téma: Kongruence Termínodeslání: ½¾º Ð Ò ½ ½º ÐÓ Nechť pjelichéprvočísloa0 < k < p,pak(p k)!(k )! ( ) k (mod p).dokažte. ¾º ÐÓ Nechť(m, n)=.pak m ϕ(n) + n ϕ(m) (mod mn).dokažte. º ÐÓ

Více

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou 4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí

Více

Úlohy II. kola kategorie A

Úlohy II. kola kategorie A 5. ročník matematické olympiády Úlohy II. kola kategorie A 1. Najděte základy z všech číselných soustav, ve kterých je čtyřmístné číslo (1001) z dělitelné dvojmístným číslem (41) z.. Uvnitř strany AB daného

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

4. Lineární (ne)rovnice s racionalitou

4. Lineární (ne)rovnice s racionalitou @04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace Verze 20. července 2017 Derivace funkce se využívá při řešení úloh technické praxe i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce, výpočet limity, vyšetřování průběhu funkce

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Argumentace a ověřování Gradovaný řetězec úloh Autor: Stanislav Trávníček Úloha 1 (úroveň 1)

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.

Více

4.3.2 Goniometrické rovnice II

4.3.2 Goniometrické rovnice II .. Goniometrické rovnice II Předpoklady: 000 Pedagogická poznámka: Hodina je rozdělena na dvě poloviny. Před příkladem přibližně v polovině hodiny přeruším práci a synchronizuji třídu. Př. : ( sin x )

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O

Více

1. série. Různá čísla < 1 44.

1. série. Různá čísla < 1 44. série Téma: Termínodeslání: Různá čísla ½ º Ò ½ ½º ÐÓ je řirozené q9+9 q 6+ 9 9 6 ¾º ÐÓ `5+ 6 998 není řirozené º ÐÓ Nechť c je řirozené číslo Rozhodněte, které z čísel c+ c a c c je větší a své tvrzení

Více

Paradoxy nekonečna. Co analyzuje Matematická analýza? Nekonečné procesy. n(n + 1) + = n 2 + = π2 6

Paradoxy nekonečna. Co analyzuje Matematická analýza? Nekonečné procesy. n(n + 1) + = n 2 + = π2 6 Přednáška 1, 3. října 2014 Přednáška z Matematické analýzy I má pět částí: 1. Úvod, opakování, reálná čísla. 2. Limita nekonečné posloupnosti. 3. Nekonečné řady. 4. Limita funkce v bodě a spojitost funkce.

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Číslo a proměnná Gradovaný řetězec úloh Téma: soustava rovnic, parametry Autor: Stanislav Trávníček

Více

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx = . cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je

Více

Limita posloupnosti a funkce

Limita posloupnosti a funkce Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

Povídání ke třetí sérii

Povídání ke třetí sérii Povídání ke třetí sérii Třetí série je věnována diofantickým rovnicím. To jsou zkrátka rovnice, u kterých hledáme řešení jen mezi celými čísly. 1 Diofantickou rovnicí n-tého stupně rozumíme rovnici P(x

Více

Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné

Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné Cifry 3. jarní série Termín odeslání: 10. dubna 2017 Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné k a n přirozená čísla. Úloha 1. Nechť S(k) značí

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

y +q 1 (t)y = 0 (1) z +q 2 (t)z = 0 (2)

y +q 1 (t)y = 0 (1) z +q 2 (t)z = 0 (2) Šturmova srovnávací věta Srovnávací věta se týká nulových bodů rovnic 2. řádu. Umožňuje odhadnout jejich rozložení srovnáním s jinou rovnicí. Věta 1. Necht y je netriviální řešení rovnice y +q 1 (t)y =

Více

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012 61. ročník matematické olympiády III. kolo kategorie Hradec Králové, 5. 8. března 01 MO 1. Najděte všechna celá čísla n, pro něž je n 4 3n + 9 prvočíslo. (leš Kobza) Řešení. Zadaný výraz lze jednoduchou

Více

3. přednáška 15. října 2007

3. přednáška 15. října 2007 3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení

Více

FREDHOLMOVA ALTERNATIVA

FREDHOLMOVA ALTERNATIVA FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4. .. Funkce arcsin Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = - je číslo, které když dám na druhou tak vyjde - - - - - - y = y = Eponenciální

Více

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30 Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5)

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5) Předmět: MA03 Opakování: formulace okrajové úlohy (OÚ), skalární součin funkcí, ortogonalita funkcí Nová látka: vlastní čísla a vlastní funkce OÚ ortogonalita vlastních funkcí řešitelnost OÚ Literatura:

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu

Více