Téma 9 Databáze úvod, modelování dat

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Téma 9 Databáze úvod, modelování dat"

Transkript

1 Téma 9 Databáze úvod, modelování dat Obsah 1. Základní pojmy databází 2. Abstrakce, schémata, pohledy 3. Databázové modely 4. Modelování reálného světa 5. Entity a vztahy 6. Entity-elationship (E-) model 7. E- diagramy 8. Převod E- modelu na tabulky dat 9. Normalizace Základní pojmy Často se směšujípojmy databáze Vlastní data zpravidla ve formě tabulek systém řízení báze dat, databázový systém (stroj), DBMS Komplex softwarových komponent pro (pokročilou) práci s daty Základní terminologie databázových systémů Logická struktura dat abstrakce od fyzické organizace uložených dat založeno na vhodném modelu dat pohledy na data (data views) uživatelsky zajímavé dílčí údaje Prostředky pro rychlý přístup k datů klíče indexy organizované s ohledem na rychlost vyhledávání Prostředky pro pohodlné užívání dat sestavynebo formuláře; používají se pro výstup dat (tisk, prezentaci nebo pouhé zobrazení). Sestavy mohou být např. doplněny o filtry, které vyberou jen požadovanézáznamy. Ochranné prostředky uživatelská oprávnění definice přístupu uživatelů k objektům databáze verze: Jaro 2014 Databáze- úvod, modelování dat 1 verze: Jaro 2014 Databáze- úvod, modelování dat 2 Účel databázových systémů Historické databáze vystavěné jako soustava souborů přímo nad OS Nevýhody přímého použití souborů edundance a nekonzistence dat Nejednotné formáty souborů, duplikace informací v různých souborech Izolace dat Problémy s přístupem k datům Pro každou novou úlohu jee nutno napsat nový program Integritní problémy Integritní omezení(např. mzda > 0) je zanořeno někde v programu místo explicitního vyjádření v požadavcích na datový obsah Velmi obtížné aktualizace podmínek (přidání nebo změna) Atomicita operací s daty Havárie mohou nechat databázi v nekonzistentním stavu, když aktualizace proběhne jen částečně Příklad: Převod peněz z jednoho účtu na druhý musí proběhnou buď úplně nebo vůbec ne Souběžný přístup více uživatelů Souběh je nutný z aplikačního hlediska; neřízenépřístupy mohou vést k nekonzistencím Databázové systémy nabízejí řešení verze: Jaro 2014 Databáze- úvod, modelování dat 3 Systém řízení báze dat(sřbd=dbms) Příklad DBMS obsahuje informace o určitém podniku Kolekce vzájemně provázaných dat Množina programů pro přístup a modifikaci dat Prostředí, které je uživatelsky přívětivé a při tom efektivní Aplikace databází Bankovnictví: veškeré transakce Aerolinky: rezervace, letové řády, opravy letadel,... University: registrace, studijní plány, rozvrhy, diplomy,... (KOS) Prodejci: zákazníci, katalogy, jednotlivé obchody Výroba: produkce, sklady, objednávky, zásobování Personalistika: záznamy o zaměstnancích, mzdy, daňové povinnosti,... Databáze jsou všude kolem nás verze: Jaro 2014 Databáze- úvod, modelování dat 4

2 Úrovně abstrakce Fyzická úroveň popisuje, jak je uložen záznam (např. o zákazníkovi) Logická úroveň popisuje jakádata jsou v databázi uložena a vztahy mezi daty type customer = record customer_id: string; customer_name: string; customer_street: string; customer_zip: integer; end; Úroveň pohledů Aplikace zakrývají detaily dat. Pohledy mohou mít týžúčel, tedy např. zakrýt výši mzdy a zaručit tak důvěrnost či utajení některých údajů Pohledy Pohled 1 Pohled 2... Logická úroveň Fyzická úroveň Pohled n Schémata a instance Schéma logickástruktura databáze Analogie s typem (třídou) proměnné v programu Příklad: Databáze obsahuje informace o množiněvyučovaných předmětů, množiněčasových úseků učeben a vztahů mezi nimi (tj. kdy se kde co učí) Fyzické schéma: struktura databáze na fyzické úrovni Logické schéma: struktura databáze na logické úrovni Instance skutečný obsah databáze v daný okamžik Analogie s hodnotou proměnné(stavem objektu) v programu Nezávislost na fyzických datech možnost modifikovat fyzické schéma beze změny logického schématu Aplikace se opírají pouze o logickéschéma a nezávisí na fyzickém zobrazení Obecně: ozhraní mezi různými úrovněmi (vrstvami) a komponentami jsou přesnědefinována, takže změny v některých částech neovlivňují zbytek verze: Jaro 2014 Databáze- úvod, modelování dat 5 verze: Jaro 2014 Databáze- úvod, modelování dat 6 Modely dat Množina prostředků pro popis Vlastních dat Vztahůmezi daty Sémantiky dat Omezení kladených na data Historické modely dat Hierarchický model Síťový model elačnímodel dat v současnosti nejužívanější model Entity-elationshipmodel (E- model) abstraktní a konceptuální znázornění reality formální nástroj pro návrh databáze a jejího logického schématu Objektové modely dat Objektové databáze a Objektově relační databáze Polostrukturované datové modely sloužízpravidla pro výměnu dat mezi různými systémy typický příklad je XML (extensible Mark-up Language) Datově orientované jazyky (1) Jazyky pro manipulaci s daty Data Manipulation Languages (DML) Jazyk pro přístup k datům a manipulaci s daty (modifikaci) organizovanými podle příslušného modelu též dotazovací jazyk (query language) Dvě třídy DML Procedurální uživatel (programátor) udává jaká data chce a jak je získat Deklarativní(neprocedurální) uživatel (programátor) udává jaká data chce, aniž by zadával způsob jejich získání Nejrozšířenější dotazovací jazyk je SQL Structured Query Language deklarativní jazyk Příklad: select st_jmeno, st_prijmeni from studenti where st_login = xnovak verze: Jaro 2014 Databáze- úvod, modelování dat 7 verze: Jaro 2014 Databáze- úvod, modelování dat 8

3 Datově orientované jazyky (2) Jazyky pro definici dat Data Definition Language(DDL) Popis definice databázového schématu Příklad: create table ucet (cislo_uctu: char(10), zustatek: integer) PřekladačDDL generuje množinu tabulek uložených v tzv. slovníkem dat (data dictionary) Slovník dat obsahuje metadata(tj. data o datech znalosti ) Databázové schéma Způsob uloženídat a datové typy Specifikují se struktury datových souborů a způsoby přístupu Integritní omezení Doménová omezení (např. pouze nezáporná čísla) eferenční integrita (odkazy a vazby dat) Tvrzení (assertion) Obecnáomezení ve tvaru predikátůpopisujícípovinné podmínky, které nelze zahrnout do omezeníintegritních (např. katedra musí v každém semestru nabízet aspoň 5 předmětů) Autorizační informace Např. mzda je diskrétní údaj, který mohou vidět jen oprávnění uživatelé (např. šéf a mzdová účetní) verze: Jaro 2014 Databáze- úvod, modelování dat 9 elační model dat Příklad tabelovaných dat v relačním modelu elace je množina ( ) zobrazená výčtovou tabulkou Sloupce se nazývají atributy Špatněnavrženo data se opakují Ukázka relační databáze Tabulka klient Tabulka ucet Tabulka vkladatel uvádí vztah mezi tabulkami klient a ucet verze: Jaro 2014 Databáze - úvod, modelování dat 10 SQL SQL nejrozšířenější neprocedurální dotazovací jazyk Příklad: Najdi jméno zákazníka s klient_id select klient.klient_jmeno from klient where klient.klient_id = Příklad: Najdi zůstatky všech účtů patřících klientovis klient_id select ucet.zustatek from where vkladatel, ucet vkladatel.klient_id = and vkladatel.ucet_id = ucet.ucet_id SQL standard je primárnědml, avšak mái DDLpříkazy Aplikační programy obvykle přistupují k databázím přes rozšíření příslušného programovacího jazyka, kteréumožňuje využívat SQL jako jazykový konstrukt např. propojeníphp s MySQL častépro webovéaplikace API knihoven schopných zaslat SQL příkazy databázovému (sub)systému např. ODBC = Open Database Connectivity či JDBC = Java DataBase Connectivity verze: Jaro 2014 Databáze - úvod, modelování dat 11 Návrh databází Obecný návrh databáze je složitý několikastupňový proces Logický návrh Vytváří se logickéschéma databáze. Cílem je nalézt dobře koncipovanou sadu datových tabulek a jejich vzájemných vazeb tak, aby schéma obsahovalo minimum duplicit a bylo co nejotevřenější pro případné modifikace struktury. Obecně úloha softwarového inženýrství Logický návrh zahrnuje dvě klíčová rozhodnutí: 1. ozhodnutí dle účelu: Jaká data mají být zaznamenávána v databázi 2. ozhodnutí o struktuře: Jak potřebná data rozdělit mezi tabulky dat (relace) a jak koncipovat příslušné databázové schéma. Fyzický návrh ozhodnutí o zobrazenídatových tabulek do samostatných komponent v databázi Důležité z pohledu efektivity a údržby dat verze: Jaro 2014 Databáze- úvod, modelování dat 12

4 Entity-elationship model E- model je jedním z nejčastěji používaných návrhových prostředků Modeluje oblast zájmu (např. podnik) jako kolekci entit and a vztahů (relationships) mezi nimi Entita: je nějaká věc nebo objekt jednoznačně odlišitelná od ostatních Entita je popsána množinou svých atributů Vztah: propojení mezi dvěma či více entitami POZO: Nezaměňovat relace(relation) a vztah(relationship)! eprezentuje se graficky tzv. Entity-elationship diagramem (E- diagram) Objektově relační model a objektový model dat Objektověrelační model rozšiřuje relačnímodel o objektověorientovanékonstrukty Atributy mohou být hlouběji strukturované typy (objekty) včetně např. vnořených relací Zachovává principy relačního pohledu na data a deklarativní přístup k datům za současného rozšíření schopnosti modelování obecnějších dat Poskytuje (aspoňčástečnou) zpětnou kompatibilitu s existujícími relačně orientovanými databázovými jazyky Objektový model je plně objektově orientovaný Poskytuje možnosti klasického objektového náhledu na svět Zapouzdřování, dědění, třídy, vlastnosti, metody,... Při implementaci jsou značným problémem metody, realizované kódem, který by měl být uložen jako součást dat Existující objektovédatabáze poskytují bohatou škálu datových typůvčetněstrukturovaných, jako např. kolekce apod. verze: Jaro 2014 Databáze- úvod, modelování dat 13 verze: Jaro 2014 Databáze- úvod, modelování dat 14 XML: Extensible Markup Language XML původně definován WWW Consortium(W3C) Byl vyvinut jako značkovací(markup) jazyk pro dokumenty, nikoliv jako databázový jazyk Schopnost specifikovat novéznačky (příznaky, tagy) a možnost tvorby vnořovaných značkovaných struktur způsobila, že XLM se dodatečně stala skvělým prostředkem pro výměnu nejen dokumentů, ale zejména dat XML se tak stal základem téměřvšech soudobých systémů pro výměnu dat zejména mezi různými institucemi, např. přenosy účetních dokumentů (faktur) mezi podniky, daňová přiznání apod. Je k dispozici velké množství nástrojů pro analýzu, prohledávání a dotazování dat zachycených v XML formátu Nedávné analýzy však ukazují, že nadměrné rozšíření XML vzhledem ke své objemové náročnosti (XML je velmi ukecaný ) způsobilo dokonce i přetížení komunikačních kanálů počítačových sítí Nastudujte sami např. verze: Jaro 2014 Databáze- úvod, modelování dat 15 E- modelování: Entity Entitaje objekt, který existuje a je odlišitelnáod ostatních objektů Příklad: určitá osoba, podnik, kulturní akce, technické zařízení Entity jsou obecné řeči obvykle vyjádřeny jako podstatná jména Entity mají vlastnosti označované jako atributy Příklad: lidé majíjménaa adresy Množinou entit rozumíme množinou tvořenou entitami stejného typu, tj. entitami s týmiž vlastnostmi Často se místo pojmu množina entit používá entitní typ Příklad: množina osob, množina stromů, množina bankovních půjček, množina údajů sbíraných z čidel klient pujcka verze: Jaro 2014 Databáze- úvod, modelování dat 16

5 E- modelování: Atributy Entita je reprezentována množinou atributůpopisujících vlastnosti všech prvkůpatřících do příslušnémnožiny entit. Fakticky je tím definována struktura datového typu (záznamu), který nese informaci o jednom každém prvku množiny Příklad: klient = (klient_id, klient_jmeno, klient_ulice, klient_mesto) pujcka = (pujcka_id, castka) Doména atributu množina přípustných hodnot pro každý atribut Typy atributů Jednoduché a složené atributy Jedno- nebo vícehodnotové atributy Příklad vícehodnotového atributu: telefonni_cisla Odvozené (též počítané) atributy Dají se vypočítat z hodnot jiných atributů Např. věk, je-li známo datum_narození Složené atributy Složené a složkové atributy Složkové atributy verze: Jaro 2014 Databáze- úvod, modelování dat 17 verze: Jaro 2014 Databáze- úvod, modelování dat 18 E- modelování: Vztahy Vztah definuje propojení mezi dvěma či více entitami Příklad: Novák ukládá na A-102 entita klient vztah vkladatel entita ucet (zobrazeno jako entita) Vztahy obvykle představují slovesné fráze Množina vztahů je množina propojenímezi dvěma (či více) množinami entit matematicky zapsáno: množina vztahůmezi n 2 entitami je množina n-tic, kde každý prvek n-tice je vybrán z jedné množiny entit {(e 1, e 2, e n ) e 1 E 1, e 2 E 2,, e n E n } kde (e 1, e 2,, e n ) je vztah matematicky jde o relaci Příklad: (Novák, A-102) vkladatel klient Množina vztahů Množiny vztahůvyjádřeny tabulkami podobně jako entity Mohou mít dokonce připojené atributy např. datum poslední splátky Množiny vztahůmohou propojovat více množin entit např. (zaměstnanec, pozice, oddělení) většinou se ale používají binární množiny vztahů propojení dvou množin entit pujcka množina vztahů dluzi dluzi verze: Jaro 2014 Databáze - úvod, modelování dat 19 verze: Jaro 2014 Databáze- úvod, modelování dat 20

6 Kardinalita vztahů Kardinalita určuje počet prvků množiny entit přidružené prostřednictvím množiny vztahů Pro binární množiny vztahůjsou možné4 typy 1 : 1 1 : N N : 1 M : N Poznámka: V množinách entit mohou existovat i prvky, kterénejsou propojeny s žádným prvkem v druhé množině. verze: Jaro 2014 Databáze- úvod, modelování dat 21 Klíče Klíčem množiny entitje atribut nebo skupina atributů, jejichž hodnota určuje jednoznačně konkrétní entitu Takových skupin atributů může být více někdy se říká superklíč Minimální superklíče jsou kandidáti na to, aby se stali klíčem Mezi potenciálními kandidáty bude zvolen jeden primární klíč Např. klient_id bude zvolen za primární klíč množiny entit klient Někdy se zavádí samostatný (syntetický) atribut, aby sloužil jako klíč Superklíčemmnožiny vztahůje kombinace (zřetězení) primárních klíčů participujících množin entit též značené jako složkové klíče (klient_id, pujcka_id) je superklíčem vztahu dluzi Pak ovšem nelze mít ve vztahu dluzi více údajůo splátkách půjčky Logickou strukturu pro tato data je nutno navrhnout jinak Volba kandidátů a výběr primárního klíče vztahu závisína kardinalitě vztahu Pro 1:1 může být primárním klíčem kterýkoliv složkový klíč Pro ostatní případy zřetězení složkových klíčů verze: Jaro 2014 Databáze- úvod, modelování dat 22 E- Diagramy E- diagram s vícehodnotovými, složenými a odvozenými atributy klient_jmeno klient_ulice datum klient_id klient_mesto pujcka_id castka klient dluzi pujcka Obdélníky množiny entit Kosočtverce množiny vztahů Ovály atributy zdvojené ovály se užívají pro vícehodnotové atributy čárkované ovály značí odvozené (počítané) atributy Podtržené atributy značí primární klíče verze: Jaro 2014 Databáze- úvod, modelování dat 23 verze: Jaro 2014 Databáze- úvod, modelování dat 24

7 ole Vztahy nemusí propojovat různé množiny entit Pak je vhodné zavést rolea označit tak význam částí vztahu Označení řídí a je_řízen specifikují, jak jsou jednotliví zaměstnanci vzájemně podřízeni přes vztah pracuje_pro ole v E diagramech jsou nepovinné, zlepšují čitelnost a vyjadřují sémantiku Vyjádření kardinality vztahů Značení je nejednotné Základní metoda: Pokud se všechny entity z dané množiny musí účastnit množiny vztahů, znázorňuje se to tlustou nebo dvojitou čarou a nazývá se to omezení účasti ve vztahu(participation constraint). Pokud se každá entita z množiny může účastnit maximálně jednoho vztahu z množiny, je to znázorněno šipkou od množiny entit k množině vztahů, je to nazýváno klíčové omezení (keyconstraint). Ke znázornění vztahu, kdy každá entita z množiny se účastní právějednohovztahu z množiny, se používátlustášipka. verze: Jaro 2014 Databáze- úvod, modelování dat 25 verze: Jaro 2014 Databáze- úvod, modelování dat 26 Kardinalita a omezení- příklady Každý klient máprávě jednu půjčku Alternativní vyjádření omezení kardinalitou vztahů Několik klientů májednu společnou půjčku Jeden klient má několik půjček (nebo také žádnou) Několik klientů participuje na několika půjčkách Klient může mít libovolný počet půjček (nebo také žádnou), avšak každá existující půjčka musí mít svého klienta Alternativně se též používá značení Crow s feet Ke každé půjčce musí existovat aspoň jeden klient avšak ne každý klient musí mít půjčku verze: Jaro 2014 Databáze- úvod, modelování dat 27 verze: Jaro 2014 Databáze- úvod, modelování dat 28

8 Otázky návrhu modelu Entita nebo atribut? Volba závisí na struktuře modelované reality a na sémantice příslušného atributu Často entita místo vícehodnotového nebo složeného atributu Použít množinu entit nebo množinu vztahů? Možným vodítkem je právě význam: vztahy jsou slovesné fráze popisující akce, které se dějí mezi entitami Např. klient ukládá_na účet Binární nebo n-ární množiny vztahů? Kvůli zlepšení čitelnosti jsou často vhodnějšín-ární množiny vztahů, neboť je zřejmé, že více entit participuje na jednom vztahu Z implementačního pohledu jsou binární vztahy efektivnější n-árnívztahy lze převést na sadu binárních Připojovat atributy k množinám vztahů? Připojení jednoduchého atributu k množině vztahůje sice efektivní, může však způsobit komplikace při modifikaci modelu složitější atributy ke vztahům jsou nevhodné verze: Jaro 2014 Databáze- úvod, modelování dat 29 Binární vs. n-ární vztahy Některévztahy vypadající ne-binárně je lépe reprezentovat binárními vztahy Příklad: Ternárnívztah rodičepropojujícídítěs jeho matkou a otcem je vhodnější nahradit dvojicí binárních vztahů je_otcem a je_matkou To dokonce přinese výhodu reprezentace možnosti zakotvenéjižve starořímském právu: Jistá je vždy jen matka Existují ale vztahy, které jsou ze své sémantiky ne-binární Např.: Máme množiny entit: studentske_projekty vedouci_ucitele a studenti a k nim množinu vztahůpracuje_na_a_vede_ho, kterépopisují, který student pracuje na kterém projektu pod vedením kterého učitele. Kdybychom nahradili takovýto ternární vztah binárními vztahy ucitel_projekt a ucitel_student, tak sice zachováme informaci o tom, že učitel Novák vede studenty Karla a Petra a že učitel Novák řídíprojekty A a B, ale nebudeme mít informaci o tom, že Karel řeší projekt A a Petr řeší projekt B verze: Jaro 2014 Databáze- úvod, modelování dat 30 Formální převod n-árních vztahů na binární Ne-binární vztahy lze reprezentovat binárními Zavedeme abstraktní množinu entit E a nahradíme vztahy mezi množinami entit A, B a C množinou entit E a třemi množinami vztahů: 1. A, které propojujíe a A 2. B, propojujíe a B 3. C, propojujíe a C Vytvoříme klíč pro množinu Ea případnéatributy vztahů v přesuneme do E Pro každý jeden vztah (a i, b i, c i ) v vytvoříme 1. novou entitu e i v množiněe 2. přidáme (e i, a i ) do A 3. přidáme (e i, b i ) do B 4. přidáme (e i, c i ) do C Při tomto převodu mohou nastat problémy s omezeními souvisejícími s kardinalitou verze: Jaro 2014 Databáze- úvod, modelování dat 31 Slabé množiny entit Při modelováníreality se někdy vytvářímnožiny entit, kterésamy o soběnemajísmysl Jsou součástí celku daného souvislostí s jinou množinou entit. Takové množiny entit se nazývají slabé (též slabý entitní typ) Existence slabé množiny entit závisí na existenci identifikující množiny entit Musí existovat vztah 1:N vedoucí z identifikující ke slabé množině entit Identifikující vztah se označuje v E- diagramu zdvojeným kosočtvercem Primární klíč slabého entitního typu primární klíč identifikující množiny plus vhodný rozlišujícíatribut slabé množiny (tzv. diskriminátor či rozlišovač ) Slabémnožiny entit se značízdvojeným obdélníkem a jejídiskriminátor se podtrhává čárkovaně Příkladem slabé entity jsou položky faktury, které samy o sobě nemají smysl, pokud nejsou vztaženy ke konkrétní faktuře. Identifikující množinou budou faktury a diskriminátorem číslo položky Jiný příklad verze: Jaro 2014 Databáze- úvod, modelování dat 32

9 Přehled hlavních symbolů E- diagramů E WE slabá množina entit MA vícehodnotový atribut W množina entit množina vztahů idetifikující množina vztahů pro slabou množinu entit verze: Jaro 2014 Databáze- úvod, modelování dat 33 A DA atribut odvozený atribut povinná účast ve vztahu A primární klíč A diskriminátor slabé množiny entit vztah M:N vztah 1:1 1.. K E E vztah N:1 vymezení kardinality vztahu Převod E- modelu na logické schéma Data uložená v tabulkách (relace ) Množina entit Pojmenovaná tabulka Pojmenovanésloupce jsou atributy, každý atribut má svůj datový typ (datum, řetězec znaků dané délky, číslo integer,...) Řádky jednotlivé entity (instance) K prohledávání tabulky slouží primární klíč Množina vztahů Pojmenovaná tabulka Sloupce jsou primárníklíče entitníchtabulek, kteréjsou vztahem propojeny; mohou být přidány další sloupce popisující atributy vztahu Řádky jednotlivé dvojice (nebo n-tice) provázaných entit Primárním klíč závisí na kardinalitě vztahu pro vztah 1:1 stačí jediný atribut, jinak zřetězení primárních klíčů propojených entit Slabá množina entit Opět tabulka se sloupcem obsahujícím primární klíč identifikující entity a sloupcem obsahujícím diskriminátor Zřetězení těchto dvou atributů je primárním klíčem slabého entitního typu verze: Jaro 2014 Databáze- úvod, modelování dat 34 Převod E- modelu na logické schéma (pokr.) Složené atributy Zpravidla se převedou na skupinu jednoduchých atributů (několik sloupců v tabulce) Např. Složený atribut jmeno se složkami prvni_jmeno a prijmeni se převede na dvojici jednoduchychatributůjmeno.prvni_jmeno a jmeno.prijmeni Vícehodnotové atributy Pro takový atribut se vytvoří samostatnátabulka s dvěma sloupci (atributy) První sloupec je primární klíč základní množiny entit a druhý sloupec je konkrétníhodnota zobrazovaného vícehodnotového atributu Tabulka atributu klient.telefon Takto dekomponovanétabulky s atomickými atributy tvoří schéma v tzv. první normální formě Skvělý výklad je na verze: Jaro 2014 Databáze- úvod, modelování dat 35 Normalizace databází Je to teorie umožňujícírigoróznínávrh databáze s ohledem na její korektní aktualizace a užití (Edgar F. Codd 1971) Příklad: Problém: Co zvolit jako klíč? Ani jeden z atributůnení klíčem => klíčemmusí být zřetězení atributů Nevhodně a redundantně se opakují data Druhá normální forma ozklad tak, aby klíče byly jednoduché atributy Avšak i nadále trváproblém: Když se Kovářová vdá, budou se měnit klíče a na ty mohou být navázány další vztahy. Další argumenty viz verze: Jaro 2014 Databáze- úvod, modelování dat 36

10 Funkční závislosti Dalšínormálníformy jsou založeny na tzv. funkčních závislostech: Funkční závislostí rozumíme vazbu (omezení) platnou mezi dvěma množinami atributů v téže "tabulce" (relaci ) v databázi Primitivní příklad: odne_cislo Datum_narozeni (datum narození lze z rodného čísla odvodit). Nikoli však obráceně! Podmínka, z níž lze odvodit závěr, se nazývá determinant závislosti Příklady: Zde lze odvodit následující "funkční" závislosti: Triviální (konkrétní student studuje konkrétní semestr) Netriviální závislosti (méně zjevné): { { Z poslední závislosti vyplývá, že { je superklíčem K čemu je to dobré? verze: Jaro 2014 Databáze- úvod, modelování dat 37 Boyce-Coddova normální forma (BCNF) Definice BCNF: elace je v BCNF právětehdy, když pro každou netriviální závislost X Y, kde X a Y jsou množiny atributů a zároveňy není podmnožinou X, platí, že X je nadmnožinounějakého klíče, nebo X je klíčem relace. Jinak řečeno relace je v BCNF tehdy a jen tehdy, když každý determinant funkčnízávislosti v relaci je zároveňkandidátním klíčem relace. Tabulky (relace) v BCNF umožňují jednoznačně odpovídat na "datové dotazy" ( ) Např.: je v BCNF Dotaz: "Kdo používá učebnici TannenbaumMOS?" je jednoznačně zodpověditelný verze: Jaro 2014 Databáze- úvod, modelování dat 38 BCNF a další normalizace Bohužel tabulky v BCNF trpímnohdy tzv. aktualizačními problémy. Přijde-li nový učitel databází a bude používat tytéž dvě učebnice, bude nutno doplnit dva záznamy. Bude proto vhodné rozložit naši tabulku na dvě: To pak vede na tzv. 4. NF, kde můžeme najít dalšídrobné problémy. Závěr: Teorie normalizace databází je matematicky hluboce propracovaná V učebnicích lze najít devět stupňů normálních forem Zájemci nechť se obrátí ke specializovaných publikacím nebo k předmětům, kterése věnují výhradnědatabázím a jejich teorii Např. A4B33DS, A7B36DBS apod. verze: Jaro 2014 Databáze- úvod, modelování dat 39 Dotazy verze: Jaro 2014 Databáze- úvod, modelování dat 40

Téma 9 Databáze úvod, modelovánídat

Téma 9 Databáze úvod, modelovánídat Téma 9 Databáze úvod, modelovánídat Obsah 1. Základní pojmy databází 2. Abstrakce, schémata, pohledy 3. Databázové modely 4. Modelování reálného světa 5. Entity a vztahy 6. Entity-Relationship (E-R) model

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy - 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

Hierarchický databázový model

Hierarchický databázový model 12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického

Více

Analýza a modelování dat 3. přednáška. Helena Palovská

Analýza a modelování dat 3. přednáška. Helena Palovská Analýza a modelování dat 3. přednáška Helena Palovská Historie databázových modelů Relační model dat Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM

Více

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou:

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou: Relační databáze Pojem databáze, druhy databází Databází se myslí uložiště dat. V době začátků využívání databází byly tyto členěny hlavně hierarchicky, případně síťově (rozšíření hierarchického modelu).

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

Jiří Mašek BIVŠ V Pra r ha 20 2 08

Jiří Mašek BIVŠ V Pra r ha 20 2 08 Jiří Mašek BIVŠ Praha 2008 Procesvývoje IS Unifiedprocess(UP) Iterace vývoje Rysy CASE nástrojů Podpora metodických přístupů modelování Integrační mechanismy propojení modelů Podpora etap vývoje Generování

Více

Datové modelování II

Datové modelování II Datové modelování II Atributy Převod DM do schématu SŘBD Dotazovací jazyk SQL Multidimenzionální modelování Principy Doc. Miniberger, BIVŠ Atributy Atributem entity budeme rozumět název záznamu či informace,

Více

Databázové a informační systémy Jana Šarmanová

Databázové a informační systémy Jana Šarmanová Databázové a informační systémy Jana Šarmanová Obsah Úloha evidence údajů, způsoby evidování Databázové technologie datové modely, dotazovací jazyky. Informační systémy Datové sklady Metody analýzy dat

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

DBS Konceptuální modelování

DBS Konceptuální modelování DBS Konceptuální modelování Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze Michal.Valenta@fit.cvut.cz c Michal Valenta, 2010 BIVŠ DBS I, ZS 2010/11 https://users.fit.cvut.cz/

Více

Použití databází na Webu

Použití databází na Webu 4IZ228 tvorba webových stránek a aplikací Jirka Kosek Poslední modifikace: $Date: 2010/11/18 11:33:52 $ Obsah Co nás čeká... 3 Architektura webových databázových aplikací... 4 K čemu se používají databázové

Více

Databázový systém označuje soubor programových prostředků, které umožňují přístup k datům uloženým v databázi.

Databázový systém označuje soubor programových prostředků, které umožňují přístup k datům uloženým v databázi. Databáze Základní pojmy Pojem databáze označuje obecně souhrn informací, údajů, dat o nějakých objektech. Úkolem databáze je hlídat dodržení všech omezení a dále poskytovat data při operacích. Objekty

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Co je to databáze? Jaké

Více

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 1. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká I. Úvod do teorie DB systémů

Více

2 Konceptuální modelování a návrh databáze

2 Konceptuální modelování a návrh databáze 2 Konceptuální modelování a návrh databáze 2.1. Úloha konceptuálního modelování v procesu návrhu databáze... 2 2.2. E - R modely... 6 2.3. Doporučení pro modelování a tvorbu ER diagramu... 22 2.4. Transformace

Více

Terminologie v relačním modelu

Terminologie v relačním modelu 3. RELAČNÍ MODEL Relační model reprezentuje databázi jako soubor relací. Každá relace představuje tabulku nebo soubor ( ve smyslu soubor na nosiči dat ). Terminologie v relačním modelu řádek n-tice ( n-tuple,

Více

Database engine (databázový stroj, databázový motor, databázové jádro) Systém řízení báze dat SŘBD. Typy SŘBD podle způsobu práce s daty

Database engine (databázový stroj, databázový motor, databázové jádro) Systém řízení báze dat SŘBD. Typy SŘBD podle způsobu práce s daty Systém řízení báze dat SŘBD programový systém umožňující vytvoření, údržbu a použití báze dat databáze program Database engine (databázový stroj, databázový motor, databázové jádro) funkce: přenos (načítání)

Více

2 Konceptuální modelování a návrh databáze

2 Konceptuální modelování a návrh databáze 2 Konceptuální modelování a návrh databáze 2.. Úloha konceptuálního modelování v procesu návrhu databáze... 2 2.2. E - R modely... 6 2.3. Doporučení pro modelování a tvorbu ER diagramu... 22 2.4. Transformace

Více

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR):

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR): Mezi příkazy pro manipulaci s daty (DML) patří : 1. SELECT 2. ALTER 3. DELETE 4. REVOKE Jaké vlastnosti má identifikující relace: 1. Je relace, která se využívá pouze v případě modelovaní odvozených entit

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

J. Zendulka: Databázové systémy 4 Relační model dat 1

J. Zendulka: Databázové systémy 4 Relační model dat 1 4. Relační model dat 4.1. Relační struktura dat... 3 4.2. Integritní pravidla v relačním modelu... 9 4.2.1. Primární klíč... 9 4.2.2. Cizí klíč... 11 4.2.3. Relační schéma databáze... 13 4.3. Relační algebra...

Více

Konceptuální modelování. Pavel Tyl 21. 3. 2013

Konceptuální modelování. Pavel Tyl 21. 3. 2013 Konceptuální modelování Pavel Tyl 21. 3. 2013 Vytváření IS Vytváření IS Analýza Návrh Implementace Testování Předání Jednotlivé fáze mezi sebou iterují Proč modelovat a analyzovat? Standardizované pracovní

Více

Databázové systémy. Tomáš Skopal. - úvod do relačního modelu. - převod konceptuálního schématu do relačního

Databázové systémy. Tomáš Skopal. - úvod do relačního modelu. - převod konceptuálního schématu do relačního Databázové systémy - úvod do relačního modelu Tomáš Skopal - převod konceptuálního schématu do relačního Osnova přednášky relační model převod ER diagramu do relačního modelu tvorba univerzálního relačního

Více

Úvod do databází. Modelování v řízení. Ing. Petr Kalčev

Úvod do databází. Modelování v řízení. Ing. Petr Kalčev Úvod do databází Modelování v řízení Ing. Petr Kalčev Co je databáze? Množina záznamů a souborů, které jsou organizovány za určitým účelem. Jaké má mít přínosy? Rychlost Spolehlivost Přesnost Bezpečnost

Více

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_038.ICT.34 Tvorba webových stránek SQL stručné minimum OA a JŠ Jihlava, VY_32_INOVACE_038.ICT.34 Číslo

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

Ukládání a vyhledávání XML dat

Ukládání a vyhledávání XML dat XML teorie a praxe značkovacích jazyků (4IZ238) Jirka Kosek Poslední modifikace: $Date: 2014/12/04 19:41:24 $ Obsah Ukládání XML dokumentů... 3 Ukládání XML do souborů... 4 Nativní XML databáze... 5 Ukládání

Více

7.3 Diagramy tříd - základy

7.3 Diagramy tříd - základy 7.3 Diagramy tříd - základy - popisuje typy objektů a statické vztahy mezi nimi Objednávka -datumpřijetí -předplacena -číslo -cena +vyřiď() +uzavři() {if Objednávka.zákazník.charakteristika = 'nejistý'

Více

RELAČNÍ DATABÁZE ACCESS

RELAČNÍ DATABÁZE ACCESS RELAČNÍ DATABÁZE ACCESS 1. Úvod... 2 2. Základní pojmy... 3 3. Vytvoření databáze... 5 4. Základní objekty databáze... 6 5. Návrhové zobrazení tabulky... 7 6. Vytváření tabulek... 7 6.1. Vytvoření tabulky

Více

7. Integrita a bezpečnost dat v DBS

7. Integrita a bezpečnost dat v DBS 7. Integrita a bezpečnost dat v DBS 7.1. Implementace integritních omezení... 2 7.1.1. Databázové triggery... 5 7.2. Zajištění bezpečnosti dat... 12 7.2.1. Bezpečnostní mechanismy poskytované SŘBD... 13

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Stručný obsah. část III Aktualizace dat Kapitola 10: Aktualizace databáze 257 Kapitola 11: Integrita dat 275 Kapitola 12: Zpracování transakcí 307

Stručný obsah. část III Aktualizace dat Kapitola 10: Aktualizace databáze 257 Kapitola 11: Integrita dat 275 Kapitola 12: Zpracování transakcí 307 Stručný obsah část I Přehled jazyka SQL Kapitola 1: Úvod 27 Kapitola 2: Stručný úvod do jazyka SQL 37 Kapitola 3: Jazyk SQL z širšího pohledu 45 Kapitola 4: Relační databáze 69 Část II Získávání dat Kapitola

Více

Principy UML. Clear View Training 2005 v2.2 1

Principy UML. Clear View Training 2005 v2.2 1 Principy UML Clear View Training 2005 v2.2 1 1.2 Co je touml? Unified Modelling Language (UML) je univerzálníjazyk pro vizuální modelování systémů Podporuje všechny životní cykly Mohou jej implementovat

Více

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace - 3.1 - Struktura relačních databází Relační algebra n-ticový relační kalkul Doménový relační kalkul Rozšířené operace relační algebry Modifikace databáze Pohledy Kapitola 3: Relační model Základní struktura

Více

7.5 Diagram tříd pokročilé techniky

7.5 Diagram tříd pokročilé techniky 7.5 Diagram tříd pokročilé techniky Stereotypy - jeden ze základních prostředků rozšiřitelnosti UML - pro modelovací konstrukce neexistující v UML, ale podobné předdefinované v UML definované uživatelem

Více

Databázové systémy IDS

Databázové systémy IDS Databázové systémy IDS Studijní opora doc. Ing. Jaroslav Zendulka Ing. Ivana Rudolfová Verze: 18. 7. 2006 Tato publikace je určena výhradně jako podpůrný text pro potřeby výuky. Bude užita výhradně v přednáškách

Více

Úvod. Boj se zavlečeným impedančním nesouladem na úrovni databáze

Úvod. Boj se zavlečeným impedančním nesouladem na úrovni databáze Boj se zavlečeným impedančním nesouladem na úrovni databáze ABSTRACT: Impedanční nesoulad může být zmírněn správnou volbou databázové technologie. Článek vysvětluje, co to impedanční nesoulad je a uvádí

Více

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27 Stručný obsah 1. Stručný obsah 3 2. Úvod 11 3. Seznamy a databáze v Excelu 13 4. Excel a externí data 45 5. Vytvoření kontingenční tabulky 65 6. Využití kontingenčních tabulek 81 7. Kontingenční grafy

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

Relační model reprezentuje databázi jako soubor relací. Kaţdá relace představuje tabulku nebo soubor (ve smyslu soubor na nosiči dat).

Relační model reprezentuje databázi jako soubor relací. Kaţdá relace představuje tabulku nebo soubor (ve smyslu soubor na nosiči dat). 3. Relační model Relační model reprezentuje databázi jako soubor relací. Kaţdá relace představuje tabulku nebo soubor (ve smyslu soubor na nosiči dat). Příklad 3.1: Filmová databáze relace: FILM REŢISÉR

Více

PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI

PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI Cyril Klimeš a) Jan Melzer b) a) Ostravská univerzita, katedra informatiky a počítačů, 30. dubna 22, 701 03 Ostrava, ČR E-mail: cyril.klimes@osu.cz b) DC Concept

Více

Vzdělávací oblast: Informatika a informační a komunikační technologie Vzdělávací obor: Programování. Předmět: Programování

Vzdělávací oblast: Informatika a informační a komunikační technologie Vzdělávací obor: Programování. Předmět: Programování Vzdělávací oblast: Informatika a informační a komunikační technologie Vzdělávací obor: Programování Vzdělávací oblast Informatika a informační a komunikační technologie pro vzdělávací obor Programování

Více

Databáze v MS ACCESS

Databáze v MS ACCESS 1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,

Více

DELTA - STŘEDNÍ ŠKOLA INFORMATIKY A EKONOMIE, s.r.o. Obor informační technologie AJAX ESHOP. Maturitní projekt. Třída:

DELTA - STŘEDNÍ ŠKOLA INFORMATIKY A EKONOMIE, s.r.o. Obor informační technologie AJAX ESHOP. Maturitní projekt. Třída: DELTA - STŘEDNÍ ŠKOLA INFORMATIKY A EKONOMIE, s.r.o. Obor informační technologie AJAX ESHOP Maturitní projekt Vypracoval: Denis Ptáček Třída: 4B Rok: 2014/2015 Obsah 1. Použité nástroje... 3 1.1 NetBeans

Více

ÚVOD DO DATABÁZÍ I (DISTANČNÍ VÝUKOVÁ OPORA)

ÚVOD DO DATABÁZÍ I (DISTANČNÍ VÝUKOVÁ OPORA) UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ÚVOD DO DATABÁZÍ I (DISTANČNÍ VÝUKOVÁ OPORA) Zdeňka Telnarová Ostravská univerzita 1 Modul 1... 5 1.1 Základní systémové pojmy... 5 1.1.1 Systém...5

Více

Maturitní témata Školní rok: 2015/2016

Maturitní témata Školní rok: 2015/2016 Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní

Více

13. blok Práce s XML dokumenty v databázi Oracle

13. blok Práce s XML dokumenty v databázi Oracle 13. blok Práce s XML dokumenty v databázi Oracle Studijní cíl Tento blok je věnován práci s XML dokumenty, možnostmi jejich uložení a práce s nimi v databázi Oracle a datovému typu XMLType. Doba nutná

Více

MODELOVÁNÍ DAT V INFORMAČNÍCH SYSTÉMECH. Jindřich Kaluža Ludmila Kalužová

MODELOVÁNÍ DAT V INFORMAČNÍCH SYSTÉMECH. Jindřich Kaluža Ludmila Kalužová MODELOVÁNÍ DAT V INFORMAČNÍCH SYSTÉMECH Jindřich Kaluža Ludmila Kalužová Recenzenti: prof. Ing. Milan Turčáni, CSc. prof. Ing. Ivan Vrana, DrSc. Tato kniha vznikla za finanční podpory Studentské grantové

Více

Databáze Databázové systémy MS Access

Databáze Databázové systémy MS Access Databáze Databázové systémy MS Access Nasazení databází Databáze evidence nějakých údajů Databázové aplikace obsahují konkrétní specifické funkce pro práci s určitými daty (tyto funkce jsou v jiných DB

Více

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda 1. Lze vždy z tzv. instanční třídy vytvořit objekt? 2. Co je nejčastější příčinou vzniku chyb? A. Specifikace B. Testování C. Návrh D. Analýza E. Kódování 3. Je defenzivní programování technikou skrývání

Více

Strukturované metodologie

Strukturované metodologie Strukturované metodologie Strukturovaný přístup aplikace má podobu hierarchie funkcí, která je realizována strukturovanými programy styl práce: AKCE OBJEKT Entitně relační model (ERA) alternativní názvy:

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

1 DATABÁZE 1.1 ÚVOD 1.2 ZÁKLADNÍ POJMY RELAČNÍ DATABÁZE

1 DATABÁZE 1.1 ÚVOD 1.2 ZÁKLADNÍ POJMY RELAČNÍ DATABÁZE 1 DATABÁZE 1.1 ÚVOD Moderní doba se databázemi jen hemží. Například: Management firmy musí mít přehled přinejmenším o svých zaměstnancích, výrobcích, majetku a zákaznících. Přitom mezi těmito údaji existují

Více

Značkovací jazyky a spol. HTML/XHTML XML JSON YAML Markdown, Texy!

Značkovací jazyky a spol. HTML/XHTML XML JSON YAML Markdown, Texy! Značkovací jazyky a spol. HTML/XHTML XML JSON YAML Markdown, Texy! Značkovací jazyky Angl. termín "MARKUP" ("vyznačování") Smyslem je přidat do textu metainformace: formátovací sémantické Výsledek je prostý

Více

Program a životní cyklus programu

Program a životní cyklus programu Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy

Více

10 Balíčky, grafické znázornění tříd, základy zapozdření

10 Balíčky, grafické znázornění tříd, základy zapozdření 10 Balíčky, grafické znázornění tříd, základy zapozdření Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost příkazům balíčkům, grafickému

Více

Databáze. Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu. Bedřich Košata

Databáze. Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu. Bedřich Košata Databáze Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu Bedřich Košata K čemu jsou databáze Ukládání dat ve strukturované podobě Možnost ukládat velké množství dat

Více

Microsoft Access tvorba databáze jednoduše

Microsoft Access tvorba databáze jednoduše Microsoft Access tvorba databáze jednoduše Časový rozsah: 2 dny (9:00-16:00) Cena: 3300 Kč + DPH Úvod do relačních databází. Funkce databázových objektů Microsoft Access. Návrh tabulek, definice základních

Více

1. ZPRACOVÁNÍ DAT. Čas ke studiu kapitoly: 2 hodiny. 1.1. Úlohy zpracování dat. Cíl Po prostudování tohoto odstavce budete umět.

1. ZPRACOVÁNÍ DAT. Čas ke studiu kapitoly: 2 hodiny. 1.1. Úlohy zpracování dat. Cíl Po prostudování tohoto odstavce budete umět. 1.1. Úlohy zpracování dat 1. ZPRACOVÁNÍ DAT Čas ke studiu kapitoly: 2 hodiny 1.1. Úlohy zpracování dat Cíl Po prostudování tohoto odstavce budete umět popsat problém evidence a zpracování velkého množství

Více

Přizpůsobení JSTL pro Google App Engine Datastore

Přizpůsobení JSTL pro Google App Engine Datastore Přizpůsobení JSTL pro Google App Engine Datastore Vítězslav Novák Katedra Aplikovaná informatika Ekonomická fakulta, VŠB-TU Ostrava 1 Google App Engine Google App Engine je zástupcem distribučního modelu

Více

9. blok Fáze návrhu databáze, konceptuální modelování

9. blok Fáze návrhu databáze, konceptuální modelování 9. blok Fáze návrhu databáze, konceptuální modelování Studijní cíl Tento blok je věnován základům databázového modelování. V základu budou probrány jednotlivé fáze návrhu databáze. Dále bude student tohoto

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Bridge. Známý jako. Účel. Použitelnost. Handle/Body

Bridge. Známý jako. Účel. Použitelnost. Handle/Body Bridge Bridge Známý jako Handle/Body Účel odděluje abstrakci (rozhraní a jeho sémantiku) od její konkrétní implementace předchází zbytečnému nárůstu počtu tříd při přidávání implementací používá se v době

Více

1 Administrace systému 3. 1.3 Moduly... 3 1.4 Skupiny atributů... 4 1.5 Atributy... 4 1.6 Hodnoty atributů... 4

1 Administrace systému 3. 1.3 Moduly... 3 1.4 Skupiny atributů... 4 1.5 Atributy... 4 1.6 Hodnoty atributů... 4 CRM SYSTÉM KORMORÁN PŘÍRUČKA ADMINISTRÁTORA Obsah 1 Administrace systému 3 1.1 Uživatelské účty.................................. 3 1.2 Přístupová práva................................. 3 1.3 Moduly.......................................

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

1. Programování proti rozhraní

1. Programování proti rozhraní 1. Programování proti rozhraní Cíl látky Cílem tohoto bloku je seznámení se s jednou z nejdůležitější programátorskou technikou v objektově orientovaném programování. Tou technikou je využívaní rozhraní

Více

S databázemi se v běžném životě setkáváme velmi často. Uvádíme běžné použití databází velkého rozsahu:

S databázemi se v běžném životě setkáváme velmi často. Uvádíme běžné použití databází velkého rozsahu: Úvod do databází Základní pojmy Databáze je množina záznamů, kterou shromažďujeme za nějakým konkrétním účelem. Databáze používáme zejména pro ukládání obsáhlých informací. Databázové systémy jsou k dispozici

Více

TÉMATICKÝ OKRUH Softwarové inženýrství

TÉMATICKÝ OKRUH Softwarové inženýrství TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 23. Otázka : Datový model XML, dotazovací jazyky nad XML daty Obsah : 1 Úvod o XML 2 Vztah XML a databáze 2.1 Databázové systémy s podporou XML 2.2

Více

Objektově relační model

Objektově relační model RMD zhodnocení modelu Objektové paradigma OR model dat Klasifikace DBMS - zdroj: Stonebraker M., 1996 Schopnost vyhledaní, podpora víceuživatel. služeb R DBMS Objektově relační model OR DBMS Souborové

Více

Databáze ArcView) Databázový systém

Databáze ArcView) Databázový systém Databázový systém Databáze (pro začínaj nající uživatele ArcView) Přednáška. Datová základna: soubor všech uživatelských dat uložených v databázi Databázový systém = data + nástroje pro práci s daty. Access.

Více

WebML Objektově orientovaná metodika pro tvorbu webových sídel

WebML Objektově orientovaná metodika pro tvorbu webových sídel WebML Objektově orientovaná metodika pro tvorbu webových sídel Martin Molhanec Katedra elektrotechnologie, Fakulta elektrotechnická, České vysoké učení technické Technická 2, 166 27 PRAHA 6, Dejvice, Česká

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

9. Může dojít k situaci, že ZP je nutno aktualizovat (změna vzhledu, změna příjmení, změna -1- dále ZP).

9. Může dojít k situaci, že ZP je nutno aktualizovat (změna vzhledu, změna příjmení, změna -1- dále ZP). 1 Popis ucelené problémové domény Následující komplexní příklad se týká domény soukromých zbraní v ČR (SSZ v ČR) Ukážeme nejdříve její obecný popis, ale nebudeme se přísně držet současně platného zákona

Více

Popisné systémy a databáze

Popisné systémy a databáze Popisné systémy a databáze Databáze v archeologii přístup k použití databází - dva způsoby aplikace databáze - databázové programy (jejich přednosti a omezení) databáze v archeologii - databáze jako výstup

Více

Microsoft Access. Typy objektů databáze: Vytvoření a návrh nové tabulky. Vytvoření tabulky v návrhovém zobrazení

Microsoft Access. Typy objektů databáze: Vytvoření a návrh nové tabulky. Vytvoření tabulky v návrhovém zobrazení Microsoft Access Databáze je seskupení většího množství údajů, které mají určitou logiku a lze je určitým způsobem vyhodnocovat, zpracovávat a analyzovat Access je jedním z programů určených pro zpracování

Více

12. blok Fyzický návrh databáze

12. blok Fyzický návrh databáze 12. blok Fyzický návrh databáze Studijní cíl Tento studijní blok se zabývá metodologií fyzického návrhu databáze. Především se zabývá fází převodu logického modelu na model fyzický. Bude vysvětlen účel

Více

STŘEDNÍ ŠKOLA INFORMAČNÍCH TECHNOLOGIÍ A SOCIÁLNÍ PÉČE

STŘEDNÍ ŠKOLA INFORMAČNÍCH TECHNOLOGIÍ A SOCIÁLNÍ PÉČE STŘEDNÍ ŠKOLA INFORMAČNÍCH TECHNOLOGIÍ A SOCIÁLNÍ PÉČE WEBOWÉ STRÁNKY TŘÍD KAMIL POPELKA ZÁVĚREČNÁ MATURITNÍ PRÁCE BRNO 2011 Prohlášení Prohlašuji, že maturitní práce je mým původním autorským dílem, které

Více

DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS. (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat)

DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS. (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat) DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat) DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 62 Databáze a systémy pro uchování

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY (doplňující text ke konzultacím v 3. ročníku kombinovaného bakalářského studia oboru Aplikovaná

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Základní seznámení s MySQL Ing. Kotásek Jaroslav

Inovace a zkvalitnění výuky prostřednictvím ICT. Základní seznámení s MySQL Ing. Kotásek Jaroslav Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Databáze Základní seznámení s MySQL

Více

01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980

01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980 01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980 02. Kdy přibližně vznikly první komerční relační databázové servery?

Více

language="javascript">... </script>.

language=javascript>... </script>. WWW (World Wide Web) je dnes společně s elektronickou poštou nejvyužívanější službou internetu. URL (Uniform Resource Locator) slouží ke kompletní adresaci informace na internetu. Udává jak protokol, který

Více

Zpracování informací

Zpracování informací Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č. 6 z předmětu Zpracování informací Ing. Radek Poliščuk, Ph.D. Tato publikace vznikla jako součást

Více

Databázové systémy 1. Studijní opora. Ing. Zbyněk Bureš. Ph.D.

Databázové systémy 1. Studijní opora. Ing. Zbyněk Bureš. Ph.D. Databázové systémy 1 Studijní opora Ing. Zbyněk Bureš. Ph.D. Zbyněk Bureš DATABÁZOVÉ SYSTÉMY 1 1. vydání ISBN 978-80-87035-88-7 Vydala Vysoká škola polytechnická Jihlava, Tolstého 16, Jihlava, 2014 Tisk

Více

EXTRAKT z mezinárodní normy

EXTRAKT z mezinárodní normy EXTRAKT z mezinárodní normy Extrakt nenahrazuje samotnou technickou normu, je pouze informativním materiálem o normě ICS 03.220.01;35.240.60 Inteligentní dopravní systémy (ITS) Rozšíření specifikací mapové

Více

Systém elektronického rádce v životních situacích portálu www.senorady.cz

Systém elektronického rádce v životních situacích portálu www.senorady.cz Systém elektronického rádce v životních situacích portálu www.senorady.cz Obec Senorady Miroslav Patočka 2006 Obsah: 1. Úvodní informace 1.1 Informace pro uživatele 1.1.1 Přístupnost HTML, PDA, WAP, XML

Více

Databáze MS-Access. Obsah. Co je to databáze? Doc. Ing. Radim Farana, CSc. Ing. Jolana Škutová

Databáze MS-Access. Obsah. Co je to databáze? Doc. Ing. Radim Farana, CSc. Ing. Jolana Škutová Databáze MS-Access Doc. Ing. Radim Farana, CSc. Ing. Jolana Škutová Obsah Principy a možnosti databází. Uložení dat v databázi, formáty dat, pole, záznamy, tabulky, vazby mezi záznamy. Objekty databáze

Více

Institute of Computer Science

Institute of Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic Aplikace Filtry Petra Šeflová Technical report No. 1056 February 2010 Pod Vodárenskou věží 2, 182 07 Prague 8, phone: +420 266 051

Více

Využití OOP v praxi -- Knihovna PHP -- Interval.cz

Využití OOP v praxi -- Knihovna PHP -- Interval.cz Page 1 of 6 Knihovna PHP Využití OOP v praxi Po dlouhé teorii přichází na řadu praxe. V následujícím textu si vysvětlíme možnosti přístupu k databázi pomocí různých vzorů objektově orientovaného programování

Více

Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu:

Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_01_ACCESS_P2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W

Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Osnova přednášky Co to je softwarové inženýrství Softwarový proces Metodika a metoda Evoluce softwarových

Více