Úvod do problematiky multiagentních systémů

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do problematiky multiagentních systémů"

Transkript

1 OBSAH: Úvod do problematiky multiagentních systémů 1. Současný stav dané problematiky MAS 1.1 Základní pojmy 1.2 Motivace vzniku 2. Agentní systémy 2.1 Charakteristiky a typy agentů 2.2 Sociální znalosti a jejich úloha 2.3 Architektura agenta 2.4 Okolní prostředí 2.5 Nástroje pro návrh 3. Standardizace pojmů, algoritmů a protokolů 3.1 Sociální chování agentů v multiagentní komunitě 3.2 Návrh metodologie tvorby agentních systémů 3.3 Bezpečnost agentních systémů 4. Sociální aspekty v multiagentních systémech 4.1 Společné schopnosti agentů a jejich zájmy 4.2 Strategie agentů 4.3 Dohody a koalice 4.4 Závazky 5. Komunikace v multiagentních systémech 5.1 Dialogy a zprávy 5.2 Komunikační jazyky 5.3 Metody navazování komunikace 5.4 Interakční protokoly 6. Správa sociálních znalostí a její modely 6.1 Správa znalostí 6.2 Vylepšování znalostí 7. Plánování 7.1 Planning versus Scheduling 7.2 Reprezentace plánu 7.3 Hierarchické plánování 7.4 Podmínkové plánování 7.5 Přeplánování 7.6 Plánování v MAS 8. Modelování multiagentních systémů 7.1 Motivace 7.2 Model MAS 7.3 Skupiny modelů MAS 9. Nástroje pro implementaci 9.1 Implementace založené na agentních principech 9.2 RETSINA 9.3 Swarm 9.4 Některé další nástroje 10. Zdroje Ing. Arnoštka Netrvalová ( ZČU v Plzni, FAV, KIV - místnost: UK 412, tel.: ) 1

2 1. Současný stav dané problematiky 1.1 Základní pojmy Na počátku vzniku a vývoje agentních systémů (Agent Systems, AS) stojí distribuovaná umělá inteligence (Distributed Artificial Intelligence, DAI), v níž autonomní jednotky, které jsou schopné řešit určité problémy, se nazývají aktéři (Actors). Z nich se pak vyvinul pojem agenti (Agents). Princip autonomního agenta (tzv. reaktivního agenta) popsal Rodney Brooks, pracovník AI laboratoří MIT. Princip inteligentních agentů (Intelligent Agents) popsal M. J. Wooldridge. Ve většině případů se agenti rozhodují na základě svých znalostí. Pak hovoříme o tzv. racionálním agentovi. V intenčním systému (intence = záměr) sestavuje agent plán k dosažení vytyčeného cíle nebo užitím BDI principu (Beliefes, Desires and Intention) se pak jednání agenta řídí jistým druhem mentálního stavu. Zde se zavádí další dva stavy agentovy představy a to jsou důvěra (v informace o okolním prostředí a v efekty svých akcí) a přání (tužby, záměry). Zatím nejpopulárnějším přístupem k řešení tohoto pojetí je PRS (Procedural Reasoning Systém) 1.2 Motivace vzniku Řešení složitých a rozsáhlých úloh: Zvýšením flexibility Zvýšením autonomnosti jednotlivých zdrojů znalostí v rámci modulární architektury Volnou integrací modulů pomocí komunikace formou zasílání zpráv ( peer-to-peer ) Redukcí role centrálního prvku Tak vznikly tzv. multiagentní systémy. Multiagentní systém (Multi-agent system, MAS) je možno popsat jako skupinu volně propojených autonomních systémů (agentů) spolupracujících v zájmu dosažení společného cíle. Použitím těchto systémů jako technického řešení přináší podobné výhody jako u týmové práce. Vzhledem k možnostem paralelního postupu je to zkrácení doby řešení a dále lze očekávat snížení nároků na komunikaci, protože jednotliví členové týmu si nepředávají dál všechny zjištěné údaje, ale především své závěry o nich (narozdíl od centrálně řízeného distribuovaného systému). Zvyšuje se tak operativnost a spolehlivost, protože komunita může přibírat další členy a nebo se někteří mohou zastupovat. 2. Agentní systémy Agentní systém (Agent System, AS) je dán prostředím, v němž působí agent vybavený určitou dávkou inteligence, jež je využita k řešení problému. Agent (Agent, A) je definován jako aktivní prvek systému vytvořený člověkem za určitým účelem. Výsledkem činnosti agenta je pak změna AS z aktuálního do cílového stavu. Rozeznáváme tři přístupy: Postupná transformace do požadovaného stavu Konzultace s expertem (člověkem) a pak postupná transformace do požadovaného stavu Zkoumání systému, hledání vnitřních zákonitostí, získání nových poznatků a pak postupná transformace do požadovaného stavu 2.1 Charakteristiky a typy agentů Agenty lze rozdělit následovně: 1) Biologičtí agenti - lidé 2) Techničtí agenti roboti 2

3 3) Programoví agenti softboti (uplatnění Javy) Agenti v počítačových hrách Počítačové viry Agenti pro specifické úkoly Agenti entity umělého života Obr. 1: Schéma inteligentního softwarového agenta Základní charakteristiky agenta: Autonomnost agenti jsou proaktivní, cílově orientované moduly, schopné samostatného řešení určitých úloh bez nezbytné komunikace s okolím, avšak schopní komunikace, koordinace činnosti či kooperace s jinými agenty v rámci určité komunity. Mají možnost dobrovolně vstupovat a opouštět komunitu, poskytovat či požadovat výsledky o Reaktivita agenti jsou aktivováni událostmi, schopni reakce v souladu s vnímáním reálného času Intencionalita schopnost mít na paměti dlouhodobé cíle, organizace chování k dosahování těchto cílů, formulace vlastních plánů a využití svých úsudků Schopnost sociálního chování agenti jsou schopni: spolupráce pro dosažení společných cílů, udržování informace o jiných agentech a vytváření úsudků o nich, sdružování do koalic a týmů, od nichž očekávají vzájemný prospěch Obr. 2 Typy agentů 3

4 Agenty lze tudíž dále rozlišit na následující typy (viz obr. 2): Agent inteligentní má schopnost plnit cíle s využitím logické dedukce Agent reaktivní má schopnost reakce na podněty Agent deliberativní (rozvážný) má schopnost plánovat postup svých akcí, provádět výpočty, ovlivňovat prostředí tak, aby získal výhodu (proaktivita) Agent kognitivní má schopnost vyvozovat logické závěry ze svých pozorování okolního prostředí. Je schopen se učit a vytvářet bázi znalostí ( ukládá tam informace a znalosti získané dedukcí). Musí mít deliberativní schopnosti. Pak může provádět vnitřní akce jako je analýza scény, překlad a získávání dalších znalostí. Agent racionální musí mít všechny výše uvedené schopnosti. Jeho struktura obsahuje plánovací jednotku i kognitivní jednotku včetně báze znalostí. Na základě svých poznatků je schopen se učit a pak racionálním způsobem plánovat svou činnost pro dosažení cílů. 2.2 Sociální znalosti a jejich úloha Znalosti agenta lze rozdělit na: Problémově-orientované znalosti (problem oriented knowledge) asociální typ znalostí, sloužící k lokálnímu, samostatnému řešení úloh (např. poskytování expertizy, hledání ve vlastní databázi agenta atd.) Znalosti o sobě samém (self knowledge) znalosti o vlastním chování, vnitřním stavu, závazcích apod. Sociální znalosti (social knowledge) znalosti o chování jiných agentů, o jejich schopnostech, zatížení, zkušenostech, závazcích, o jejich znalostech, záměrech a víře Sociální znalosti umožňují agentům: Delegovat odpovědnost Dekomponovat úlohu na jednodušší úlohy Kontrahovat optimálně spolupracující agenty Formovat týmy a koalice Vyhledávat chybějící informace 2.3 Architektura agenta Agent má obvykle následující strukturu: Obal - je zodpovědný za plánování a realizaci sociálních interakcí a tvoří jej: Komunikační vrstva Model sociálního chování (acquaintance model) Vlastní tělo - nemá informace o komunitě Struktura agenta je znázorněna na obr. 3. Obal agenta Rozhraní Tělo agenta Obr. 3: Struktura agenta 4

5 Možnosti modelování sociálních znalostí: Centrální komunikační jednotka Všesměrové šíření zpráv (spojené např. s metodikou kontrahování agentů na bázi contract-net-protocol ) Komunikace s využitím lokálně umístěných sociálních modelů ( acquaintancemodel-based contract-bidding strategies) je cílená, opírá se o znalosti udržované průběžnou a nenáročnou komunikací v nekritických časových intervalech 2.4 Prostředí (okolí) Prostředím nazýváme vše, s čím agent přichází do styku. Prostředí může být: Plně nebo částečně pozorovatelné (plně pozorovatelné je prostředí tehdy, může-li agent sledovat jeho kompletní stav) Statické nebo dynamické (statické prostředí se může měnit pouze s akcemi agenta) Deterministické nebo nedeterministické (v deterministickém prostředí je jeho stav dán pouze předchozím stavem a vykonanou akcí) Diskrétní nebo spojité (diskrétní prostředí má konečnou nebo spočetnou množinu stavů například binární řetězec údajů ze senzorů) 2.5 Nástroje pro návrh Pro účely popisu mentálních stavů agenta jsou používány formální logiky (např. BDI logika). Algoritmus podle Wooldridge: Plán je posloupnost akcí vedoucí k dosažení nějakého záměru. Záměr je vybrán podle agentova přání v závislosti na aktuálním stavu prostředí. Může docházet k přehodnocování plánu, filtraci záměrů, kontrole, zda plán odpovídá záměru, atd. Základní algoritmus: opakuj { přijmi vjem z okolí uprav vnitřní model prostředí vyber záměr sestav plán pro dosažení záměru spusť plán } Tento základní algoritmus je pouze ukázkou možného přístupu k realizaci agenta jako entity řízené nekonečným cyklem. Jako nástroj pro návrh je používána PRS architektura. V ní je navíc zaveden pojem knihovna procesů (tj. aplikovatelných plánů). Parciální plány (procedurální znalosti) jsou pak posloupnosti akcí transformující systém z počátečního do cílového stavu. Každý takovýto plán má podmínku spuštění, tělo (posloupnost akcí) a konečný efekt, kdy celý proces rozhodování agenta je řízen interpretem (viz obr.4). Přání Představy Interpret Knihovna Záměry Prostředí Obr. 4: Blokové schéma architektury PRS 5

6 3. Standardizace pojmů, algoritmů a protokolů Na sjednocení výzkumného úsilí pracuje organizace FIPA (Foundation for Intellgent Physical Agent). Záběr jejích standardů je široký a vede od specifikace životního cyklu agenta, mobility agentů, komunikačních jazyků, přes ontologie, komunikační protokoly až po bezpečnost v multiagentních systémech. Výchozím prvkem všech specifikací je FIPA architektura agenta. Předpokladem je realizace agenta jako internetové služby. Abstraktní architektura však není šablonou pro vytváření konkrétních agentů. Zahrnuje sice principy společné pro většinu vytvořených agentních systémů, ale nezmiňuje například vůbec problematiku plánování a racionálního jednání. Na obr. 5 jsou zobrazeny základní bloky specifikace správy agenta (AMS, Agent Management Specification). Obr. 5: Blokové schéma specifikace správy agenta V rámci jedné platformy existuje jedna AMS a agent v ní musí být registrován. Agenti mohou využívat vlastnosti systému pro registraci služeb v adresáři služeb a umístění v adresáři agentů a komunikovat s jinými agenty prostřednictvím jazyka a transportu zpráv. 3.1 Sociální chování agentů v multiagentní komunitě Každý agent se zapojuje do skupiny a respektuje určitá pravidla, sdílí prostředky, nabízí služby, přijímá závazky a koordinuje svou činnost v souladu s globálními cíli skupiny (kooperace agentů). Mechanismus vzájemného dorozumívání podporuje vznik komunikačních jazyků jako KMQL (Knowledge Query Manipulation Language) a ACL (Agent Communication Language). 3.2 Návrh metodologie tvorby agentních systémů Při vytváření modelu se používá objektově orientovaný návrh agenta. Zde je agent chápán jako objekt rozšířený o schopnost vlastního řízení. Používají se jazyky UML (Unified Modelling Language) a AUML (Agent-based Unified Modelling Language). jednou z dalších možností je nástroj Gaia, kde je agent entitou s rolí v systému, zodpovědností a přidělenými zdroji. 3.3 Bezpečnost agentních systémů Pro komerční využití je pak nezbytné řešení otázky bezpečnosti agentních systémů zejména vzhledem k jejich zpřístupnění široké veřejnosti (důležitost autentikace). 4. Sociální aspekty v multiagentních systémech Multiagentní systémy (Multi-agent systems, MAS) jsou takové systémy, kde se v prostředí pohybuje více než jeden agent. Multiagentní problematika s sebou přináší nová témata jako například témata sociální. S tím souvisí třeba vytváření skupin na základě společných zájmů. Tudíž musí nutně docházet ke spolupráci agentů a je tedy zapotřebí vytvoření prostředků pro vzájemnou komunikaci. 4.1 Společné schopnosti agentů a jejich zájmy Agenti musí mít společné: Vnímaní pojmů Pravidla vzájemné komunikace Jazyk 6

7 Agenti mohou navzájem ovlivňovat svoje chování, svou činnost mohou provádět v souladu s ostatními nebo pouze nenarušovat činnost ostatních a nebo dokonce působit proti ostatním. Dále lze agenty dělit na: Kooperativní mají společné cíle Kompetitivní mají protichůdné cíle Kolaborativní navzájem spolupracující Nejčastěji mají agenti partikulární zájmy a dochází pak k souladu nebo kolizím záměrů jednotlivých agentů. 4.2 Strategie agentů Strategie agenta udává, která akce z báze akcí bude vykonána jako reakce na aktuální stav prostředí. Dominantní strategie je pro agenta nejlepší strategie nezávisle na zvolených strategiích ostatních agentů. Racionální agent pak volí vždy dominantní strategii. Nashova rovnováha Strategií skupiny je tzv. Nashova rovnováha pokud každá ze strategií je nejlepší individuální strategií příslušného agenta vzhledem ke strategiím zvoleným ostatními agenty. Obecně platí, že k volbě strategie vedoucí k optimálnímu zisku celé skupiny musí svá jednání agenti koordinovat a proto spolu musí komunikovat a mít i vůli v prospěch celé skupiny. Skupina agentů může mít společné mentální postoje vyjádřené vzorci a všichni musí o společném postoji vědět. 4.3 Dohody a koalice Základem pro vytváření dohod a koalic (obr. 6) jsou společné mentální postoje. Skupinu agentů pak tvoří agenti, kteří přijmou závazky a obecná pravidla (normy) skupiny a těmi se řídí. Spolupracující agenti musí mít schopnost vzájemné komunikace. Ta umožňuje koordinaci individuálních jednání a hledání společných strategií pro dosažení cílů ve společném zájmu. Ve svých bázích znalostí musí mít uložena základní pravidla spolupráce a musí být schopni plánování své činnosti. Racionální agent vstupuje do závazku spolupráce s jinými agenty pouze tehdy, pokud z této spolupráce očekává zisk. Dohodou dosáhnou agenti lepšího stavu prostředí, kterého by dosáhli samostatnou nekoordinovanou činností a nebo dosáhnou kompromisu při případném konfliktu zájmů. Spolupráce i kompromis se týká sdílení cílů, sdílení prostředků a poskytování informací. To vede k dohodám o spolupráci a k dohodám o kompromisu. Obr. 6: Blokové schéma vytvořené koalice 7

8 4.4 Závazky Agenti vyjadřují vůli spolupracovat prostřednictvím závazků. Závazkem je udržování mentálního postoje. Typy závazků: Dosažení cíle např. nalezení protiopatření na riziko Status Quo např. závazek informovat při zjištění rizika Obecně podmíněný Ve většině případů jsou mezi agenty sjednávány závazky podmíněné. Výjimku tvoří normy skupiny. Sociální skupinu agentů lze definovat i tak, že je dána normami a agenty, kteří tyto normy sdílí po celou dobu své existence v této skupině. Skupiny lze kategorizovat podle důvodů zájmů o spolupráci na: Skupiny se sdílením cílů Skupiny se sdílením prostředků Skupiny s poskytováním informací 5. Komunikace v multiagentních systémech V multiagentních systémech tvoří okolí agenta i ostatní agenti, kteří jsou v tomto systému. Záměrem agenta tedy může být i změna vnitřního (mentálního) stavu jiného agenta. Existují dva způsoby ovlivnění: Nepřímé agent mění stav okolí jiného agenta, aby tento při kontaktu s okolím změnil svůj postoj žádaným směrem Přímé agent působí přímo a jediným možným způsobem je komunikace 5.1 Dialogy a zprávy Důvodů ke komunikaci může být několik. Rozeznáváme šest základních typů dialogu: Dotazování hledání informace tam, kde agent věří, že je. Hledání informace společné pátrání agentů po informaci, kterou nemají Přesvědčování snaha agenta o získání jiného agenta pro svůj záměr Vyjednávání agenti vyjednávají o podmínkách sdílení sdílení prostředků nebo o poskytnutí služeb tak, aby všichni dosáhli maximálního zisku Porada cílem je nalezení řešení problému, které je v zájmu všech. Agenti poskytují své znalosti a schopnosti a usnáší se na dalším postupu. Eristický dialog je dialog s expresivní výměnou informace za účelem dosažení svých záměrů (hádka). Vlastní komunikace je proces, během kterého si dva nebo více agentů vyměňují informace ve formě elementárních komunikačních zpráv tzv.řečových aktů. Každá elementární zpráva má odesílatele, příjemce, obsah a informaci o typu, který určuje význam obsahu zprávy. Typy elementárních zpráv jsou: Otázka Nabídka Zamítnutí Informování Pokud chce agent komunikovat, musí mít schopnost nalézt partnera vhodného pro záměr. Řešení může vycházet z nástrojů pro distribuované systémy jako je vysílání (broadcasting) nebo nástěnky. Dalšími možnostmi jsou adresáře služeb nebo speciální agenti pro zprostředkování komunikace nebo pro vyhledávání služeb, tzv. mediátoři, brokeři nebo facilitátoři (viz obr.7). Posledním známým přístupem jsou sociální modely. Nejprve dojde k vysílání uvnitř skupiny a pak při neúspěchu vysílání ostatním skupinám. 8

9 Obr. 7: Schéma funkce facilitátora 5.2 Komunikační jazyky Každý jazyk je dán abecedou, syntaxí a sémantikou. Obvykle se opírají o teorii řečového aktu. Sdílení informace probíhá na třech úrovních: syntaktická problém je jednoduchý, syntaxi lze snadno definovat sémantická tvorba znalostních ontologií pragmatická s kým hovořit, kde ho nalézt, jak iniciovat komunikaci- není složité V současné době je hlavním jazykem pro komunikaci agentů ACL(Agent Communication Language). Tento jazyk vychází z jazyka KQML(Knowledge Query Manipulation Language) KQML Jazyk KQML vyjadřuje jeden řečový akt, který se liší podle typu (dotaz, nabídka, otázka, souhlas, odmítnutí, ). Každá zpráva se skládá z identifikátoru určujícího o jaký řečový akt se jedná a dále následují jednotlivé prvky zprávy dvojice ve tvaru identifikátor (klíčové slovo) a obsah. Je to první pokus o formalizaci a standardizaci a je zaměřen na pragmatické a sémantické aspekty komunikace. Základní principy: zavedení performativů jako základních komunikačních aktů zavedení facilitátorů, tj. centrálních agentů poskytujících určité komunikační služby Každá zpráva sestává ze jména performativu a jeho parametrů. Vlastní obsah zprávy může být zapsán v libovolném jazyce a představuje obsah jednoho parametru Typická zpráva: (ask-one :sender agent A :receiver server_ceník :language PROLOG :ontology SCP_seznam :content cena(unipetrol,cena). ) 9

10 Obsahem performativu může být další perfomativ jako požadovaná forma odpovědi a může dokonce docházet k vícenásobnému vnořování. Tři typy perfomativů: Performativy pro vedení diskuse: ask-if, ask-all, ask-one, tell, untell, deny, insert, uninsert, delete-one, delete-all, undelete, advertise, unadvertise, subscribe Performativy pro zasahování do diskuse: error, sorry, standby, ready, next, rest, discard Performativy pro síťování a podporu facilitátora: register, unregister, broadcast, forward, transport-address, broker-one, broker-all, recommend-one, recommend-all, recruit-one, recruit-all Jazyk KQML předpokládá, že většina dohadovacích procedur mezi agenty probíhá nepřímo prostřednictvím facilitátora. Každý facilitátor zodpovídá za jednu doménu. Veškerá komunikace vně domény jde výlučně přes příslušné facilitátory. Velmi často se používá kombinace performativů advertise-subscribe Nejčastěji se používají tři dohadovací mechanismy - odpovídající role agentů matchmaker (obr: 8) broker mediator Obr. 8: Schéma funkce matchmakera 10

11 5.2.2 ACL Sdružení FIPA (Foundation for Physical Intelligent Agents) navrhlo svůj vlastní ACL. Ten vychází z principů KQML: opět se používá performativů a jejich syntaxe je téměř stejná jako v KQML. Obsah performativů je však jiný. FIPA jich stanovila pouze uzavřenou množinu (20) a nové perfomativy mohou vzniknout jen přípustnou kombinací těch základních. Řečovými akty jsou tedy takové zprávy, jejichž typy odpovídají řečovým aktům tak, jak jsou obecně chápány. Proto pro každý z těchto aktů může existovat formální zápis vyjadřující jeho efekt na komunikačního partnera. Každý typ zprávy má určenu podmínku použití a dopad na mentální stav příjemce nazývaný racionální efekt (Racional Effect, RE). Racionálním efektem je tedy skutečnost, že agent věří v platnost formule. Sémantika jazyka striktně formalizována pomocí výrazových prostředků modální logiky v rámci FIPA-SL. Agenti však nebývají vybaveni příslušnými vyvozovacími algoritmy. Sémantika závisí na informacích typu belief, které nebývají přístupné jiným agentům a často se mění. Ve FIPA-ACL nejsou k dispozici performativy pro síťování a administraci zpráv, FIPA tento problém přenechává implementátorům. FIPA vydává standardy normativní - FIPA-AA (Abstract Architecture), FIPA-ACL, FIPA-SL, FIPA-KIF (Knowledge Interchange Format), FIPA-RDF (Resource Description Framework), FIPA-AMT (Agent Message Transport) informativní - Agent SW Integration, Personal Travel Assistance, Personal Assistant, Audio-visual Entertainment and Broadcasting, Network Management and Provisioning, AgentCities, úsilí v oblasti holonických výrobních systémů Open-source implementace: JADE, FIPA-OS, APRIL, ZEUS Protokoly spolupráce agentů FIPA-ACL podporuje standardní protokoly spolupráce agentů: Contract Net Protocol, anglická dražba, holandská dražba obálková metoda aukce typu Vickrey Obr. 9: Agentově orientované programování - ukázka 11

12 5.3 Metody navazování komunikace Agent má k dispozici jazyk, dokáže formulovat zprávu a určit její význam. Možné metody navazování komunikace: Vysílání Nástěnka Komunikace pomocí prostředníka Sociální model Vysílání (broadcasting) Požívá se v distribuovaných systémech a spočívá v rozesílání zprávy všem dostupným účastníkům. V multiagentním systému agent rozešle žádost o navázání komunikace všem agentům s nimiž má k dispozici komunikační kanál. Výhody a nevýhody tohoto přístupu jsou všeobecně známé. Vysílání zpráv zahlcuje informační kanály a zpracování zprávy příjemci zpomaluje činnost systému. Lze ale nalézt vhodného partnera vždy, když partner existuje Nástěnka Nástěnka (Black Board) je pasivní sdílený prostředek, na kterém mohou agenti zveřejňovat různé informace a ze kterého pak tyto informace mohou jiní agenti číst. Pokud tedy má agent záměr vykonat nějaký požadavek, potom je součástí jeho strategie pozorovat nástěnku a reagovat na vložené požadavky. Nástěnka není v současné době často užívaným prostředkem pro navazování komunikace v multiagentních systémech Komunikace pomocí prostředníka Pro prostředníka se používají anglické pojmy mediator, broker nebo facilitator. Z jejich významu vyplývá, že role takového agenta je zprostředkovávat komunikaci mezi vhodnými partnery. Obecně má agent - prostředník přání získávat informace o schopnostech, záměrech a přáních jednotlivých agentů v systému a pokud je některým z nich požádán, vyhledá mu dostupného partnera, který má požadované schopnosti nebo znalosti. Rolí prostředníka může být i moderování diskuse ve skupině, řízení hlasování a dražeb Sociální model Sociální model spojuje dohromady dva výše uvedené přístupy tj. vysílání a komunikaci pomocí prostředníka. Princip činnosti spočívá v tom, že agent hledá spolupráci pouze uvnitř komunity a to ze všech dostupných agentů v rámci komunity nebo jistou skupinou agentů, která má normy pro přijímání závazků, poskytování služeb a prostředků a informací. Princip hledání partnera se dá popsat: Vysíláním v rámci skupiny Přijetím závazku role prostředníka Šířením požadavku v jiných sociálních skupinách Agent nejprve hledá partnera uvnitř skupiny. Pokud takto partnera nenalezne, nabídne mu prostředník zprostředkování požadavku v jiné skupině. Pokud agent tuto nabídku akceptuje, prostředník přijme požadavek za svůj a vysílá jej v jiných skupinách, kterých je členem. 5.4 Interakční protokoly Agent již zná komunikační jazyk a má prostředky pro navázání komunikace s vhodným partnerem. Zbývá tedy stanovení pravidel pro vedení dialogu. Interakční protokoly udávají pravidla komunikace mezi agenty. Tato pravidla musí vymezit jak má být komunikace vedena, kdy a za jakých podmínek mohou partneři v diskusi odpovídat, jakými typy zpráv, případně, kdy dialog končí a s jakými výsledky pro zúčastněné agenty. Pravidla se liší podle druhu komunikace. Při vyjednávání o prostředcích nebo nabídce služeb bude komunikační protokol vycházet z principu dražeb. Pro rozhodování o koordinaci postupů je vhodné použít protokolů hlasování. Dalším typem komunikace je argumentace, kdy agenti podporují svoje argumenty proti argumentům jiného agenta. 12

13 Dále jsou uvedeny 4 typy interakčních protokolů: Kontraktní síť Dražba Hlasování Argumentace Kontraktní síť Tento protokol se týká debaty o vykonání služby a nazývá se protokol kontraktní sítě (Contract Net Protocol, CNP). Podobá se vysílání. Princip komunikace v kontraktní síti je takový, že požadavek na službu je vysílán iniciátorem a část agentů na tento požadavek zareaguje tím, že navrhne jeho vykonání za nějakou cenu. Iniciátor informuje agenty na jejichž požadavky přistoupil a navrhne jim cenu. Část agentů s navrženou cenou souhlasí, ostatní vykonání požadavku odmítnou. Po vykonání požadavku je iniciátor informován příslušnými agenty či jejich skupinami o výsledku (úspěchu, neúspěchu, o hodnotě výsledku) Dražba Dražba je interakční protokol pro sjednávání služeb nebo sdílení prostředků. Problém cen a platidel se modeluje obvykle tak, že každý agent má v okamžiku svého vzniku přidělenu počáteční sumu prostředků se kterou obvyklým způsobem hospodaří (za úplatu využívá nebo poskytuje služby a prostředky). Specifikace protokolu dražeb vychází z principu dražeb, známých z reálného života: Anglická dražba Holandská dražba V případě anglické dražby je zadána vyvolávací cena a účastníci dražby postupně tuto cenu zvyšují. To se opakuje tak dlouho, dokud nikdo nepodá návrh s vyšší než aktuální cenou. Protokol popisuje dražbu tak, že na začátku jsou agenti informováni o zahájení dražby a jsou žádáni o návrhy nových cen. Dražba pokračuje až do okamžiku, kdy již nikdo nezvyšuje nabídku. Pak dražba končí a účastníci jsou informováni o jejím výsledku. V případě holandské dražby je na počátku stanovena nadnesená cena a ta se snižuje tak dlouho, dokud se nenajde zájemce nebo dokud cena nedosáhne úrovně, pod níž už dražitel nesmí jít (NoBid) Hlasování Hlasování řeší problém strategického rozhodování v rámci skupiny, ale není však standardem FIPA. Hlasování předpokládá, že existuje množina prvků a cílem skupiny je vybrat z ní jeden prvek. Hlasování je rozděleno do dvou etap: Shromažďování návrhů Hlasování o návrzích Předpokládejme rozhodování o strategii skupiny. Výsledkem musí být přijetí množiny plánů pro jednotlivé agenty, jejichž vykonáním skupina dosáhne některých ze svých záměrů. V první etapě je vybrán jeden agent (elektor), který bude řídit volbu. Tento agent vyhlásí volbu, požádá o návrhy strategií a informuje o výsledku (vytvoření báze strategií). Po představení možných strategií informují jednotliví agenti elektora, které ze strategií dávají svůj hlas. Elektor následně informuje všechny členy skupiny o tom, která strategie byla vybrána. Uvedený postup neřeší problém rovnosti hlasů (elektor může vybrat jednu z vítězných strategií sám nebo náhodně) Argumentace Argumentace je dialog, kdy agenti diskutují o pravdivosti informace a tuto pravdivost podporují nebo vyvracejí argumenty. Je třeba nalézt argument a specifikovat podmínky, za kterých má být informace přijata nebo zamítnuta. Dialog probíhá tak dlouho, dokud jeden z aktérů nepřistoupí na argumenty druhého. 13

14 6. Správa sociálních znalostí a její modely 6.1 Správa znalostí Kooperační báze - permanentní znalosti Báze úloh: Problémová sekce - je permanentní Plánovací sekce - je spravována v průběhu přeplánování Báze stavů - je udržována buď formou: Periodických revizí jedná se o pravidelnou výměnu informací v časových úsecích, kdy není komunikační infrastruktura příliš zatížena Performativů avdertise-subscribe (asynchronní údržba) 6.2 Vylepšování znalostí Vylepšování znalostí na úrovni jednotlivých agentů agent se sám učí, optimalizuje, reorganizuje svoji činnost, samostatně vyvozuje a mění i permanentní znalosti Vylepšování na meta-úrovni realizuje se za pomoci nezávislého agenta - tzv. metaagenta, jenž pozoruje aktivity celé komunity nebo její části a zobecňuje posbíraná data, která pak zobecňuje na získané poznatky Vylepšování znalostí je jednou z forem sociálního uvažování. 6.3 Modely Používají se dva základní modely: twin-base model (Cao, Hartwigsen) tri-base model (viz obr.10) Tri-base acquaintance model (3bA): kooperační báze-permanentní/semipermanentní znalosti (adresa, jazyk, schopnosti agentů) báze úloh - sestává ze sekce problémové (obecné znalosti pro dekompozice úloh) a ze sekce plánovací (konkrétní instance pravidel s ohledem na aktuální zatížení a schopnosti) báze stavů - obsahuje stále se měnící informace o spolupracujících agentech a o stavu řešení úloh Agent 1 Agent 2 STATE BASE Agent States Task States COOPERATOR BASE TASK BASE Problem Knowledge Actual Plans Agent 3 Obr. 10: Tri-bázový model 14

15 7. Plánování (Planning, Scheduling) Jednou z instancí chování inteligentního agenta je vzájemný vztah mezi: agent prostředí úloha Obr. 11: Vzájemný vztah agent, prostředí, úloha Plán není nic jiného než úvaha o hypotetickém vzájemném vztahu mezi agentem a prostředím při respektování dané úlohy. Motivací tohoto procesu je vytvoření možného sledu akcí, které pro dosažení záměru změní prostředí. 7.1 Planning versus Scheduling Zatímco plánování (scheduling) přiřadí prostředky v čase jednotlivým procesům, plánování (planning) bere v úvahu možné interakce mezi komponentami. Na následujícím obrázku je uveden příklad plánování. Uzly zde reprezentují stavy, šipky akce, start a finish představují počáteční a koncový stav a cesta řešení určuje plán (viz obr. 12). Obr. 12: Plánování Vlastnosti plánu Plán je správný tehdy, poskytuje-li řešení záměru a je-li celistvý a konzistentní. 7.2 Reprezentace plánu Výsledkem může být plán: částečný (parciální) úplný Další dělení (viz obr. 13): lineární nelineární Obr. 13: Příklad lineárního a nelineárního plánu 15

16 7.3 Hierarchické plánování Příklad principu hierarchického plánování je uveden na obr 14. Obr. 14: Příklad hierarchického plánování Užívá s principu dekompozice. Tento princip je znázorněn na Obr.15. Obr. 15: Příklad dekompozice problému K vytvořenému abstraktnímu plánu, který je úplný a konzistentní, ale obsahuje abstraktní operátory, lze nalézt tzv. primitivní plán (bez abstrakcí). Vytvoří se binární strom, ve kterém 16

17 pak hledáme řešení metodami shora dolů či zdola nahoru, které jsou realizovány algoritmy depth first-search a length-first-search (viz obr. 16). Obr. 16: Algoritmy (a) Depth First-Search a (b) Length-First-Search 7.4 Podmínkové plánování Pokud nemá agent úplnou a kompletní informaci o změně okolního prostředí, pak se používá podmínkové plánování (vyžaduje akce smyslů). Provádí se tzv. monitorování prostředí. Plán je zapotřebí opravit přeplánovat. 7.5 Přeplánování (Replanning) Po kontrole předpokladů a podmínek Jednoduché přeplánování Backtracking Situační plánování oprava plánu podle hraničních podmínek či redundantními kroky Vytvořením tzv. Triangular Table (v případech neočekávaných jevů či u velkých rozměrů oblastí) 7.6 Plánování v multiagentních systémech Je vytvářen plán akcí skupiny (týmový) jako výsledek vyjednávání mezi agenty a vytváření dohod se společnými závazky. Množina plánů je: správný (correct) v případě, že všichni kooperující agenti jsou schopni provést úkol v daném čase a za danou cenu Plán je akceptovaný (accepted) v případě, že všichni agenti dostanou za úkol závazné provedení úlohy v daném čase a s danou cenou dosažitelný (achievable) existuje-li množina správných plánů naplánovaný (planned) existuje-li množina akceptovaných plánů 8. Modelování multiagentních systémů 8.1 Motivace Vytváření modelů a simulace činnosti modelovaných systémů jsou základním přístupem k analýze těchto systémů. Sledovaný systém je prostřednictvím modelu zkoumán, jsou zjišťovány jeho reakce na vstupní podněty a prováděna analýza jeho chování. Simulační 17

18 modelování se využívá v mnoha technických, biologických, ekonomických, sociálních a jiných systémech. Současné nástroje reflektují požadavky na modelování složitých systémů a směr vývoje je zaměřen na vytváření modelů paralelních a otevřených systémů. 8.2 Model MAS Pokud se má vytvořit model MAS, je nutné vycházet z agenta jako prvku tohoto systému. Agent prvek mění svůj vnitřní stav a vykonává akce podle vlastních rozhodnutí, která vždy směřují ke splnění některého z cílů. Modelování multiagentních systémů má proto hodně společného s modelováním otevřených a nedeterministických systémů. Pokud agent vykoná akci v nějakém stavu systémů, nemusí být tento systém transformován tak, jak agent předpokládal. To se vztahuje k omezeným znalostem agenta, na jejichž základě se agent rozhoduje. Agent si vytváří vnitřní model prostředí, avšak tento model je pro něj otevřený, protože neobsahuje všechny prvky, které mají vliv na celkovou činnost multiagentního systému. Další významnou vlastností MAS je, že agent může měnit svoji pozici v systému. Z toho plyne požadavek změny struktury v průběhu simulačního běhu. 8.3 Skupiny modelů MAS Modely MAS lze rozdělit do 4. skupin: Fyzický model (model dostupnosti) Relace představuje dostupnost (vzájemnou fyzickou) dvou prvků. Není definovaná sémantika těchto relací. Během simulace se mění struktura modelu a tím i vzájemná dostupnost prvků. Sémantický model Relace umožňuje postihnout vliv prvku na chování jiného prvku. Jde o propojení senzorů a efektorů. Obecně platí, že dva prvky spolu mohou inter-reagovat, pokud jsou ve fyzickém kontaktu a existuje mezi nimi funkční vazba. Sociální model Agenti jsou schopni vytvářet sociální skupiny se společnými normami. Agent může být součástí jedné nebo více sociálních skupin a nebo také žádné. Relace jsou dány vztahy mezi agentem a skupinou. Kulturní model MAS je definován jako množina agentů s rozdílnými rolemi, pravomocemi a cíli a jejich vztahem vzhledem k těmto rolím. Příkladem je modelování hierarchické struktury rozhodování nebo autoritativní vliv některých agentů vůči jiným. Sociální a kulturní modely existují jen v mentálních stavech agentů. Tyto modely si vytváří agenti samostatně během své činnosti v MAS a jakékoliv nastavení vazeb (sociálních a kulturních) při vytváření modelu nebo během simulace by bylo nepřípustným zásahem do agentovy autonomie. 9. Nástroje pro implementaci 9.1 Implementační nástroje založené na agentních principech Posledním krokem k realizaci BDI agentních systémů jsou implementační nástroje, které mají zabudované principy tvorby báze znalostí, záměrů, přání a plánování. Všechny uvedené nástroje jsou vytvořeny na základě jazyka jazyku Java, což jim umožňuje využívat prostředky pro síťovou komunikaci i objektový přístup. 18

19 9.1.1 JAM Jazyk JAM nepatří mezi příliš známé agentní implementační nástroje. Má tři části znalosti, cíle a plán. Znalosti jsou zapsány ve formě faktů ( jako u jazyku PROLOG) a cílem je stav, kterého se snaží agent dosáhnout. Během vykonávání plánu může být vyvolán podplán. Definice procedur obsahují povinně cíl, jméno, tělo a nepovinně podmínku spuštění, kontext, efekt po vykonání plánu, efekt při selhání a prioritu. Tělo plánu je tvořeno jednak JAM akcemi (vkládáním, rušením, změnami faktů, podmínky testování stavu prostředí, iteracemi, větvením ). Dále v něm lze definovat primitivní akce jako metody a tím využívat komfortu jazyku Java. Od logického programování se "agentní" programování v jazyku JAM liší tím, že v případě neúspěchu plánu zůstává prostředí transformované a nový cíl je vybrán a plán k jeho splnění je sestaven vzhledem k tomuto novému stavu prostředí JADE JADE je dalším nástrojem pro tvorbu racionálních agentů. Není to přímo jazyk, ale knihovna tříd pro jazyk Java. Obsahuje prostředky pro implementaci nástrojů a zahrnuje balíky tříd pro vytváření agentních platforem, pro komunikaci v ACL jazyku, pro definici agentova životního cyklu, pro adresáře služeb, atd. JADE je vhodným nástrojem pro implementaci softwarových mobilních agentů a velice populárním prostředkem pro jejich realizaci ZEUS ZEUS je nástroj pro vytváření multiagentních systémů. Zahrnuje možnosti reprezentace znalostí plánování, komunikace a sociálních vazeb. Jeho silnou stránkou je vizualizace návrhu. MAS je vytvářen hierarchicky ve třech vrstvách definiční, sociální a organizační. Na definiční úrovni se definují agenti, jejich znalosti, cíle, prostředky a schopnosti. V sociální vrstvě se určuje postavení agentů, které zahrnuje znalosti i o jiných agentech v této skupině a informace o jejich dostupnosti. Organizační vrstva určuje způsob komunikace a vyjednávání, strategie rozdělování úloh, apod. 9.2 RETSINA RETSINA (Reusable Environment for Task-Structured Intelligent Networked Agents) je otevřený multiagentní systém (viz obr.17), který podporuje skupiny heterogenních agentů. Je založen na předpokladu, že agenti v systému mohou vytvářet skupiny, které vstupují do peer -to-peer interakcí. Koordinace struktur ve skupině agentů může vycházet ze vztahů mezi agenty spíše než jako výsledek vynuceného nátlaku samotné infrastruktury. V souladu s tímto předpokladem RETSINA nevytváří centralizované řízení bez MAS, ale raději implementuje distribuované služby infrastruktury, které usnadní interakce mezi agenty. Architektura agenta je znázorněna schématem na obr.17. Obr 17. RETSINA architektura agenta 19

20 Obr. 18: Grafická reprezentace RETSINA MAS Obr. 19: Příklad různých funkcí podpory distribuovaných agentů 20

Řešení složitých a rozsáhlých úloh

Řešení složitých a rozsáhlých úloh Řešení složitých a rozsáhlých úloh Zvýšení flexibility jen zvýšením autonomnosti jednotlivých zdrojů znalostí v rámci modulární architektury Volná integrace modulů prostřednictvím komunikace formou zasílání

Více

Znalosti a multiagentní systémy. Vladimir Mařík, Olga Štěpánková, Michal Pěchouček Gerstnerova laboratoř ČVUT FEL

Znalosti a multiagentní systémy. Vladimir Mařík, Olga Štěpánková, Michal Pěchouček Gerstnerova laboratoř ČVUT FEL Znalosti a multiagentní systémy Vladimir Mařík, Olga Štěpánková, Michal Pěchouček Gerstnerova laboratoř ČVUT FEL Gerstnerova laboratoř Dnešní Gerstnerova laboratoř pro inteligentní rozhodování a řízení

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 5 Komunikace a kooperace Komunikace se jako jeden z principů objevuje v umělé inteligenci až v druhé polovině 80. let. V roce 1986 uveřejňuje M.

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování.

Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování. 3 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Business modelling, základní nástroje a metody business modelování.

Více

Dominik Vymětal. Informační technologie pro praxi 2009, Ostrava 1.-2.10.2009 1

Dominik Vymětal. Informační technologie pro praxi 2009, Ostrava 1.-2.10.2009 1 Dominik Vymětal 2009, Ostrava 1.-2.10.2009 1 Procesní model Výhody Orientace na konkrétní činnosti a možnost reengineeringu Nevýhody Malá orientace na průřezové nebo opakované činnosti Modely na základě

Více

DISERTAČNÍ PRÁCE PLÁNOVÁNÍ A KOMUNIKACE V MULTIAGENTNÍCH SYSTÉMECH

DISERTAČNÍ PRÁCE PLÁNOVÁNÍ A KOMUNIKACE V MULTIAGENTNÍCH SYSTÉMECH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií DISERTAČNÍ PRÁCE k získání akademického titulu Ph.D. ve studijním programu INFORMAČNÍ TECHNOLOGIE Ing. František Zbořil PLÁNOVÁNÍ A KOMUNIKACE

Více

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ. Ing. Lukáš OTTE, Ph.D.

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ. Ing. Lukáš OTTE, Ph.D. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ Ing. Lukáš OTTE, Ph.D. Ostrava 2013 Tento studijní materiál vznikl za finanční podpory

Více

TÉMATICKÝ OKRUH Softwarové inženýrství

TÉMATICKÝ OKRUH Softwarové inženýrství TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 22. Otázka : Úvodní fáze rozpracování softwarového projektu. Postupy při specifikaci byznys modelů. Specifikace požadavků a jejich rozpracování pomocí

Více

1. Webové služby. K čemu slouží? 2. RPC Web Service. 3. SOA Web Service. 4. RESTful Web services

1. Webové služby. K čemu slouží? 2. RPC Web Service. 3. SOA Web Service. 4. RESTful Web services 13. Webové služby. K čemu slouží? Popis a vyhledávání služeb. Co je a k čemu slouží orchestrace a choreografie služeb. Technologie pro implementaci služeb 1. Webové služby. K čemu slouží? Definice WS -

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

7.6 Další diagramy UML

7.6 Další diagramy UML 7.6 Další diagramy UML 7.6.1 Moduly (balíčky - package) a kolaborace (collaboration) Jak rozložit rozsáhlý systém na menší? - seskupování tříd (prvků modelu) do jednotek vyšší úrovně (package v UML). UI

Více

Ontologie. Otakar Trunda

Ontologie. Otakar Trunda Ontologie Otakar Trunda Definice Mnoho různých definic: Formální specifikace sdílené konceptualizace Hierarchicky strukturovaná množina termínů popisujících určitou věcnou oblast Strukturovaná slovní zásoba

Více

Principy UML. Clear View Training 2005 v2.2 1

Principy UML. Clear View Training 2005 v2.2 1 Principy UML Clear View Training 2005 v2.2 1 1.2 Co je touml? Unified Modelling Language (UML) je univerzálníjazyk pro vizuální modelování systémů Podporuje všechny životní cykly Mohou jej implementovat

Více

WORKFLOW. Procesní přístup. Základ perspektivního úspěšného podnikového řízení. Funkčnířízení založené na dělbě práce

WORKFLOW. Procesní přístup. Základ perspektivního úspěšného podnikového řízení. Funkčnířízení založené na dělbě práce WORKFLOW Procesní přístup Základ perspektivního úspěšného podnikového řízení Funkčnířízení založené na dělbě práce Procesní řízení princip integrace činností do ucelených procesů 1 Funkční řízení Dělba

Více

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14 UITS / ISY Výzkumná skupina inteligentních systémů Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně ISY: Výzkumná skupina inteligentních systémů 1 / 14 Obsah Představení skupiny

Více

MOŢNOSTI VYUŢITÍ ROLÍ, AKTORŮ A AGENTŮ PŘI DESIGNU BYZNYS PROCESŮ

MOŢNOSTI VYUŢITÍ ROLÍ, AKTORŮ A AGENTŮ PŘI DESIGNU BYZNYS PROCESŮ MOŢNOSTI VYUŢITÍ ROLÍ, AKTORŮ A AGENTŮ PŘI DESIGNU BYZNYS PROCESŮ Ing. Jan Smolík Vysoká škola finanční a správní PROČ JINÝ ZPŮSOB MODELOVÁNÍ PROCESŮ Základní žurnalistické otázky Co, kdo, kdy, kde, jak,

Více

Specifikace rozhraní. Oznamovací povinnost podle zákona č. 307/2013 Sb., ve znění pozdějších předpisů. Martin Falc, SW architekt.

Specifikace rozhraní. Oznamovací povinnost podle zákona č. 307/2013 Sb., ve znění pozdějších předpisů. Martin Falc, SW architekt. C E R T I C O N www.certicon.cz V Á C L A V S K Á 1 2 1 2 0 0 0 P R A H A 2 Specifikace rozhraní Oznamovací povinnost podle zákona č. 307/2013 Sb., ve znění pozdějších předpisů Martin Falc, SW architekt

Více

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování 12. Virtuální sítě (VLAN) Studijní cíl Základní seznámení se sítěmi VLAN. Doba nutná k nastudování 1 hodina VLAN Virtuální síť bývá definována jako logický segment LAN, který spojuje koncové uzly, které

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

Unifikovaný modelovací jazyk UML

Unifikovaný modelovací jazyk UML Unifikovaný modelovací jazyk UML Karel Richta katedra počíta tačů FEL ČVUT Praha richta@fel fel.cvut.czcz Motto: Komunikačním m prostředkem informační komunity se postupem času stala angličtina. Chcete-li

Více

Vývojové nástroje pro multiagentové systémy

Vývojové nástroje pro multiagentové systémy Vývojové nástroje pro multiagentové systémy Znalostní technologie III materiál pro podporu studia OBSAH Úvod... 3 Swarm... 3 NetLogo... 5 Repast... 6 Porovnání prostředí Swarm, NetLogo a RePast... 7 Mason...

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v

Více

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE

Více

UML a jeho použití v procesu vývoje. Jaroslav Žáček jaroslav.zacek@osu.cz

UML a jeho použití v procesu vývoje. Jaroslav Žáček jaroslav.zacek@osu.cz UML a jeho použití v procesu vývoje Jaroslav Žáček jaroslav.zacek@osu.cz Různé pohledy na modelování Různé pohledy na modelování Unified Modeling Language UML není metodikou ani programovacím jazykem,

Více

Vývoj informačních systémů. Obecně o IS

Vývoj informačních systémů. Obecně o IS Vývoj informačních systémů Obecně o IS Informační systém Informační systém je propojení informačních technologií a lidských aktivit směřující k zajištění podpory procesů v organizaci. V širším slova smyslu

Více

TÉMATICKÝ OKRUH Softwarové inženýrství

TÉMATICKÝ OKRUH Softwarové inženýrství TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 24. Otázka : Implementační fáze. Postupy při specifikaci organizace softwarových komponent pomocí UML. Mapování modelů na struktury programovacího

Více

Vývoj informačních systémů. Přehled témat a úkolů

Vývoj informačních systémů. Přehled témat a úkolů Vývoj informačních systémů Přehled témat a úkolů Organizace výuky doc. Mgr. Miloš Kudělka, Ph.D. EA 439, +420 597 325 877 homel.vsb.cz/~kud007 milos.kudelka@vsb.cz Přednáška Teorie Praxe Cvičení Diskuze

Více

Informační systémy 2008/2009. Radim Farana. Obsah. UML - charakteristika

Informační systémy 2008/2009. Radim Farana. Obsah. UML - charakteristika 2 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Jazyk UML, základní modely, diagramy aktivit, diagramy entit.

Více

Vývoj IS - strukturované paradigma II

Vývoj IS - strukturované paradigma II Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 05 1/18 Vývoj IS - strukturované paradigma II Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta informačních

Více

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Projektová dekompozice Přednáška Teorie PM č. 2 Úvod do vybraných nástrojů projektového managementu Úvodní etapa projektu je nejdůležitější fáze projektu. Pokud

Více

Znalostní systém nad ontologií ve formátu Topic Maps

Znalostní systém nad ontologií ve formátu Topic Maps Znalostní systém nad ontologií ve formátu Topic Maps Ladislav Buřita, Petr Do ladislav.burita@unob.cz; petr.do@unob.cz Univerzita obrany, Fakulta vojenských technologií Kounicova 65, 662 10 Brno Abstrakt:

Více

I. Úvod do agentních a multiagentních systémů

I. Úvod do agentních a multiagentních systémů Obsah přednášky I. Úvod do agentních a multiagentních systémů Podklady k přednáškám kurzu AGS ---------------------------------------------------- 2005, 2006 František Zbořil ml. zborilf@fit.vutbr.cz Organizační

Více

2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování

2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování 1. Teoretické základy modelování na počítačích 1.1 Lambda-kalkul 1.1.1 Formální zápis, beta-redukce, alfa-konverze 1.1.2 Lambda-výraz jako data 1.1.3 Příklad alfa-konverze 1.1.4 Eta-redukce 1.2 Základy

Více

Úvod do problematiky vývoje Vývoj informačních systémů

Úvod do problematiky vývoje Vývoj informačních systémů Úvod do problematiky vývoje informačních systémů Vývoj informačních systémů Management Klasický management - slouží k udržování a rozvíjení zavedených systémů, které jsou prostředkem pro nepřetržitou,

Více

MATLABLINK - VZDÁLENÉ OVLÁDÁNÍ A MONITOROVÁNÍ TECHNOLOGICKÝCH PROCESŮ

MATLABLINK - VZDÁLENÉ OVLÁDÁNÍ A MONITOROVÁNÍ TECHNOLOGICKÝCH PROCESŮ MATLABLINK - VZDÁLENÉ OVLÁDÁNÍ A MONITOROVÁNÍ TECHNOLOGICKÝCH PROCESŮ M. Sysel, I. Pomykacz Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované informatiky Nad Stráněmi 4511, 760 05 Zlín, Česká republika

Více

Doc. Ing. Daniel Kaminský, CSc. ELCOM, a.s.

Doc. Ing. Daniel Kaminský, CSc. ELCOM, a.s. Doc. Ing. Daniel Kaminský, CSc. ELCOM, a.s. Úplné počítačové propojení a) výrobních strojů, b) zpracovávaných produktů a polotovarů a c) všech dalších systémů a subsystémů průmyslového podniku (včetně

Více

TÉMATICKÝ OKRUH Softwarové inženýrství

TÉMATICKÝ OKRUH Softwarové inženýrství TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 29. Otázka : Zpracování událostí: mechanismus událostí a jejich zpracování (Event/Listener), nepřímá invokace (Observer/Observable). Obsah : 1. Mechanisums

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W

Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Klasické metodiky softwarového inženýrství I N G M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Osnova přednášky Co to je softwarové inženýrství Softwarový proces Metodika a metoda Evoluce softwarových

Více

28.z-8.pc ZS 2015/2016

28.z-8.pc ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace počítačové řízení 5 28.z-8.pc ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další hlavní téma předmětu se dotýká obsáhlé oblasti logického

Více

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty

Více

EXTRAKT z mezinárodní normy

EXTRAKT z mezinárodní normy EXTRAKT z mezinárodní normy Extrakt nenahrazuje samotnou technickou normu, je pouze informativním ICS 03.220.01; 35.240.60 materiálem o normě. Inteligentní dopravní systémy Požadavky na ITS centrální datové

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

Modelování procesů s využitím MS Visio.

Modelování procesů s využitím MS Visio. Modelování procesů s využitím MS Visio jan.matula@autocont.cz Co je to modelování procesů? Kreslení unifikovaných či standardizovaných symbolů, tvarů a grafů, které graficky znázorňují hlavní, řídící nebo

Více

Softwarové komponenty a Internet

Softwarové komponenty a Internet Softwarové komponenty a Internet Doc. Dr. Ing. Miroslav Beneš Katedra informatiky FEI VŠB-TU Ostrava Miroslav.Benes@vsb.cz Obsah přednášky Motivace Vývoj přístupů k tvorbě programů Definice komponenty

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

Program a životní cyklus programu

Program a životní cyklus programu Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy

Více

Problémové domény a jejich charakteristiky

Problémové domény a jejich charakteristiky Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 02 1/16 Problémové domény a jejich charakteristiky Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta

Více

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda 1. Lze vždy z tzv. instanční třídy vytvořit objekt? 2. Co je nejčastější příčinou vzniku chyb? A. Specifikace B. Testování C. Návrh D. Analýza E. Kódování 3. Je defenzivní programování technikou skrývání

Více

Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací.

Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací. Trochu teorie Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací. Každá spuštěná aplikace má alespoň jeden proces

Více

Metodické doporučení MPSV č. 3/2009 k vytvoření individuálního plánu péče o dítě

Metodické doporučení MPSV č. 3/2009 k vytvoření individuálního plánu péče o dítě Metodické doporučení MPSV č. 3/2009 k vytvoření individuálního plánu péče o dítě VYTVOŘENÍ INDIVIDUÁLNÍHO PLÁNU PÉČE O DÍTĚ V okamžiku, kdy sociální pracovnice a přizvaní odborníci a organizace dokončili

Více

Informační a znalostní systémy jako podpora rozhodování

Informační a znalostní systémy jako podpora rozhodování Informační systémy a technologie Informační a znalostní systémy jako podpora rozhodování Petr Moos - ČVUT VŠL Přerov listopad 2015 Analýza a syntéza systému Definici systému můžeme zapsat ve tvaru: S =

Více

Teorie systémů TES 1. Úvod

Teorie systémů TES 1. Úvod Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze

Více

7. Pracovní postupy. Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt

7. Pracovní postupy. Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 7. Pracovní postupy Posloupnosti analytických a syntetických

Více

Procesní přístup k projektům informačních systémů. RNDr. Vladimír Krajčík, Ph.D.

Procesní přístup k projektům informačních systémů. RNDr. Vladimír Krajčík, Ph.D. Procesní přístup k projektům informačních systémů RNDr. Vladimír Krajčík, Ph.D. Jaká byla moje cesta k zavedení a užití procesních prvků při řízení projektů veřejných informačních systémů se zaměřením

Více

INFORMAČNÍ SYSTÉM VIDIUM A VYUŽITÍ MODERNÍCH TECHNOLOGIÍ

INFORMAČNÍ SYSTÉM VIDIUM A VYUŽITÍ MODERNÍCH TECHNOLOGIÍ INFORMAČNÍ SYSTÉM VIDIUM A VYUŽITÍ MODERNÍCH TECHNOLOGIÍ Michal Brožek, Dominik Svěch, Jaroslav Štefaník MEDIUM SOFT a.s., Cihelní 14, 702 00 Ostrava, ČR Abstrakt Neustále rostoucí význam sběru dat, možnost

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

19.11.2013. Projektový management. Projektový management. Další charakteristiky projektu. Projekt

19.11.2013. Projektový management. Projektový management. Další charakteristiky projektu. Projekt Projektový management Lekce: 8 Projektový management Doc. Ing. Alois Kutscherauer, CSc. Projektový management je typ managementu uplatňovaného k zabezpečení realizace jedinečných, neopakovatelných, časově

Více

Databázové systémy. Ing. Radek Holý

Databázové systémy. Ing. Radek Holý Databázové systémy Ing. Radek Holý holy@cvut.cz Literatura: Skripta: Jeřábek, Kaliková, Krčál, Krčálová, Kalika: Databázové systémy pro dopravní aplikace Vydavatelství ČVUT, 09/2010 Co je relační databáze?

Více

Geografické informační systémy p. 1

Geografické informační systémy p. 1 Geografické informační systémy Slajdy pro předmět GIS Martin Hrubý hrubym @ fit.vutbr.cz Vysoké učení technické v Brně Fakulta informačních technologií, Božetěchova 2, 61266 Brno akademický rok 2004/05

Více

Replikace je proces kopírování a udržování databázových objektů, které tvoří distribuovaný databázový systém. Změny aplikované na jednu část jsou

Replikace je proces kopírování a udržování databázových objektů, které tvoří distribuovaný databázový systém. Změny aplikované na jednu část jsou Administrace Oracle Replikace je proces kopírování a udržování databázových objektů, které tvoří distribuovaný databázový systém. Změny aplikované na jednu část jsou zachyceny a uloženy lokálně před posláním

Více

Simulace a návrh vyvíjejících Nadpis se 1. Nadpis 3. Božetěchova 2, Brno

Simulace a návrh vyvíjejících Nadpis se 1. Nadpis 3. Božetěchova 2, Brno Simulace a návrh vyvíjejících Nadpis se 1 Nadpis systémů 2 Nadpis 3 Vladimír Jméno Janoušek Příjmení Vysoké Brno učení University technické of v Technology, Brně, Fakulta Faculty informačních of Information

Více

Modelování procesů (2) 23.3.2009 Procesní řízení 1

Modelování procesů (2) 23.3.2009 Procesní řízení 1 Modelování procesů (2) 23.3.2009 Procesní řízení 1 Seznam notací Síťové diagramy Notace WfMC Notace Workflow Together Editor Aktivity diagram (UML) FirsStep Designer Procesní mapa Select Prespective (procesní

Více

Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů

Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů - 1.1 - Kapitola 1: Úvod Účel databázových systémů Pohled na data Modely dat Jazyk pro definici dat (Data Definition Language; DDL) Jazyk pro manipulaci s daty (Data Manipulation Language; DML) Správa

Více

Základy objektové orientace I. Únor 2010

Základy objektové orientace I. Únor 2010 Seminář Java Základy objektové orientace I Radek Kočí Fakulta informačních technologií VUT Únor 2010 Radek Kočí Seminář Java Základy OO (1) 1/ 20 Téma přednášky Charakteristika objektově orientovaných

Více

OOT Objektově orientované technologie

OOT Objektově orientované technologie OOT Objektově orientované technologie Logická struktura systému (Diagram tříd) Daniela Szturcová Institut geoinformatiky, HGF Osnova Třídy Statický pohled na systém Atributy a operace, řízení přístupu

Více

TÉMATICKÝ OKRUH Softwarové inženýrství

TÉMATICKÝ OKRUH Softwarové inženýrství TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 25. Otázka : Komponentní technologie - základní pojmy a principy, metody specifikace komponent. Obsah : 1. Základní pojmy 1.1 Komponenta Komponenta

Více

Servisně orientovaná architektura Základ budování NGII

Servisně orientovaná architektura Základ budování NGII Servisně orientovaná architektura Základ budování NGII Jan Růžička Institute of geoinformatics VSB-TU Ostrava 17.listopadu, 70833 Ostrava-Poruba Poruba, jan.ruzicka@vsb.cz NGII NGII složitý propletenec,

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Infor APS (Scheduling) Tomáš Hanáček

Infor APS (Scheduling) Tomáš Hanáček Infor APS (Scheduling) Tomáš Hanáček Klasické plánovací metody a jejich omezení MRP, MRPII, CRP Rychlost Delší plánovací cyklus Omezená reakce na změny Omezené možnosti simulace Funkčnost Nedokonalé zohlednění

Více

Dolování dat z dotazníků. Ondřej Takács

Dolování dat z dotazníků. Ondřej Takács Dolování dat z dotazníků Ondřej Takács Úvod Součást projektu, který se zabývá individualizovaným e-learningem virtuální učitel, který svůj výklad přizpůsobuje statickým či dynamicky se měnícím vlastnostem

Více

Design systému. Komponentová versus procesní architektura

Design systému. Komponentová versus procesní architektura Design systému Komponentová versus procesní architektura Architektura : třídy statické aspekty propojení logický pohled struktura popisu systému Architektura procesů: objekty dynamické aspekty koordinace

Více

PHP framework Nette. Kapitola 1. 1.1 Úvod. 1.2 Architektura Nette

PHP framework Nette. Kapitola 1. 1.1 Úvod. 1.2 Architektura Nette Kapitola 1 PHP framework Nette 1.1 Úvod Zkratka PHP (z anglického PHP: Hypertext Preprocessor) označuje populární skriptovací jazyk primárně navržený pro vývoj webových aplikací. Jeho oblíbenost vyplývá

Více

Maturitní témata Školní rok: 2015/2016

Maturitní témata Školní rok: 2015/2016 Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní

Více

MBI - technologická realizace modelu

MBI - technologická realizace modelu MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

Manuál pro práci s modulem Otázky a odpovědi

Manuál pro práci s modulem Otázky a odpovědi Manuál pro práci s modulem Otázky a odpovědi Užitečné postupy a doporučení Obsah 1 Role uživatelů...3 2 Odesílání otázek...3 3 Přehled otázek...4 3.1 Orientace v přehledu...4 3.2 Základní údaje otázky...5

Více

Znalostní báze pro obor organizace informací a znalostí

Znalostní báze pro obor organizace informací a znalostí Znalostní báze pro obor organizace informací a znalostí Představení projektu Programu aplikovaného výzkumu a vývoje národní a kulturní identity (NAKI) DF13P01OVV013 2013 2015 Helena Kučerová ÚISK FF UK

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

TECHNICKÁ SPECIFIKACE VEŘEJNÉ ZAKÁZKY

TECHNICKÁ SPECIFIKACE VEŘEJNÉ ZAKÁZKY Příloha č. 3 k č.j. MV-159754-3/VZ-2013 Počet listů: 7 TECHNICKÁ SPECIFIKACE VEŘEJNÉ ZAKÁZKY Nové funkcionality Czech POINT 2012 Popis rozhraní egon Service Bus Centrální Místo Služeb 2.0 (dále jen CMS

Více

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady k uspořádání řídícím systémům i řízení manipulátorů a robotů Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k

Více

Projektové řízení jako základ řízení organizace

Projektové řízení jako základ řízení organizace Projektové řízení jako základ řízení organizace Aleš Chudý, ředitel divize IW ales.chudy@microsoft.com Technický seminář Bratislava 6.10.2008 Obsah Potřeby byznysu a IT Řešení EPM Microsoft EPM Optimalizační

Více

Systémy pro podporu rozhodování. Hlubší pohled 2

Systémy pro podporu rozhodování. Hlubší pohled 2 Systémy pro podporu rozhodování Hlubší pohled 2 1 Připomenutí obsahu minulé přednášky Motivační příklad Konfigurace DSS Co to je DSS? definice Charakterizace a možnosti DSS Komponenty DSS Subsystém datového

Více

Olga Rudikova 2. ročník APIN

Olga Rudikova 2. ročník APIN Olga Rudikova 2. ročník APIN Redakční (publikační) systém neboli CMS - content management system (systém pro správu obsahu) je software zajišťující správu dokumentů, nejčastěji webového obsahu. (webová

Více

Směrování. static routing statické Při statickém směrování administrátor manuálně vloží směrovací informace do směrovací tabulky.

Směrování. static routing statické Při statickém směrování administrátor manuálně vloží směrovací informace do směrovací tabulky. Směrování Ve větších sítích již není možné propojit všechny počítače přímo. Limitujícím faktorem je zde množství paketů všesměrového vysílání broadcast, omezené množství IP adres atd. Jednotlivé sítě se

Více

Základní informace. Modelování. Notace

Základní informace. Modelování. Notace Základní informace BPMS = business process management systems - systémy pro modelování a optimalizace business procesů uvnitř organizace BPMN = business process modeling notation - součást BPMS, notace

Více

UML - opakování I N G. M A R T I N M O L H A N E C, C S C. Y 1 3 A N W

UML - opakování I N G. M A R T I N M O L H A N E C, C S C. Y 1 3 A N W UML - opakování I N G. M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Co je to UML Evoluce UML Diagram komponent Diagram odbavení Diagram tříd Aktivity diagram Stavový diagram Sekvenční diagram Diagram

Více

UML. Unified Modeling Language. Součásti UML

UML. Unified Modeling Language. Součásti UML UML Unified Modeling Language 1995 počátek 1997 verze 1.0 leden dnes verze 2.0 (vývoj stále nedokončen) Standardní notace OMG podpora velkých firem (Microsoft, IBM, Oracle, HP ) popisuje struktury popisuje

Více

Microsoft SharePoint Portal Server 2003. Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR

Microsoft SharePoint Portal Server 2003. Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR Microsoft SharePoint Portal Server 2003 Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR Přehled Země: Česká republika Odvětví: Velkoobchod Profil zákazníka

Více

Překladač a jeho struktura

Překladač a jeho struktura Překladač a jeho struktura Překladače, přednáška č. 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz http://fpf.slu.cz/ vav10ui Poslední aktualizace: 23. září 2008 Definice

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů

TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů Číslo otázky : 16. Otázka : Funkční a dynamická analýza informačního systému. Obsah : 1. Úvod 2. Funkční

Více

1. Dědičnost a polymorfismus

1. Dědičnost a polymorfismus 1. Dědičnost a polymorfismus Cíl látky Cílem této kapitoly je představit klíčové pojmy dědičnosti a polymorfismu. Předtím však je nutné se seznámit se základními pojmy zobecnění neboli generalizace. Komentář

Více

Příloha: Dodatečné informace, včetně přesného znění žádosti dodavatele o dodatečné informace

Příloha: Dodatečné informace, včetně přesného znění žádosti dodavatele o dodatečné informace Příloha: Dodatečné informace, včetně přesného znění žádosti dodavatele o dodatečné informace Pořadové číslo dodatečných informací: 14. ČÁST 1: Přesné znění žádosti dodavatele o dodatečné informace Otázka

Více

Architektura softwarových systémů

Architektura softwarových systémů Architektura softwarových systémů Ing. Jiří Mlejnek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jiří Mlejnek, 2011 jiri.mlejnek@fit.cvut.cz Softwarové

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného

Více

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky.

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Projekt ESF OP VK reg.č. CZ.1.07/2.2.00/28.0209 Elektronické opory a e-learning pro obory výpočtového

Více