Detekce a lokalizace vyjimecnych stavu v mestske doprave

Rozměr: px
Začít zobrazení ze stránky:

Download "Detekce a lokalizace vyjimecnych stavu v mestske doprave"

Transkript

1 Detekce a lokalizace vyjimecnych stavu v mestske doprave 1 Uvod Reakce globalnchrdcchsystemu.nezpristoupmekezkoumanvyjimecnychstavuvdoprave,vymezme rdcho systemu na nastale vyjimecne stavy v doprave je velice dulezitou soucast vsech nejdrve to, co v teto praci budeme povazovat za vyjimecny stav. Vyjimecnymstavemvdopraverozummemimoradnoudopravnsituaci,jejzdopad se podstatnym zpusobem odraz v merenych dopravnch datech. oblasti, Poznamka: apriorn znalosti Metody, o chovan ktere pouzvame, automobilu jsou v dane zalozeny oblasti na a informaci zejmena na o strukture on-line merenych zkoumane dopravnch dopravn datech. realna data Struktura nesou oblasti informaci je dana, o okamzitem apriorn informace den v oblasti. vypovda Vsechny o"prumernych" dopravn udalosti, vlastnostech ktere oblasti se v merenych a pouze datech mysli,ze neodraz, bychom jsou potrebovali pro nas prmo nedosazitelne, nastalou poruchu a nelze merit! je detekovat Pozadujeme ani rdit. pouze, Tm aby samozrejme se porucha nemame v nekterych na datech projevila, abychom ji mohli na zaklade techto velicin predpovedet. V prpade vyjimecneho stavu je situace odlisna od"beznych situac". Rozdlu je nekolik vyjimecna dobu trvan, situace nastava vetsinou ve velmi kratkem casovem intervalu a ma prechodnou dopad nastale vyjimecne situace na stav dopravnho systemu je vetsinou dosti podstatny, jednotlivychskupinpodobnychvyjimecnychstavu(alesponcododopadunastavdopravnho systemu) byva konecny pocet. Vyjimecne mens mnozstv stavy udalost, lze samozrejme majcch(vetsinou klasikovat negativn) podle rady vliv hledisek na dopravn a zahrnovat system pod a vymykajcch ne vets nebo beznym dopravnm podmnkam. My se pridrzme vyctu provedeneho v praci [1]. Zde je uvedena se pomerne pro jejich siroka detekci. skala ruznych vyjimecnych dopravnch stavu vcetne jejich vyhodnocen a navodu V urovnrozpoznavanvyjimecnychstavuvubecajejichprpadnouklasikac,tj.urcenmkdeajaky teto zprave se vsak nebudeme ani tak zabyvat klasikac jednotlivych stavu jako obecnou vyjimecny stavu, a to stav prekazky nastal. ve Budeme vozovce. se Jako pritom jednotlive drzet jedineho, vyjimecne nejpodstatnejsho stavy budeme uvazovat druhu z ruzna vyjimecnych kdektetoblokadedoslo.otazkoubude:(i)poznamevubec,zenekdevoblastidoslokzablokovan msta, jzdnho pri techto pruhu? experimentech (II) pozname, jsou (i) na za kterem jak dlouho mste jsme k tomuto schopni zablokovan vyjimecny doslo? stav zaregistrovat, Zajmave okolnosti (ii) s 1

2 jakou abychom jistotou si jej jsme vubec schopni vsimli,(iv) vyjimecny jak silny stav dopad detekovat,(iii) mus mt vyjimecny jak dlouho stav, mus abychom vyjimecny jej stav zachytili. trvat, stavu Resen by vyjimecnych nastoupilo urcite stavu expertnrzen, zde nechavame bud' stranou jiz existujc a predpokladame, nebo navrzene ze po dopravnmi detekci vyjimecneho operatory. 2 Formulace ulohy Pro a Svornosti. testovan Detailn byla vybrana planek liniova teto mikrooblast oblasti, konkretne sectyrmi jejch krizovatkami, ctyrech rzenych konkretne krizovatek, ulice Zborovska Obrazku 1. je na Obrazek 1: Realna oblast jejz model byl pouzit pro testovan 2

3 Oblast skutecnosti se naleza krizovatek, v mste z nichz maleho zbylych smchovskeho sest je nerzenych okruhu. a Tato intenzita oblast provozu obsahuje v nich ve nen velka. Proto jsme brali v uvahu jen uvedene ctyri svetelne rzene krizovatky. Model modelujenaobrazku2. teto mikroblasti byl vytvoren pomoc dopravnho simulatoru simulovan AIMSUN. Schema jj 3jj 44 5jjj jjjj j Obrazek 2: Mikrooblast se zkoumanymi vyjimecnymi stavy Mikrooblast Obr. 1. Je zde je tvorena vyznaceno ctyrmi csel krizovatkami v krouzku, serazenymi ktera oznacuj v jedne msta, linii kde - podrobnosti byla postupne viz csly. umst'ovana blokada. Silnejs svisle usecky oznacuj meric detektory, oznacene rovnez Na tektorech vyznacenych v oblasti mstech (viz obr. 1-2) byla byla simulovana merena data porucha (obsazenosti ve forme dopravnho stojcho proudu) automobilu. pro stav Na bez de- poruchy(zadne i; i=1;2:::;).prostavbezporuchyakazdyporuchovystav(urcitadobastanautomobiluna stojc auto) a poruchovych stavu(porucha i odpovda autu stojcmu v pozici zvolene pozici) je tedy k dispozici 13 datovych souboru, charakterizujcch stav oblasti. Otazka porucha je:(i) skutecne lze vubec existuje tmto jako zpusobem pravdiva?(iii) poruchu jak detekovat?(ii) dlouhe je treba s meren jakou jistotou jak pro lze o-line, tvrdit,ze tak i tato on-line identikaci, aby zskana informace o poruse byla dostatecna? pro 3

4 3 Model smesi distribuc a jeho odhad VtetokapitolenaznacmezakladyteorieodhadusmesovehomodelumetodouQuasi-Bayes.Protoze zmnena velmi ucinne teorie odmocninove je znacne obtzna algoritmy, a jej zustaneme programova jen u realizace odvozen vyuzva zakladnch dosti vztahu neprehledne aniz bychom ale zato prevadeli do podoby algoritmu. Ten zpracovan v systemu MIXTOOLS vytvorenem v AS UTIA je AV CR-viz[2]. Uplnateorieodhadusmesovychmodelujepopsanav[3]. Komponenty modelu Predpokladame dt; t2t. Modely n modelu, jsou popsany indexovanych svymi podmnenymi prirozenymicsly hustotami c2f1;2;:::;ng=c pravdepodobnosti a modelovana hp data f(dtjd(t 1);c; c): Dale smesoveho predpokladame, modelu, tj. ze ze v prave kazdem jen casovem tato komponenta okamziku odraz je aktivn skutecny pouze stav jeden sledovaneho model- komponenta systemu. Ukazatel Aktivity ct=cznamena,zevokamzikutjeaktivnkomponentac. jednotlivych komponent oznacuje ukazatel- nahodna velicina ct s hodnotami 1;2;:::;n. Pravdepodobnosti predpokladame konstantn aktivity a rovny jednotlivych c, tedy komponent c, bez znalosti aktualnch dat dt, f(ct =cjd(t 1);)=f(ct =cj)=c Poznamka: Vyrazem f(ct=c) myslme fct(c)=p(ct=c) kde P(:) oznacuje pravdepodobnost. V jadrujc okamziku, tento kdy stav namerme je data dt, mame dals informaci o skutecnem aktualnm stavu. Hp vy- f(ctjd(t)): Nahodna posloupnost ct je neznama a jej hodnoty nelze merit a je treba je odhadovat. 4 Odhad modelu smesi distribuc 4.1 Vnitrn popis smesi Sdruzena hp dat a ukazatele Tatohppopisujejakdata,takiukazatele f(dt;ctjd(t 1); ;): (1) ze Je data to sdruzena dt pochaz hp, z parametrizovana komponenty ct. vektorem parametru[ ;]. Tato hp urcuje pravdepodobnost, 4

5 Tato sdruzena hp muze byt rozlozena takto (1)=f(dtjd(t 1);ct; ;) f(ctjd(t 1); ;)= =f(dtj't 1;ct; ct) f(ctj)=ct f(dtj't 1;ct; ct) kde f(dtjd(t 1);ct; ;)=f(dtj't 1;ct; ct) (2) je popis jedne komponenty(konkretne s indexem ct), a f(ctjd(t 1); ;)=f(ctj)=ct (3) je Poznamka: pravdepodobnostn Z predchozho popis ukazatele plynou pozadavky ct. na model 1. kazda komponenta c=1;2;:::;n ma sve vlastn parametry c, 2. data hloubkyradu dt jsou zavisla modelu), jen na datech, obsazenych v regresnm vektoru 't 1 (tj. minulych datech az do 3. ukazatel je nezavisly na parametrech component c, 4. ukazatel je podmnene nezavisly na starych datech, je-li znam parametr ukazatele- vektor, 5. pravdepodobnosti komponent vcase t bez znalosti dt jsou stacionarn. 4.2 Vnejs popis smesi Hp dat bez ohledu na aktivitu component Tuto hp lze dostat dvema zpusoby(presne a s aproximac): Prvn zpusob je presny a je dan marginalizac hp(1) vzhledem k ukazateli ct f(dtjd(t 1); ;)= = X f(d t;ctjd(t 1); ;)= X ctf(dt;ctjd(t 1); ;): (4) ct2c ct2c kde jsme pouzili vztah(3). Druha dem.zesdruzenepravdepodobnostisepakpodosazenbodovehoodhadustanehpjedinepromenne, moznost je aproximace. Ta spocva v nahrazen ukazatele ct nejakym jeho bodovym odha- a ale to vede dt. Tak na spocitatelne dostaneme marginaln algoritmy pro hp. odhadovan. Tento postup Touto nen, cestou vzhledem dostavame k aproximaci, optimaln, zato f(dtjd(t 1); ;)/f(dt;^ctjd(t 1); ;); (5) podmnena kde ct je bodovy stredn odhad hodnota(viz poctany dale). na zaklade starych dat d(t 1). Bodovy odhad je poctan jako 5

6 4.3 Odhad [ ; ] - (Bayesuv vzorec) Bayesuv vzorec pro odhad parametru[ ;] ma tvar f( ;jd(t)) / = f(dtjd(t f( ;jdt;d(t 1); ;)f( ;jd(t 1)) 1)) (6) coz vnejsho je rekurze, popisu ktera smesi prepoctava f(dtjd(t 1); ;). hp pro jmenovany Protoze Bayesuv parametr. vztah Pro (6) jej ma pouzit soucinovy se vyzaduje tvar a znalost popissmesijedanvetvarusouctu(4),dostavamevysledekvtvarsoucinusouctu,cozjevypocetne vnejs nevhodne. se Resen,kterejespocitatelne,dostanemesvyuzitmaproximovanehovztahu(5).Tojecesta,kterou budeme dale zabyvat. 4.4 Odhad [ ; ] - (pro statistiky) Modely komponent v exponencialnm tvaru Komponenty vyjadrme pomoc hp z exponencialn trdy f(dtj't 1;c; c)=expfqc( )s('t 1)g; c2c (7) kde nentam). qc( ) je parametricka funkce c-te komponenty a s('t 1) je statistika(spolecna vsem kompo- Soucinovy tvar modelu a apriorn hp Pro soucinovemtvaru dals odvozen je vyhodne formalne vyjadrit jak model, tak i apriorn hp v nasledujcm ctf(dtj't 1;ct; ct) = ctexpfqct( )s('t Y [ 1)g cexpfqc( )s('t 1)g](c;ct) c2c = Y c(c;ct) Y c2c c2c expfq c( )s('t 1)(c;ct)g (8) a f( ;jd(t 1)) = Y c(t 1) Y c2c c2c expfq c( )S(t 1)g; (9) kde(t Poznamka: 1)aS(t (c;ct) 1)jsoustatistikyhpparametruvcaset je Diracova -funkce, denovana takto 1. (c;ct)= forc=ct 6=ct 6

7 Bayesuv vzorec pro soucinovy tvar hp Dosadme Y soucinove tvary hp(8) and(9) do Bayesova vzorce(6) a dostaneme c(t) expfqc( )S(t)g = Y c(c;ct) Y c2c c2c c2c expfq c( )s('t 1)(c;ct)g Y c(t 1) Y c2c c2c expfq c( )S(t 1)g = Y c[(c;ct)+(t 1)] Y c2c c2c expfq c( )[s('t 1)(c;ct)+S(t 1)]g Z teto rekurze pro hp zskame rekurzi pro statistiky S(t) (t) = (t S(t 1)+(c;ct) () 1)+(c;ct)s('t 1) (11) kterarka: prepoctej pouze tu statistiku, jejz komponenta byla v case t aktivn. ale Tato tato rekurze promenna ale nen vyskytuje prakticky pouze pouzitelna, ve funkci nebot', budeme obsahuje aproximovat neznamou celou promennou tuto funkci. ct. Protoze se 4.5 Aproximace Msto funkce (c;ct) dosadme jej stredn hodnotu (c;ct)e[(c;ct)jd(t)]wc(t): () Vypocet stredn hodnoty E[(c;ct)jd(t)]= Z (c;ct)f(ctjd(t))dct=f(cjd(t))wc(t); c2c ; coz vyzaduje znalost hp f(cjd(t)); c2c. Konstrukce hp f(cjd(t)) Potrebnou hp lze zskat takto f(cjd(t))=f(cjdt;d(t 1))/f(dt;cjd(t 1))=f(dtjc;d(t 1))f(cjd(t 1)): Posledn dve hp mohou byt parametrizovany f(dtjc;d(t 1)) f(dt; cjc;d(t 1))d c= f(dtjc;d(t 1); c)f( cjd(t 1))d c= = Z f(dtj't 1;c; c)f( cjd(t 1))d c 7

8 a f(cjd(t 1)) f(c;cjd(t 1))dc= f(cjd(t 1);c)f(cjd(t 1))dc= = Z cf(cjd(t 1))dc Tak dostavame wc(t)=f(cjd(t))= Z f(dtj't 1;c; c)f( cjd(t 1))d c Z cf(cjd(t 1))dc (13) vzavislostinaznamychhp,konkretnejsoutomodelykomponentaukazateleaapriornhpprevzata z minuleho kroku identikace. Poznamka: pravdepodobnostn ukazatel Aproximace s hp rozdeluje w(t). Situace puvodn je zachycena deterministicky na nasledujcm ukazatel ct obrazku: s"dirakovskou" hp (c;ct) na 6c (c;ct) b - wc(t) Obrazek 3. Efekt aproximace ukazovatele Zatmco ukazatel pripoust puvodn ukazovatel jako aktivn ukazuje"s i sousedn jistotou" komponenty na jedinou s prslusnymi komponentu, pravdepodobnostmi aproximovany aktivit. 8

9 5 Experimenty Pro mikrooblasti rekonstrukci ve forme stavu, smesi ktery distribuc. urcuje msto O-line simulovane odhadneme poruchy, model pouzijeme pro bezporuchovy odhad modelu vsechny poruchove poruchove stavy, a s pouzitm vsech dat, ktera mame k dispozici. Tyto modely stav a uschovame.on-linemermedatasdanouporuchouaodhadujemeprslusnymodel.porovnanmonline modelu modelu s ostatnmi s jednotlivymi a pro ktery modely model zskanymi je vzdalenost o-line minimaln, zjistme minimaln tu poruchu vzdalenost prohlasme odhadnuteho za aktualn. Experiment ma tedy dve casti: 1. Cast ucen, kdy je pouzita setrvala porucha po dobu 15 dn, 2. pri Casttestovan,kdejsoupouzitaaktualndatavdobetrvan4.5,7.5,15a22,5min.Tytocasy, periode vzorkovan 1.5 min, odpovdaj trem, peti, deseti a patnacti aktualnm vzorkum. c. Pro 5. prezentaci Vzajemnou jsme pozici vybrali detektoru poruchu 5 a c. stojcho 5 a pro vozidla test byla zpusobujcho pouzita data poruchu (obsazenost) 5 je mozno na detektoru na obrazku 2. Na nasledujcch obrazcch jsou vysledky testu aktualnch dat pri poruse 5. Kazdy nalezt z zpracovavaneho obrazku ma dvecasti. aktualnho Na vzorku, leve strane na ose je y vynesen je odhadcsla prubeh poruchy. odhadu Jako poruchy vysledny - na ose odhad x je poruchy porad bereme nejcastejs odhad z jednotlivych kroku. V smesinaucenenajednotliveporuchy.vyhravataporucha,kterajenejcastejimaximaln.videalnm prave casti kazdeho obrazku jsou vyneseny nenornovane logaritmicke likelihoody pro vsechny prpade idealn stav by mel vsak byt nenastava, jeden prubeh coz svedc s urcitym o tom, odstupem ze informace trvale o poruse maximaln nen v a datech ostatn mnoho. mens. Tento Obrazek 3:Porucha5,trivzorkydat=4.5minuty 9

10 Obrazek 4:Porucha5,petvzorkudat=7.5minuty Obrazek 5:Porucha5,desetvzorkudat=15minut

11 Obrazek 6: Porucha 5, patnact vzorku dat = 22.5 minuty Zuvedenychobrazkujepatrne,zeporuchac.5bylaspravnedetekovanavevsechprpadech.Odhad zetrdatjedostinejisty,aleukazujese,zepetaktualnchvzorkujeprodetekciporuchydostacujc. Prouplnostuvadmevysledkypro3,5,a15vzorkudatprovsechnytypyporuch,tj.poruchu1 az a poruchy 13. Csla 2,3,.. poruch jsou je oznaceny mozno sledovat jako 1,2,.. na obrazku 2, pricemz pripomname: 1 je bezporuchovy stav Vysledkyjsouuvedenyvtabulkach,kdevprvnmradkujeskutecnecsloporuchyvdruhemradku je cslo odhadu poruchy. skutecnaporucha odhadnutaporucha Rozhodovan po trech vzorcch = 4.5 minuty skutecnaporucha odhadnutaporucha Rozhodovan po peti vzorcch = 7.5 minuty skutecnaporucha odhadnutaporucha Rozhodovan po deseti vzorcch = 15 minut 11

12 skutecnaporucha odhadnutaporucha Rozhodovan po patnacti vzorcch = 22.5 minuty Z velmi uvedeneho dobre. je patrne, ze jiz rozhodovan s peti vzorky, tj. daty merenymi po dobu 7.5 minuty je 6 Zaver Provedene zruznychdopravnchsituac,prokazaly,zeuvedenacestajeperspektivn.vyhodoutohotoprstupu pokusy, testujc schopnost pravdepodobnostn smesi popsat a rozlisit dopravn data je,zejepostavennaglobalnmpohledunadopravnoblast,atedyjevpodstatenezavislynajejm konkretnm dostupne informace, vyberu. Zahrnut i kdyz se porucha vsech merenych na nekterych dat do detektorech odhadu rovnez neprojev. zajist'uje Cestou, maximaln ktera zde vyuzit naznacena, se bude dale pokracovat a budou se testovat dals zlepsen. Jednm z nich, napr. byla pro testy brat ne jenom merene obsazenosti, ale dvojice[obsazenost, intenzita], ktere predstavuj je elementarn stavy dopravy. Reference [1] udalost-oblastsmchova",tech.rep.,eltodo,praha4,novodvorska14,praha,17.prosince Drbohlav J. Pliska Z. Pribyl P.,TichyT., \Navrh expertnho systemuproresen mimoradnych [2] Praha, P.Nedoma,M.Karny,T.V.Guy,I.Nagy,andJ.Bohm, Mixtools.(Program), UTIAAV CR, [3] Dynamic M.Karny,J.Bohm,T.V.Guy,L.Jirsa,I.Nagy,P.Nedoma,andL.Tesar, Advising: Theory and Algorithms, Springer, London, OptimizedBayesian

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION Lucie Váňová 1 Anotace: Článek pojednává o předpovídání délky kolony v křižovatce. Tato úloha je řešena v programu

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Luxmetr LS-BTA, lampička, izolepa, 32 kusů průhledné fólie (nejlépe obaly od CD).

Luxmetr LS-BTA, lampička, izolepa, 32 kusů průhledné fólie (nejlépe obaly od CD). Počítání fólií měřením úbytku světla Cíl: Cílem této úlohy je připravit u žáků půdu pro pochopení důležité fyzikálně-chemické metody: stanovení koncentrace měřením absorbance s využitím Lambertova-Beerova

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Petr Chvosta. vlevo, bude pravděpodobnost toho, že se tyč na počátku intervalu τ B nachází nad vpravo

Petr Chvosta. vlevo, bude pravděpodobnost toho, že se tyč na počátku intervalu τ B nachází nad vpravo MOLEKULÁRNÍ MOTORY Petr Chvosta. Automobil v krupobití aneb brzděním k pohybu Uvažme automobil stojící na mírném svahu a bombardovaný rovnoměrně ze všech stran obrovskými kroupami. Svah stoupá směrem doprava

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Predikce roční spotřeby zemního plynu po ceníkových pásmech

Predikce roční spotřeby zemního plynu po ceníkových pásmech Predikce roční spotřeby zemního plynu po ceníkových pásmech Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2014 Jetřichovice 20. ledna 2014

Více

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka FVZ UO Hradec Králové } Dostatečné množství dostupných zdrojů nejenom na místě MU Lidé Materiál Transportní prostředky } Rychlost poskytnutí pomoci

Více

RESEARCH REPORT. ÚTIA AVČR, P.O.Box 18, 182 08 Prague, Czech Republic Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cas.

RESEARCH REPORT. ÚTIA AVČR, P.O.Box 18, 182 08 Prague, Czech Republic Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cas. Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT J. Andrýsek, P. Ettler Rozšíření

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

INTENZITA DOPRAVY na komunikaci I/7 květen 2013. Hodnověrnost tvrzení je dána hodnověrností důkazů

INTENZITA DOPRAVY na komunikaci I/7 květen 2013. Hodnověrnost tvrzení je dána hodnověrností důkazů INTENZITA DOPRAVY na komunikaci I/7 květen 2013 Hodnověrnost tvrzení je dána hodnověrností důkazů Cíl měření Cílem měření intenzity dopravy je získat hodnoty, které odpovídají skutečné intenzitě provozu

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

MIKROSIMULAČNÍ MODEL ÚSEKU DÁLNICE D1 S APLIKACÍ LINIOVÉHO ŘÍZENÍ DOPRAVY. Milan Koukol, FD Ústav dopravních systémů

MIKROSIMULAČNÍ MODEL ÚSEKU DÁLNICE D1 S APLIKACÍ LINIOVÉHO ŘÍZENÍ DOPRAVY. Milan Koukol, FD Ústav dopravních systémů MIKROSIMULAČNÍ MODEL ÚSEKU DÁLNICE D1 S APLIKACÍ LINIOVÉHO ŘÍZENÍ DOPRAVY Milan Koukol, FD Ústav dopravních systémů Představení projektu INEP Systém identifikace nehod a zvýšení propustnosti liniových

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Informace o připravovaných. telematických aplikacích na dálnici D1

Informace o připravovaných. telematických aplikacích na dálnici D1 Informace o připravovaných telematických aplikacích na dálnici D1 Plánované telematické aplikace na dálnici D1 Plánované telematické aplikace na dálnici D1 neintrusivní dopravní detektory zařízení pro

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Spolehlivost dodávek elektrické energie

Spolehlivost dodávek elektrické energie Co je to spolehlivost? Je to obecná vlastnost Je to schopnost plnit požadované funkce v daných mezích v čase podle stanovených technických podmínek Spolehlivost obsahuje dílčí vlastnosti jako např. bezporuchovost,

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Role experimentu ve vědecké metodě

Role experimentu ve vědecké metodě Role experimentu ve vědecké metodě Erika Mechlová Ostravská univerzita v Ostravě Obsah Úvod 1. Pozorování 2. Uvedení a formulace problému. Sbírání informací 3. Stanovení hypotéz řešení problému 4. Provedení

Více

BLOK 3: (záznam pozorování, experimentu, bádání, apod.)

BLOK 3: (záznam pozorování, experimentu, bádání, apod.) BLOK 3: PROTOKOLY (záznam pozorování, experimentu, bádání, apod.) LABORATORNÍ PROTOKOLY Dva druhy: (1) Zápisky (poznámky) o vlastním průběhu práce (2) Zpráva (shrnutí) o výsledcích Ad (1). Věrný zápis

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Základy matematické statistiky

Základy matematické statistiky r- MATEMATICKO-FYZIKÁLNí FAKULTA UNIVERZITY KARLOVY V PRAZE Jifí Andel Základy matematické statistiky matfyzpress PRAHA 2011 r I Obsah Predmluva. 11 1 Náhodné veličiny 1.1 Základní pojmy 1.2 Príklady diskrétních

Více

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008 Colosseum, a.s. ÚTIA AV ČR, v.v.i. 21. května 2008 Osnova presentace 1 Úvod 2 3 4 Hodnocení výsledků Budoucnost projektu Úvod Futures trhy Cíle obchodování s kontrakty Vyvinout původní, ucelenou, široce

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Inteligentní doprava jako součást konceptu Smart cities and regions

Inteligentní doprava jako součást konceptu Smart cities and regions Inteligentní doprava jako součást konceptu Smart cities and regions Prof. Dr. Ing. Miroslav Svítek Fakulta dopravní, ČVUT Konviktská 20 110 00 Praha 1 svitek@fd.cvut.cz Obsah Koncept chytrých měst a regionů

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

ROZŠÍŘENÉ ASISTENČNÍ SYSTÉMY, POLO-AUTONOMNÍ/AUTONOMNÍ SYSTÉMY ŘÍZENÍ Z POHLEDU TECHNICKÝCH STANDARDŮ. Sdružení pro dopravní telematiku

ROZŠÍŘENÉ ASISTENČNÍ SYSTÉMY, POLO-AUTONOMNÍ/AUTONOMNÍ SYSTÉMY ŘÍZENÍ Z POHLEDU TECHNICKÝCH STANDARDŮ. Sdružení pro dopravní telematiku ROZŠÍŘENÉ ASISTENČNÍ SYSTÉMY, POLO-AUTONOMNÍ/AUTONOMNÍ SYSTÉMY ŘÍZENÍ Z POHLEDU TECHNICKÝCH STANDARDŮ Sdružení pro dopravní telematiku ORGANIZACE PRO TVORBU NOREM Normotvorné organizace z pohledu autonomních

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Rezonanční elektromotor

Rezonanční elektromotor - 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Experiment P-17 SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE CÍL EXPERIMENTU Studium základních vlastností magnetu. Sledování změny silového působení magnetického pole magnetu na vzdálenosti. MODULY A SENZORY PC

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Netlumené kmitání tělesa zavěšeného na pružině

Netlumené kmitání tělesa zavěšeného na pružině Netlumené kmitání tělesa zavěšeného na pružině Kmitavý pohyb patří k relativně jednoduchým pohybům, které lze analyzovat s použitím jednoduchých fyzikálních zákonů a matematických vztahů. Zároveň je tento

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

D E T E K C E P O H Y B U V E V I D E U A J E J I C H I D E N T I F I K A C E

D E T E K C E P O H Y B U V E V I D E U A J E J I C H I D E N T I F I K A C E D E T E K C E P O H Y B U V E V I D E U A J E J I C H I D E N T I F I K A C E CÍLE LABORATORNÍ ÚLOHY 1. Seznámení se s metodami detekce pohybu z videa. 2. Vyzkoušení si detekce pohybu v obraze kamery ÚKOL

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Návrh signálního plánu pro světelně řízenou křižovatku. Ing. Michal Dorda, Ph.D.

Návrh signálního plánu pro světelně řízenou křižovatku. Ing. Michal Dorda, Ph.D. Návrh signálního plánu pro světelně řízenou křižovatku Ing. Michal Dorda, Ph.D. Použitá literatura TP 81 Zásady pro navrhování světelných signalizačních zařízení na pozemních komunikacích. TP 235 Posuzování

Více

Tlumené kmitání tělesa zavěšeného na pružině

Tlumené kmitání tělesa zavěšeného na pružině Tlumené kmitání tělesa zavěšeného na pružině Kmitavé pohyby jsou důležité pro celou fyziku a její aplikace, protože umožňují relativně jednoduše modelovat řadu fyzikálních dějů a jevů. V praxi ale na pohybující

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

PŘÍKLADY TESTOVÝCH OTÁZEK - zkouška cyklisty.

PŘÍKLADY TESTOVÝCH OTÁZEK - zkouška cyklisty. PŘÍKLADY TESTOVÝCH OTÁZEK - zkouška cyklisty. 1. Cyklista před přechodem pro chodce je povinen a) umožnit chodci, který je na přechodu nebo jej zřejmě hodlá použít, nerušené a bezpečné přejití vozovky

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Funkce Petra Směšná žák chápe funkci jako vyjádření závislosti veličin, umí vyjádřit funkční vztah tabulkou, rovnicí i grafem, dovede vyjádřit reálné situace

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. Vynález se týká způsobu určování ráže jaderného výbuchu a zapojení k jeho provádění.

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. Vynález se týká způsobu určování ráže jaderného výbuchu a zapojení k jeho provádění. ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ (6l) (23) Výstavnípriorita (22) Přihlášeno 26 03 76 (2!) PV 1967-76 199 070 (11) (BIJ (51) Int.CI. J G 21 J 5/CO

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Experimentální analýza hluku

Experimentální analýza hluku Experimentální analýza hluku Mezi nejčastěji měřené akustické veličiny patří akustický tlak, akustický výkon a intenzita zvuku (resp. jejich hladiny). Vedle členění dle měřené veličiny lze měření v akustice

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní.

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní. Pohotovost a vliv jednotlivých složek na číselné hodnoty pohotovosti Systém se může nacházet v mnoha různých stavech. V praxi se nejčastěji vyskytují případy, kdy systém (nebo prvek) je charakterizován

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Složitost algoritmů doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 27. prosince 2015 Jiří Dvorský (VŠB TUO) Složitost algoritmů

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více

Videodetekce. 1 Úvod. 2 Popis systému

Videodetekce. 1 Úvod. 2 Popis systému 1 Úvod Videodetekce V tomto dokumentu je popsán software pro videodetekci pracující na otočné či stacionární přehledové kameře. Podstatnou inovací, kterou popisovaný systém nabízí je skutečnost, že umožňuje

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Úvod do dopravního inženýrství. Ing. Michal Dorda, Ph.D.

Úvod do dopravního inženýrství. Ing. Michal Dorda, Ph.D. Úvod do dopravního inženýrství Ing. Michal Dorda, Ph.D. Pozemní komunikace Pozemní komunikace je liniová stavba sloužící především dopravě silničních dopravních prostředků, případně k pohybu chodců, cyklistů

Více

Podmíněná pravděpodobnost

Podmíněná pravděpodobnost odmíněná pravděpodobnost 5. odmíněná pravděpodobnost 5.. Motivace: Opakovaně nezávisle provádíme týž náhodný pokus a sledujeme nastoupení jevu A v těch pokusech, v nichž nastoupil jev H. odmíněnou relativní

Více

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více