Detekce a lokalizace vyjimecnych stavu v mestske doprave

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Detekce a lokalizace vyjimecnych stavu v mestske doprave"

Transkript

1 Detekce a lokalizace vyjimecnych stavu v mestske doprave 1 Uvod Reakce globalnchrdcchsystemu.nezpristoupmekezkoumanvyjimecnychstavuvdoprave,vymezme rdcho systemu na nastale vyjimecne stavy v doprave je velice dulezitou soucast vsech nejdrve to, co v teto praci budeme povazovat za vyjimecny stav. Vyjimecnymstavemvdopraverozummemimoradnoudopravnsituaci,jejzdopad se podstatnym zpusobem odraz v merenych dopravnch datech. oblasti, Poznamka: apriorn znalosti Metody, o chovan ktere pouzvame, automobilu jsou v dane zalozeny oblasti na a informaci zejmena na o strukture on-line merenych zkoumane dopravnch dopravn datech. realna data Struktura nesou oblasti informaci je dana, o okamzitem apriorn informace den v oblasti. vypovda Vsechny o"prumernych" dopravn udalosti, vlastnostech ktere oblasti se v merenych a pouze datech mysli,ze neodraz, bychom jsou potrebovali pro nas prmo nedosazitelne, nastalou poruchu a nelze merit! je detekovat Pozadujeme ani rdit. pouze, Tm aby samozrejme se porucha nemame v nekterych na datech projevila, abychom ji mohli na zaklade techto velicin predpovedet. V prpade vyjimecneho stavu je situace odlisna od"beznych situac". Rozdlu je nekolik vyjimecna dobu trvan, situace nastava vetsinou ve velmi kratkem casovem intervalu a ma prechodnou dopad nastale vyjimecne situace na stav dopravnho systemu je vetsinou dosti podstatny, jednotlivychskupinpodobnychvyjimecnychstavu(alesponcododopadunastavdopravnho systemu) byva konecny pocet. Vyjimecne mens mnozstv stavy udalost, lze samozrejme majcch(vetsinou klasikovat negativn) podle rady vliv hledisek na dopravn a zahrnovat system pod a vymykajcch ne vets nebo beznym dopravnm podmnkam. My se pridrzme vyctu provedeneho v praci [1]. Zde je uvedena se pomerne pro jejich siroka detekci. skala ruznych vyjimecnych dopravnch stavu vcetne jejich vyhodnocen a navodu V urovnrozpoznavanvyjimecnychstavuvubecajejichprpadnouklasikac,tj.urcenmkdeajaky teto zprave se vsak nebudeme ani tak zabyvat klasikac jednotlivych stavu jako obecnou vyjimecny stavu, a to stav prekazky nastal. ve Budeme vozovce. se Jako pritom jednotlive drzet jedineho, vyjimecne nejpodstatnejsho stavy budeme uvazovat druhu z ruzna vyjimecnych kdektetoblokadedoslo.otazkoubude:(i)poznamevubec,zenekdevoblastidoslokzablokovan msta, jzdnho pri techto pruhu? experimentech (II) pozname, jsou (i) na za kterem jak dlouho mste jsme k tomuto schopni zablokovan vyjimecny doslo? stav zaregistrovat, Zajmave okolnosti (ii) s 1

2 jakou abychom jistotou si jej jsme vubec schopni vsimli,(iv) vyjimecny jak silny stav dopad detekovat,(iii) mus mt vyjimecny jak dlouho stav, mus abychom vyjimecny jej stav zachytili. trvat, stavu Resen by vyjimecnych nastoupilo urcite stavu expertnrzen, zde nechavame bud' stranou jiz existujc a predpokladame, nebo navrzene ze po dopravnmi detekci vyjimecneho operatory. 2 Formulace ulohy Pro a Svornosti. testovan Detailn byla vybrana planek liniova teto mikrooblast oblasti, konkretne sectyrmi jejch krizovatkami, ctyrech rzenych konkretne krizovatek, ulice Zborovska Obrazku 1. je na Obrazek 1: Realna oblast jejz model byl pouzit pro testovan 2

3 Oblast skutecnosti se naleza krizovatek, v mste z nichz maleho zbylych smchovskeho sest je nerzenych okruhu. a Tato intenzita oblast provozu obsahuje v nich ve nen velka. Proto jsme brali v uvahu jen uvedene ctyri svetelne rzene krizovatky. Model modelujenaobrazku2. teto mikroblasti byl vytvoren pomoc dopravnho simulatoru simulovan AIMSUN. Schema jj 3jj 44 5jjj jjjj j Obrazek 2: Mikrooblast se zkoumanymi vyjimecnymi stavy Mikrooblast Obr. 1. Je zde je tvorena vyznaceno ctyrmi csel krizovatkami v krouzku, serazenymi ktera oznacuj v jedne msta, linii kde - podrobnosti byla postupne viz csly. umst'ovana blokada. Silnejs svisle usecky oznacuj meric detektory, oznacene rovnez Na tektorech vyznacenych v oblasti mstech (viz obr. 1-2) byla byla simulovana merena data porucha (obsazenosti ve forme dopravnho stojcho proudu) automobilu. pro stav Na bez de- poruchy(zadne i; i=1;2:::;).prostavbezporuchyakazdyporuchovystav(urcitadobastanautomobiluna stojc auto) a poruchovych stavu(porucha i odpovda autu stojcmu v pozici zvolene pozici) je tedy k dispozici 13 datovych souboru, charakterizujcch stav oblasti. Otazka porucha je:(i) skutecne lze vubec existuje tmto jako zpusobem pravdiva?(iii) poruchu jak detekovat?(ii) dlouhe je treba s meren jakou jistotou jak pro lze o-line, tvrdit,ze tak i tato on-line identikaci, aby zskana informace o poruse byla dostatecna? pro 3

4 3 Model smesi distribuc a jeho odhad VtetokapitolenaznacmezakladyteorieodhadusmesovehomodelumetodouQuasi-Bayes.Protoze zmnena velmi ucinne teorie odmocninove je znacne obtzna algoritmy, a jej zustaneme programova jen u realizace odvozen vyuzva zakladnch dosti vztahu neprehledne aniz bychom ale zato prevadeli do podoby algoritmu. Ten zpracovan v systemu MIXTOOLS vytvorenem v AS UTIA je AV CR-viz[2]. Uplnateorieodhadusmesovychmodelujepopsanav[3]. Komponenty modelu Predpokladame dt; t2t. Modely n modelu, jsou popsany indexovanych svymi podmnenymi prirozenymicsly hustotami c2f1;2;:::;ng=c pravdepodobnosti a modelovana hp data f(dtjd(t 1);c; c): Dale smesoveho predpokladame, modelu, tj. ze ze v prave kazdem jen casovem tato komponenta okamziku odraz je aktivn skutecny pouze stav jeden sledovaneho model- komponenta systemu. Ukazatel Aktivity ct=cznamena,zevokamzikutjeaktivnkomponentac. jednotlivych komponent oznacuje ukazatel- nahodna velicina ct s hodnotami 1;2;:::;n. Pravdepodobnosti predpokladame konstantn aktivity a rovny jednotlivych c, tedy komponent c, bez znalosti aktualnch dat dt, f(ct =cjd(t 1);)=f(ct =cj)=c Poznamka: Vyrazem f(ct=c) myslme fct(c)=p(ct=c) kde P(:) oznacuje pravdepodobnost. V jadrujc okamziku, tento kdy stav namerme je data dt, mame dals informaci o skutecnem aktualnm stavu. Hp vy- f(ctjd(t)): Nahodna posloupnost ct je neznama a jej hodnoty nelze merit a je treba je odhadovat. 4 Odhad modelu smesi distribuc 4.1 Vnitrn popis smesi Sdruzena hp dat a ukazatele Tatohppopisujejakdata,takiukazatele f(dt;ctjd(t 1); ;): (1) ze Je data to sdruzena dt pochaz hp, z parametrizovana komponenty ct. vektorem parametru[ ;]. Tato hp urcuje pravdepodobnost, 4

5 Tato sdruzena hp muze byt rozlozena takto (1)=f(dtjd(t 1);ct; ;) f(ctjd(t 1); ;)= =f(dtj't 1;ct; ct) f(ctj)=ct f(dtj't 1;ct; ct) kde f(dtjd(t 1);ct; ;)=f(dtj't 1;ct; ct) (2) je popis jedne komponenty(konkretne s indexem ct), a f(ctjd(t 1); ;)=f(ctj)=ct (3) je Poznamka: pravdepodobnostn Z predchozho popis ukazatele plynou pozadavky ct. na model 1. kazda komponenta c=1;2;:::;n ma sve vlastn parametry c, 2. data hloubkyradu dt jsou zavisla modelu), jen na datech, obsazenych v regresnm vektoru 't 1 (tj. minulych datech az do 3. ukazatel je nezavisly na parametrech component c, 4. ukazatel je podmnene nezavisly na starych datech, je-li znam parametr ukazatele- vektor, 5. pravdepodobnosti komponent vcase t bez znalosti dt jsou stacionarn. 4.2 Vnejs popis smesi Hp dat bez ohledu na aktivitu component Tuto hp lze dostat dvema zpusoby(presne a s aproximac): Prvn zpusob je presny a je dan marginalizac hp(1) vzhledem k ukazateli ct f(dtjd(t 1); ;)= = X f(d t;ctjd(t 1); ;)= X ctf(dt;ctjd(t 1); ;): (4) ct2c ct2c kde jsme pouzili vztah(3). Druha dem.zesdruzenepravdepodobnostisepakpodosazenbodovehoodhadustanehpjedinepromenne, moznost je aproximace. Ta spocva v nahrazen ukazatele ct nejakym jeho bodovym odha- a ale to vede dt. Tak na spocitatelne dostaneme marginaln algoritmy pro hp. odhadovan. Tento postup Touto nen, cestou vzhledem dostavame k aproximaci, optimaln, zato f(dtjd(t 1); ;)/f(dt;^ctjd(t 1); ;); (5) podmnena kde ct je bodovy stredn odhad hodnota(viz poctany dale). na zaklade starych dat d(t 1). Bodovy odhad je poctan jako 5

6 4.3 Odhad [ ; ] - (Bayesuv vzorec) Bayesuv vzorec pro odhad parametru[ ;] ma tvar f( ;jd(t)) / = f(dtjd(t f( ;jdt;d(t 1); ;)f( ;jd(t 1)) 1)) (6) coz vnejsho je rekurze, popisu ktera smesi prepoctava f(dtjd(t 1); ;). hp pro jmenovany Protoze Bayesuv parametr. vztah Pro (6) jej ma pouzit soucinovy se vyzaduje tvar a znalost popissmesijedanvetvarusouctu(4),dostavamevysledekvtvarsoucinusouctu,cozjevypocetne vnejs nevhodne. se Resen,kterejespocitatelne,dostanemesvyuzitmaproximovanehovztahu(5).Tojecesta,kterou budeme dale zabyvat. 4.4 Odhad [ ; ] - (pro statistiky) Modely komponent v exponencialnm tvaru Komponenty vyjadrme pomoc hp z exponencialn trdy f(dtj't 1;c; c)=expfqc( )s('t 1)g; c2c (7) kde nentam). qc( ) je parametricka funkce c-te komponenty a s('t 1) je statistika(spolecna vsem kompo- Soucinovy tvar modelu a apriorn hp Pro soucinovemtvaru dals odvozen je vyhodne formalne vyjadrit jak model, tak i apriorn hp v nasledujcm ctf(dtj't 1;ct; ct) = ctexpfqct( )s('t Y [ 1)g cexpfqc( )s('t 1)g](c;ct) c2c = Y c(c;ct) Y c2c c2c expfq c( )s('t 1)(c;ct)g (8) a f( ;jd(t 1)) = Y c(t 1) Y c2c c2c expfq c( )S(t 1)g; (9) kde(t Poznamka: 1)aS(t (c;ct) 1)jsoustatistikyhpparametruvcaset je Diracova -funkce, denovana takto 1. (c;ct)= forc=ct 6=ct 6

7 Bayesuv vzorec pro soucinovy tvar hp Dosadme Y soucinove tvary hp(8) and(9) do Bayesova vzorce(6) a dostaneme c(t) expfqc( )S(t)g = Y c(c;ct) Y c2c c2c c2c expfq c( )s('t 1)(c;ct)g Y c(t 1) Y c2c c2c expfq c( )S(t 1)g = Y c[(c;ct)+(t 1)] Y c2c c2c expfq c( )[s('t 1)(c;ct)+S(t 1)]g Z teto rekurze pro hp zskame rekurzi pro statistiky S(t) (t) = (t S(t 1)+(c;ct) () 1)+(c;ct)s('t 1) (11) kterarka: prepoctej pouze tu statistiku, jejz komponenta byla v case t aktivn. ale Tato tato rekurze promenna ale nen vyskytuje prakticky pouze pouzitelna, ve funkci nebot', budeme obsahuje aproximovat neznamou celou promennou tuto funkci. ct. Protoze se 4.5 Aproximace Msto funkce (c;ct) dosadme jej stredn hodnotu (c;ct)e[(c;ct)jd(t)]wc(t): () Vypocet stredn hodnoty E[(c;ct)jd(t)]= Z (c;ct)f(ctjd(t))dct=f(cjd(t))wc(t); c2c ; coz vyzaduje znalost hp f(cjd(t)); c2c. Konstrukce hp f(cjd(t)) Potrebnou hp lze zskat takto f(cjd(t))=f(cjdt;d(t 1))/f(dt;cjd(t 1))=f(dtjc;d(t 1))f(cjd(t 1)): Posledn dve hp mohou byt parametrizovany f(dtjc;d(t 1)) f(dt; cjc;d(t 1))d c= f(dtjc;d(t 1); c)f( cjd(t 1))d c= = Z f(dtj't 1;c; c)f( cjd(t 1))d c 7

8 a f(cjd(t 1)) f(c;cjd(t 1))dc= f(cjd(t 1);c)f(cjd(t 1))dc= = Z cf(cjd(t 1))dc Tak dostavame wc(t)=f(cjd(t))= Z f(dtj't 1;c; c)f( cjd(t 1))d c Z cf(cjd(t 1))dc (13) vzavislostinaznamychhp,konkretnejsoutomodelykomponentaukazateleaapriornhpprevzata z minuleho kroku identikace. Poznamka: pravdepodobnostn ukazatel Aproximace s hp rozdeluje w(t). Situace puvodn je zachycena deterministicky na nasledujcm ukazatel ct obrazku: s"dirakovskou" hp (c;ct) na 6c (c;ct) b - wc(t) Obrazek 3. Efekt aproximace ukazovatele Zatmco ukazatel pripoust puvodn ukazovatel jako aktivn ukazuje"s i sousedn jistotou" komponenty na jedinou s prslusnymi komponentu, pravdepodobnostmi aproximovany aktivit. 8

9 5 Experimenty Pro mikrooblasti rekonstrukci ve forme stavu, smesi ktery distribuc. urcuje msto O-line simulovane odhadneme poruchy, model pouzijeme pro bezporuchovy odhad modelu vsechny poruchove poruchove stavy, a s pouzitm vsech dat, ktera mame k dispozici. Tyto modely stav a uschovame.on-linemermedatasdanouporuchouaodhadujemeprslusnymodel.porovnanmonline modelu modelu s ostatnmi s jednotlivymi a pro ktery modely model zskanymi je vzdalenost o-line minimaln, zjistme minimaln tu poruchu vzdalenost prohlasme odhadnuteho za aktualn. Experiment ma tedy dve casti: 1. Cast ucen, kdy je pouzita setrvala porucha po dobu 15 dn, 2. pri Casttestovan,kdejsoupouzitaaktualndatavdobetrvan4.5,7.5,15a22,5min.Tytocasy, periode vzorkovan 1.5 min, odpovdaj trem, peti, deseti a patnacti aktualnm vzorkum. c. Pro 5. prezentaci Vzajemnou jsme pozici vybrali detektoru poruchu 5 a c. stojcho 5 a pro vozidla test byla zpusobujcho pouzita data poruchu (obsazenost) 5 je mozno na detektoru na obrazku 2. Na nasledujcch obrazcch jsou vysledky testu aktualnch dat pri poruse 5. Kazdy nalezt z zpracovavaneho obrazku ma dvecasti. aktualnho Na vzorku, leve strane na ose je y vynesen je odhadcsla prubeh poruchy. odhadu Jako poruchy vysledny - na ose odhad x je poruchy porad bereme nejcastejs odhad z jednotlivych kroku. V smesinaucenenajednotliveporuchy.vyhravataporucha,kterajenejcastejimaximaln.videalnm prave casti kazdeho obrazku jsou vyneseny nenornovane logaritmicke likelihoody pro vsechny prpade idealn stav by mel vsak byt nenastava, jeden prubeh coz svedc s urcitym o tom, odstupem ze informace trvale o poruse maximaln nen v a datech ostatn mnoho. mens. Tento Obrazek 3:Porucha5,trivzorkydat=4.5minuty 9

10 Obrazek 4:Porucha5,petvzorkudat=7.5minuty Obrazek 5:Porucha5,desetvzorkudat=15minut

11 Obrazek 6: Porucha 5, patnact vzorku dat = 22.5 minuty Zuvedenychobrazkujepatrne,zeporuchac.5bylaspravnedetekovanavevsechprpadech.Odhad zetrdatjedostinejisty,aleukazujese,zepetaktualnchvzorkujeprodetekciporuchydostacujc. Prouplnostuvadmevysledkypro3,5,a15vzorkudatprovsechnytypyporuch,tj.poruchu1 az a poruchy 13. Csla 2,3,.. poruch jsou je oznaceny mozno sledovat jako 1,2,.. na obrazku 2, pricemz pripomname: 1 je bezporuchovy stav Vysledkyjsouuvedenyvtabulkach,kdevprvnmradkujeskutecnecsloporuchyvdruhemradku je cslo odhadu poruchy. skutecnaporucha odhadnutaporucha Rozhodovan po trech vzorcch = 4.5 minuty skutecnaporucha odhadnutaporucha Rozhodovan po peti vzorcch = 7.5 minuty skutecnaporucha odhadnutaporucha Rozhodovan po deseti vzorcch = 15 minut 11

12 skutecnaporucha odhadnutaporucha Rozhodovan po patnacti vzorcch = 22.5 minuty Z velmi uvedeneho dobre. je patrne, ze jiz rozhodovan s peti vzorky, tj. daty merenymi po dobu 7.5 minuty je 6 Zaver Provedene zruznychdopravnchsituac,prokazaly,zeuvedenacestajeperspektivn.vyhodoutohotoprstupu pokusy, testujc schopnost pravdepodobnostn smesi popsat a rozlisit dopravn data je,zejepostavennaglobalnmpohledunadopravnoblast,atedyjevpodstatenezavislynajejm konkretnm dostupne informace, vyberu. Zahrnut i kdyz se porucha vsech merenych na nekterych dat do detektorech odhadu rovnez neprojev. zajist'uje Cestou, maximaln ktera zde vyuzit naznacena, se bude dale pokracovat a budou se testovat dals zlepsen. Jednm z nich, napr. byla pro testy brat ne jenom merene obsazenosti, ale dvojice[obsazenost, intenzita], ktere predstavuj je elementarn stavy dopravy. Reference [1] udalost-oblastsmchova",tech.rep.,eltodo,praha4,novodvorska14,praha,17.prosince Drbohlav J. Pliska Z. Pribyl P.,TichyT., \Navrh expertnho systemuproresen mimoradnych [2] Praha, P.Nedoma,M.Karny,T.V.Guy,I.Nagy,andJ.Bohm, Mixtools.(Program), UTIAAV CR, [3] Dynamic M.Karny,J.Bohm,T.V.Guy,L.Jirsa,I.Nagy,P.Nedoma,andL.Tesar, Advising: Theory and Algorithms, Springer, London, OptimizedBayesian

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Informace o připravovaných. telematických aplikacích na dálnici D1

Informace o připravovaných. telematických aplikacích na dálnici D1 Informace o připravovaných telematických aplikacích na dálnici D1 Plánované telematické aplikace na dálnici D1 Plánované telematické aplikace na dálnici D1 neintrusivní dopravní detektory zařízení pro

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

RESEARCH REPORT. ÚTIA AVČR, P.O.Box 18, 182 08 Prague, Czech Republic Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cas.

RESEARCH REPORT. ÚTIA AVČR, P.O.Box 18, 182 08 Prague, Czech Republic Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cas. Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT J. Andrýsek, P. Ettler Rozšíření

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka FVZ UO Hradec Králové } Dostatečné množství dostupných zdrojů nejenom na místě MU Lidé Materiál Transportní prostředky } Rychlost poskytnutí pomoci

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

01MDS. http://www.krbalek.cz/for_students/mds/mds.html

01MDS. http://www.krbalek.cz/for_students/mds/mds.html 01MDS http://www.krbalek.cz/for_students/mds/mds.html 01MDS Modely dopravních systémů (úvodní přednáška) Milan Krbálek Katedra matematiky Fakulty jaderné a fyzikálně inženýrské, ČVUT v Praze http://www.krbalek.cz/for_students/mds/mds.html

Více

Inteligentní doprava jako součást konceptu Smart cities and regions

Inteligentní doprava jako součást konceptu Smart cities and regions Inteligentní doprava jako součást konceptu Smart cities and regions Prof. Dr. Ing. Miroslav Svítek Fakulta dopravní, ČVUT Konviktská 20 110 00 Praha 1 svitek@fd.cvut.cz Obsah Koncept chytrých měst a regionů

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Videodetekce. 1 Úvod. 2 Popis systému

Videodetekce. 1 Úvod. 2 Popis systému 1 Úvod Videodetekce V tomto dokumentu je popsán software pro videodetekci pracující na otočné či stacionární přehledové kameře. Podstatnou inovací, kterou popisovaný systém nabízí je skutečnost, že umožňuje

Více

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou: Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Přehled technických norem z oblasti spolehlivosti

Přehled technických norem z oblasti spolehlivosti Příloha č. 1: Přehled technických norem z oblasti spolehlivosti NÁZVOSLOVNÉ NORMY SPOLEHLIVOSTI IDENTIFIKACE NÁZEV Stručná charakteristika ČSN IEC 50(191): 1993 ČSN IEC 60050-191/ Změna A1:2003 ČSN IEC

Více

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008 Colosseum, a.s. ÚTIA AV ČR, v.v.i. 21. května 2008 Osnova presentace 1 Úvod 2 3 4 Hodnocení výsledků Budoucnost projektu Úvod Futures trhy Cíle obchodování s kontrakty Vyvinout původní, ucelenou, široce

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

1. Průběh funkce. 1. Nejjednodušší řešení

1. Průběh funkce. 1. Nejjednodušší řešení 1. Průběh funkce K zobrazení průběhu analytické funkce jedné proměnné potřebujeme sloupec dat nezávisle proměnné x (argumentu) a sloupec dat s funkcí argumentu y = f(x) vytvořený obvykle pomocí vzorce.

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Modelování výnosové křivky a modelování úrokových nákladů státního dluhu Kamil Kladívko Odbor řízení státního dluhu a finančního majetku Úrokové náklady portfolia státního dluhu 2 Úrokové náklady státního

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

6.2.7 Princip neurčitosti

6.2.7 Princip neurčitosti 6..7 Princip neurčitosti Předpoklady: 606 Minulá hodina: Elektrony se chovají jako částice, ale při průchodu dvojštěrbinou projevují interferenci zdá se, že neplatí předpoklad, že elektron letí buď otvorem

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Rizikové úseky silnic z pohledu dopravních nehod

Rizikové úseky silnic z pohledu dopravních nehod Rizikové úseky silnic z pohledu dopravních nehod Ing. Jan TESLA, Ing. Igor IVAN, Ph.D. INSTITUT GEOINFORMATIKY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA Cíle projektu Zpracování dat o dopravních

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

č úč ř ú úč é š ř úč ř ář ž úč úč ř ň á č á á á ř á ř ř ř úč Č ář é úč é á á ř á č úč š ř áš á á á č úč š ř úč ř č á úč é úč á č á á š ř á č Í š ř č úč č ž á é á é š é úč ď ž č Ýé ř á é ř úč úč ř ž ď š

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

TECHNOLOGIE OHREVU PÁNVÍ NA VOD A JEJÍ PRÍNOSY TECHNOLOGY OF HEATING OF VOD LADLES AND ITS BENEFITS. Milan Cieslar a Jirí Dokoupil b

TECHNOLOGIE OHREVU PÁNVÍ NA VOD A JEJÍ PRÍNOSY TECHNOLOGY OF HEATING OF VOD LADLES AND ITS BENEFITS. Milan Cieslar a Jirí Dokoupil b TECHNOLOGIE OHREVU PÁNVÍ NA VOD A JEJÍ PRÍNOSY TECHNOLOGY OF HEATING OF VOD LADLES AND ITS BENEFITS Milan Cieslar a Jirí Dokoupil b a) TRINECKÉ ŽELEZÁRNY, a.s., Prumyslová 1000, 739 70 Trinec Staré Mesto,

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Předmluva 11 Typografická konvence použitá v knize 12

Předmluva 11 Typografická konvence použitá v knize 12 Obsah Předmluva 11 Typografická konvence použitá v knize 12 Kapitola 1 Modelování, simulace a analýza za použití Excelu 13 Modelování 13 Tabulkový model 15 Netabulkový model 17 Simulace 18 Analýza 19 Nástroje

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Centrum pro rozvoj dopravních systémů

Centrum pro rozvoj dopravních systémů Centrum pro rozvoj dopravních systémů Martin Hájek VŠB - TU Ostrava Březen 2013 Témata 1. Představení centra RODOS 2. Řízení dopravy při modernizaci D1 výstupy centra Centrum pro rozvoj dopravních systémů

Více

DETEKCE DOPRAVY KLASIFIKACE VOZIDEL MONITORING DOPRAVNÍHO PROUDU

DETEKCE DOPRAVY KLASIFIKACE VOZIDEL MONITORING DOPRAVNÍHO PROUDU Road Traffic Technology DETEKCE DOPRAVY KLASIFIKACE VOZIDEL MONITORING DOPRAVNÍHO PROUDU BTTT modul SČÍTÁNÍ A KLASIFIKACE DOPRAVY BLUETOOTH MODUL PRO MONITOROVÁNÍ DOPRAVNÍHO PROUDU A DOJEZDOVÝCH ČASŮ Technologie

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Pravnicka fakulta Masarykovy univerzity Katedra narodnho hospodarstv Management informacnho systemu Masarykovy univerzity (diplomova prace) brezen 1995 RNDr. Vladimr Smd, CSc. 1 Obsah 1 Uvod 3 2 Informacn

Více

Základní pojmy technické diagnostiky

Základní pojmy technické diagnostiky P1 Základní pojmy technické diagnostiky Poruchy a jejich příčiny Žádné zařízení nelze konstruovat tak, aby se u něj dříve či později neobjevily vady, závady a poruchy. Vada nám funkční spolehlivost neovlivňuje,

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

ŘÍZENÍ DOPRAVY VE MĚSTECH

ŘÍZENÍ DOPRAVY VE MĚSTECH DOPRAVNÍ SYSTÉMY ŘÍZENÍ DOPRAVY VE MĚSTECH Řídit dopravu ve městě znamená mít systém složený z částí, které si vzájemně rozumí. ? Dáváte si za cíl zlepšit plynulost dopravy a snížit tvorbu kolon? Snažíte

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Strucna sumarizace 3 nejlepsich nabidek na financovani bytoveho komplexu Tanvaldska

Strucna sumarizace 3 nejlepsich nabidek na financovani bytoveho komplexu Tanvaldska Strucna sumarizace 3 nejlepsich nabidek na financovani bytoveho komplexu Tanvaldska Postovni sporitelna (CSOB) - nabizi nejlepsi urokovou sazbu 4.80% p.a. pro uver se splatnosti 15 let a s fixaci sazby

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více