Detekce a lokalizace vyjimecnych stavu v mestske doprave

Rozměr: px
Začít zobrazení ze stránky:

Download "Detekce a lokalizace vyjimecnych stavu v mestske doprave"

Transkript

1 Detekce a lokalizace vyjimecnych stavu v mestske doprave 1 Uvod Reakce globalnchrdcchsystemu.nezpristoupmekezkoumanvyjimecnychstavuvdoprave,vymezme rdcho systemu na nastale vyjimecne stavy v doprave je velice dulezitou soucast vsech nejdrve to, co v teto praci budeme povazovat za vyjimecny stav. Vyjimecnymstavemvdopraverozummemimoradnoudopravnsituaci,jejzdopad se podstatnym zpusobem odraz v merenych dopravnch datech. oblasti, Poznamka: apriorn znalosti Metody, o chovan ktere pouzvame, automobilu jsou v dane zalozeny oblasti na a informaci zejmena na o strukture on-line merenych zkoumane dopravnch dopravn datech. realna data Struktura nesou oblasti informaci je dana, o okamzitem apriorn informace den v oblasti. vypovda Vsechny o"prumernych" dopravn udalosti, vlastnostech ktere oblasti se v merenych a pouze datech mysli,ze neodraz, bychom jsou potrebovali pro nas prmo nedosazitelne, nastalou poruchu a nelze merit! je detekovat Pozadujeme ani rdit. pouze, Tm aby samozrejme se porucha nemame v nekterych na datech projevila, abychom ji mohli na zaklade techto velicin predpovedet. V prpade vyjimecneho stavu je situace odlisna od"beznych situac". Rozdlu je nekolik vyjimecna dobu trvan, situace nastava vetsinou ve velmi kratkem casovem intervalu a ma prechodnou dopad nastale vyjimecne situace na stav dopravnho systemu je vetsinou dosti podstatny, jednotlivychskupinpodobnychvyjimecnychstavu(alesponcododopadunastavdopravnho systemu) byva konecny pocet. Vyjimecne mens mnozstv stavy udalost, lze samozrejme majcch(vetsinou klasikovat negativn) podle rady vliv hledisek na dopravn a zahrnovat system pod a vymykajcch ne vets nebo beznym dopravnm podmnkam. My se pridrzme vyctu provedeneho v praci [1]. Zde je uvedena se pomerne pro jejich siroka detekci. skala ruznych vyjimecnych dopravnch stavu vcetne jejich vyhodnocen a navodu V urovnrozpoznavanvyjimecnychstavuvubecajejichprpadnouklasikac,tj.urcenmkdeajaky teto zprave se vsak nebudeme ani tak zabyvat klasikac jednotlivych stavu jako obecnou vyjimecny stavu, a to stav prekazky nastal. ve Budeme vozovce. se Jako pritom jednotlive drzet jedineho, vyjimecne nejpodstatnejsho stavy budeme uvazovat druhu z ruzna vyjimecnych kdektetoblokadedoslo.otazkoubude:(i)poznamevubec,zenekdevoblastidoslokzablokovan msta, jzdnho pri techto pruhu? experimentech (II) pozname, jsou (i) na za kterem jak dlouho mste jsme k tomuto schopni zablokovan vyjimecny doslo? stav zaregistrovat, Zajmave okolnosti (ii) s 1

2 jakou abychom jistotou si jej jsme vubec schopni vsimli,(iv) vyjimecny jak silny stav dopad detekovat,(iii) mus mt vyjimecny jak dlouho stav, mus abychom vyjimecny jej stav zachytili. trvat, stavu Resen by vyjimecnych nastoupilo urcite stavu expertnrzen, zde nechavame bud' stranou jiz existujc a predpokladame, nebo navrzene ze po dopravnmi detekci vyjimecneho operatory. 2 Formulace ulohy Pro a Svornosti. testovan Detailn byla vybrana planek liniova teto mikrooblast oblasti, konkretne sectyrmi jejch krizovatkami, ctyrech rzenych konkretne krizovatek, ulice Zborovska Obrazku 1. je na Obrazek 1: Realna oblast jejz model byl pouzit pro testovan 2

3 Oblast skutecnosti se naleza krizovatek, v mste z nichz maleho zbylych smchovskeho sest je nerzenych okruhu. a Tato intenzita oblast provozu obsahuje v nich ve nen velka. Proto jsme brali v uvahu jen uvedene ctyri svetelne rzene krizovatky. Model modelujenaobrazku2. teto mikroblasti byl vytvoren pomoc dopravnho simulatoru simulovan AIMSUN. Schema jj 3jj 44 5jjj jjjj j Obrazek 2: Mikrooblast se zkoumanymi vyjimecnymi stavy Mikrooblast Obr. 1. Je zde je tvorena vyznaceno ctyrmi csel krizovatkami v krouzku, serazenymi ktera oznacuj v jedne msta, linii kde - podrobnosti byla postupne viz csly. umst'ovana blokada. Silnejs svisle usecky oznacuj meric detektory, oznacene rovnez Na tektorech vyznacenych v oblasti mstech (viz obr. 1-2) byla byla simulovana merena data porucha (obsazenosti ve forme dopravnho stojcho proudu) automobilu. pro stav Na bez de- poruchy(zadne i; i=1;2:::;).prostavbezporuchyakazdyporuchovystav(urcitadobastanautomobiluna stojc auto) a poruchovych stavu(porucha i odpovda autu stojcmu v pozici zvolene pozici) je tedy k dispozici 13 datovych souboru, charakterizujcch stav oblasti. Otazka porucha je:(i) skutecne lze vubec existuje tmto jako zpusobem pravdiva?(iii) poruchu jak detekovat?(ii) dlouhe je treba s meren jakou jistotou jak pro lze o-line, tvrdit,ze tak i tato on-line identikaci, aby zskana informace o poruse byla dostatecna? pro 3

4 3 Model smesi distribuc a jeho odhad VtetokapitolenaznacmezakladyteorieodhadusmesovehomodelumetodouQuasi-Bayes.Protoze zmnena velmi ucinne teorie odmocninove je znacne obtzna algoritmy, a jej zustaneme programova jen u realizace odvozen vyuzva zakladnch dosti vztahu neprehledne aniz bychom ale zato prevadeli do podoby algoritmu. Ten zpracovan v systemu MIXTOOLS vytvorenem v AS UTIA je AV CR-viz[2]. Uplnateorieodhadusmesovychmodelujepopsanav[3]. Komponenty modelu Predpokladame dt; t2t. Modely n modelu, jsou popsany indexovanych svymi podmnenymi prirozenymicsly hustotami c2f1;2;:::;ng=c pravdepodobnosti a modelovana hp data f(dtjd(t 1);c; c): Dale smesoveho predpokladame, modelu, tj. ze ze v prave kazdem jen casovem tato komponenta okamziku odraz je aktivn skutecny pouze stav jeden sledovaneho model- komponenta systemu. Ukazatel Aktivity ct=cznamena,zevokamzikutjeaktivnkomponentac. jednotlivych komponent oznacuje ukazatel- nahodna velicina ct s hodnotami 1;2;:::;n. Pravdepodobnosti predpokladame konstantn aktivity a rovny jednotlivych c, tedy komponent c, bez znalosti aktualnch dat dt, f(ct =cjd(t 1);)=f(ct =cj)=c Poznamka: Vyrazem f(ct=c) myslme fct(c)=p(ct=c) kde P(:) oznacuje pravdepodobnost. V jadrujc okamziku, tento kdy stav namerme je data dt, mame dals informaci o skutecnem aktualnm stavu. Hp vy- f(ctjd(t)): Nahodna posloupnost ct je neznama a jej hodnoty nelze merit a je treba je odhadovat. 4 Odhad modelu smesi distribuc 4.1 Vnitrn popis smesi Sdruzena hp dat a ukazatele Tatohppopisujejakdata,takiukazatele f(dt;ctjd(t 1); ;): (1) ze Je data to sdruzena dt pochaz hp, z parametrizovana komponenty ct. vektorem parametru[ ;]. Tato hp urcuje pravdepodobnost, 4

5 Tato sdruzena hp muze byt rozlozena takto (1)=f(dtjd(t 1);ct; ;) f(ctjd(t 1); ;)= =f(dtj't 1;ct; ct) f(ctj)=ct f(dtj't 1;ct; ct) kde f(dtjd(t 1);ct; ;)=f(dtj't 1;ct; ct) (2) je popis jedne komponenty(konkretne s indexem ct), a f(ctjd(t 1); ;)=f(ctj)=ct (3) je Poznamka: pravdepodobnostn Z predchozho popis ukazatele plynou pozadavky ct. na model 1. kazda komponenta c=1;2;:::;n ma sve vlastn parametry c, 2. data hloubkyradu dt jsou zavisla modelu), jen na datech, obsazenych v regresnm vektoru 't 1 (tj. minulych datech az do 3. ukazatel je nezavisly na parametrech component c, 4. ukazatel je podmnene nezavisly na starych datech, je-li znam parametr ukazatele- vektor, 5. pravdepodobnosti komponent vcase t bez znalosti dt jsou stacionarn. 4.2 Vnejs popis smesi Hp dat bez ohledu na aktivitu component Tuto hp lze dostat dvema zpusoby(presne a s aproximac): Prvn zpusob je presny a je dan marginalizac hp(1) vzhledem k ukazateli ct f(dtjd(t 1); ;)= = X f(d t;ctjd(t 1); ;)= X ctf(dt;ctjd(t 1); ;): (4) ct2c ct2c kde jsme pouzili vztah(3). Druha dem.zesdruzenepravdepodobnostisepakpodosazenbodovehoodhadustanehpjedinepromenne, moznost je aproximace. Ta spocva v nahrazen ukazatele ct nejakym jeho bodovym odha- a ale to vede dt. Tak na spocitatelne dostaneme marginaln algoritmy pro hp. odhadovan. Tento postup Touto nen, cestou vzhledem dostavame k aproximaci, optimaln, zato f(dtjd(t 1); ;)/f(dt;^ctjd(t 1); ;); (5) podmnena kde ct je bodovy stredn odhad hodnota(viz poctany dale). na zaklade starych dat d(t 1). Bodovy odhad je poctan jako 5

6 4.3 Odhad [ ; ] - (Bayesuv vzorec) Bayesuv vzorec pro odhad parametru[ ;] ma tvar f( ;jd(t)) / = f(dtjd(t f( ;jdt;d(t 1); ;)f( ;jd(t 1)) 1)) (6) coz vnejsho je rekurze, popisu ktera smesi prepoctava f(dtjd(t 1); ;). hp pro jmenovany Protoze Bayesuv parametr. vztah Pro (6) jej ma pouzit soucinovy se vyzaduje tvar a znalost popissmesijedanvetvarusouctu(4),dostavamevysledekvtvarsoucinusouctu,cozjevypocetne vnejs nevhodne. se Resen,kterejespocitatelne,dostanemesvyuzitmaproximovanehovztahu(5).Tojecesta,kterou budeme dale zabyvat. 4.4 Odhad [ ; ] - (pro statistiky) Modely komponent v exponencialnm tvaru Komponenty vyjadrme pomoc hp z exponencialn trdy f(dtj't 1;c; c)=expfqc( )s('t 1)g; c2c (7) kde nentam). qc( ) je parametricka funkce c-te komponenty a s('t 1) je statistika(spolecna vsem kompo- Soucinovy tvar modelu a apriorn hp Pro soucinovemtvaru dals odvozen je vyhodne formalne vyjadrit jak model, tak i apriorn hp v nasledujcm ctf(dtj't 1;ct; ct) = ctexpfqct( )s('t Y [ 1)g cexpfqc( )s('t 1)g](c;ct) c2c = Y c(c;ct) Y c2c c2c expfq c( )s('t 1)(c;ct)g (8) a f( ;jd(t 1)) = Y c(t 1) Y c2c c2c expfq c( )S(t 1)g; (9) kde(t Poznamka: 1)aS(t (c;ct) 1)jsoustatistikyhpparametruvcaset je Diracova -funkce, denovana takto 1. (c;ct)= forc=ct 6=ct 6

7 Bayesuv vzorec pro soucinovy tvar hp Dosadme Y soucinove tvary hp(8) and(9) do Bayesova vzorce(6) a dostaneme c(t) expfqc( )S(t)g = Y c(c;ct) Y c2c c2c c2c expfq c( )s('t 1)(c;ct)g Y c(t 1) Y c2c c2c expfq c( )S(t 1)g = Y c[(c;ct)+(t 1)] Y c2c c2c expfq c( )[s('t 1)(c;ct)+S(t 1)]g Z teto rekurze pro hp zskame rekurzi pro statistiky S(t) (t) = (t S(t 1)+(c;ct) () 1)+(c;ct)s('t 1) (11) kterarka: prepoctej pouze tu statistiku, jejz komponenta byla v case t aktivn. ale Tato tato rekurze promenna ale nen vyskytuje prakticky pouze pouzitelna, ve funkci nebot', budeme obsahuje aproximovat neznamou celou promennou tuto funkci. ct. Protoze se 4.5 Aproximace Msto funkce (c;ct) dosadme jej stredn hodnotu (c;ct)e[(c;ct)jd(t)]wc(t): () Vypocet stredn hodnoty E[(c;ct)jd(t)]= Z (c;ct)f(ctjd(t))dct=f(cjd(t))wc(t); c2c ; coz vyzaduje znalost hp f(cjd(t)); c2c. Konstrukce hp f(cjd(t)) Potrebnou hp lze zskat takto f(cjd(t))=f(cjdt;d(t 1))/f(dt;cjd(t 1))=f(dtjc;d(t 1))f(cjd(t 1)): Posledn dve hp mohou byt parametrizovany f(dtjc;d(t 1)) f(dt; cjc;d(t 1))d c= f(dtjc;d(t 1); c)f( cjd(t 1))d c= = Z f(dtj't 1;c; c)f( cjd(t 1))d c 7

8 a f(cjd(t 1)) f(c;cjd(t 1))dc= f(cjd(t 1);c)f(cjd(t 1))dc= = Z cf(cjd(t 1))dc Tak dostavame wc(t)=f(cjd(t))= Z f(dtj't 1;c; c)f( cjd(t 1))d c Z cf(cjd(t 1))dc (13) vzavislostinaznamychhp,konkretnejsoutomodelykomponentaukazateleaapriornhpprevzata z minuleho kroku identikace. Poznamka: pravdepodobnostn ukazatel Aproximace s hp rozdeluje w(t). Situace puvodn je zachycena deterministicky na nasledujcm ukazatel ct obrazku: s"dirakovskou" hp (c;ct) na 6c (c;ct) b - wc(t) Obrazek 3. Efekt aproximace ukazovatele Zatmco ukazatel pripoust puvodn ukazovatel jako aktivn ukazuje"s i sousedn jistotou" komponenty na jedinou s prslusnymi komponentu, pravdepodobnostmi aproximovany aktivit. 8

9 5 Experimenty Pro mikrooblasti rekonstrukci ve forme stavu, smesi ktery distribuc. urcuje msto O-line simulovane odhadneme poruchy, model pouzijeme pro bezporuchovy odhad modelu vsechny poruchove poruchove stavy, a s pouzitm vsech dat, ktera mame k dispozici. Tyto modely stav a uschovame.on-linemermedatasdanouporuchouaodhadujemeprslusnymodel.porovnanmonline modelu modelu s ostatnmi s jednotlivymi a pro ktery modely model zskanymi je vzdalenost o-line minimaln, zjistme minimaln tu poruchu vzdalenost prohlasme odhadnuteho za aktualn. Experiment ma tedy dve casti: 1. Cast ucen, kdy je pouzita setrvala porucha po dobu 15 dn, 2. pri Casttestovan,kdejsoupouzitaaktualndatavdobetrvan4.5,7.5,15a22,5min.Tytocasy, periode vzorkovan 1.5 min, odpovdaj trem, peti, deseti a patnacti aktualnm vzorkum. c. Pro 5. prezentaci Vzajemnou jsme pozici vybrali detektoru poruchu 5 a c. stojcho 5 a pro vozidla test byla zpusobujcho pouzita data poruchu (obsazenost) 5 je mozno na detektoru na obrazku 2. Na nasledujcch obrazcch jsou vysledky testu aktualnch dat pri poruse 5. Kazdy nalezt z zpracovavaneho obrazku ma dvecasti. aktualnho Na vzorku, leve strane na ose je y vynesen je odhadcsla prubeh poruchy. odhadu Jako poruchy vysledny - na ose odhad x je poruchy porad bereme nejcastejs odhad z jednotlivych kroku. V smesinaucenenajednotliveporuchy.vyhravataporucha,kterajenejcastejimaximaln.videalnm prave casti kazdeho obrazku jsou vyneseny nenornovane logaritmicke likelihoody pro vsechny prpade idealn stav by mel vsak byt nenastava, jeden prubeh coz svedc s urcitym o tom, odstupem ze informace trvale o poruse maximaln nen v a datech ostatn mnoho. mens. Tento Obrazek 3:Porucha5,trivzorkydat=4.5minuty 9

10 Obrazek 4:Porucha5,petvzorkudat=7.5minuty Obrazek 5:Porucha5,desetvzorkudat=15minut

11 Obrazek 6: Porucha 5, patnact vzorku dat = 22.5 minuty Zuvedenychobrazkujepatrne,zeporuchac.5bylaspravnedetekovanavevsechprpadech.Odhad zetrdatjedostinejisty,aleukazujese,zepetaktualnchvzorkujeprodetekciporuchydostacujc. Prouplnostuvadmevysledkypro3,5,a15vzorkudatprovsechnytypyporuch,tj.poruchu1 az a poruchy 13. Csla 2,3,.. poruch jsou je oznaceny mozno sledovat jako 1,2,.. na obrazku 2, pricemz pripomname: 1 je bezporuchovy stav Vysledkyjsouuvedenyvtabulkach,kdevprvnmradkujeskutecnecsloporuchyvdruhemradku je cslo odhadu poruchy. skutecnaporucha odhadnutaporucha Rozhodovan po trech vzorcch = 4.5 minuty skutecnaporucha odhadnutaporucha Rozhodovan po peti vzorcch = 7.5 minuty skutecnaporucha odhadnutaporucha Rozhodovan po deseti vzorcch = 15 minut 11

12 skutecnaporucha odhadnutaporucha Rozhodovan po patnacti vzorcch = 22.5 minuty Z velmi uvedeneho dobre. je patrne, ze jiz rozhodovan s peti vzorky, tj. daty merenymi po dobu 7.5 minuty je 6 Zaver Provedene zruznychdopravnchsituac,prokazaly,zeuvedenacestajeperspektivn.vyhodoutohotoprstupu pokusy, testujc schopnost pravdepodobnostn smesi popsat a rozlisit dopravn data je,zejepostavennaglobalnmpohledunadopravnoblast,atedyjevpodstatenezavislynajejm konkretnm dostupne informace, vyberu. Zahrnut i kdyz se porucha vsech merenych na nekterych dat do detektorech odhadu rovnez neprojev. zajist'uje Cestou, maximaln ktera zde vyuzit naznacena, se bude dale pokracovat a budou se testovat dals zlepsen. Jednm z nich, napr. byla pro testy brat ne jenom merene obsazenosti, ale dvojice[obsazenost, intenzita], ktere predstavuj je elementarn stavy dopravy. Reference [1] udalost-oblastsmchova",tech.rep.,eltodo,praha4,novodvorska14,praha,17.prosince Drbohlav J. Pliska Z. Pribyl P.,TichyT., \Navrh expertnho systemuproresen mimoradnych [2] Praha, P.Nedoma,M.Karny,T.V.Guy,I.Nagy,andJ.Bohm, Mixtools.(Program), UTIAAV CR, [3] Dynamic M.Karny,J.Bohm,T.V.Guy,L.Jirsa,I.Nagy,P.Nedoma,andL.Tesar, Advising: Theory and Algorithms, Springer, London, OptimizedBayesian

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION Lucie Váňová 1 Anotace: Článek pojednává o předpovídání délky kolony v křižovatce. Tato úloha je řešena v programu

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

5 Parametrické testy hypotéz

5 Parametrické testy hypotéz 5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Matematika POZNÁMKY PRŮŘEZOVÁ TÉMATA

Matematika POZNÁMKY PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Predikce roční spotřeby zemního plynu po ceníkových pásmech

Predikce roční spotřeby zemního plynu po ceníkových pásmech Predikce roční spotřeby zemního plynu po ceníkových pásmech Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2014 Jetřichovice 20. ledna 2014

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

INTENZITA DOPRAVY na komunikaci I/7 květen 2013. Hodnověrnost tvrzení je dána hodnověrností důkazů

INTENZITA DOPRAVY na komunikaci I/7 květen 2013. Hodnověrnost tvrzení je dána hodnověrností důkazů INTENZITA DOPRAVY na komunikaci I/7 květen 2013 Hodnověrnost tvrzení je dána hodnověrností důkazů Cíl měření Cílem měření intenzity dopravy je získat hodnoty, které odpovídají skutečné intenzitě provozu

Více

Petr Chvosta. vlevo, bude pravděpodobnost toho, že se tyč na počátku intervalu τ B nachází nad vpravo

Petr Chvosta. vlevo, bude pravděpodobnost toho, že se tyč na počátku intervalu τ B nachází nad vpravo MOLEKULÁRNÍ MOTORY Petr Chvosta. Automobil v krupobití aneb brzděním k pohybu Uvažme automobil stojící na mírném svahu a bombardovaný rovnoměrně ze všech stran obrovskými kroupami. Svah stoupá směrem doprava

Více

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání

Více

Luxmetr LS-BTA, lampička, izolepa, 32 kusů průhledné fólie (nejlépe obaly od CD).

Luxmetr LS-BTA, lampička, izolepa, 32 kusů průhledné fólie (nejlépe obaly od CD). Počítání fólií měřením úbytku světla Cíl: Cílem této úlohy je připravit u žáků půdu pro pochopení důležité fyzikálně-chemické metody: stanovení koncentrace měřením absorbance s využitím Lambertova-Beerova

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

MIKROSIMULAČNÍ MODEL ÚSEKU DÁLNICE D1 S APLIKACÍ LINIOVÉHO ŘÍZENÍ DOPRAVY. Milan Koukol, FD Ústav dopravních systémů

MIKROSIMULAČNÍ MODEL ÚSEKU DÁLNICE D1 S APLIKACÍ LINIOVÉHO ŘÍZENÍ DOPRAVY. Milan Koukol, FD Ústav dopravních systémů MIKROSIMULAČNÍ MODEL ÚSEKU DÁLNICE D1 S APLIKACÍ LINIOVÉHO ŘÍZENÍ DOPRAVY Milan Koukol, FD Ústav dopravních systémů Představení projektu INEP Systém identifikace nehod a zvýšení propustnosti liniových

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

RESEARCH REPORT. ÚTIA AVČR, P.O.Box 18, 182 08 Prague, Czech Republic Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cas.

RESEARCH REPORT. ÚTIA AVČR, P.O.Box 18, 182 08 Prague, Czech Republic Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cas. Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT J. Andrýsek, P. Ettler Rozšíření

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Konvoluční model dynamických studií ledvin. seminář AS UTIA

Konvoluční model dynamických studií ledvin. seminář AS UTIA Konvoluční model dynamických studií ledvin Ondřej Tichý seminář AS UTIA.. Obsah prezentace Scintigrafická obrazová sekvence a její analýza Konstrukce standardního modelu a jeho řešení Experiment Ovlivnění

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

České vysoké učení technické v Praze Fakulta dopravní Ústav aplikované matematiky, K611. Semestrální práce ze Statistiky (SIS)

České vysoké učení technické v Praze Fakulta dopravní Ústav aplikované matematiky, K611. Semestrální práce ze Statistiky (SIS) České vysoké učení technické v Praze Fakulta dopravní Ústav aplikované matematiky, K611 Semestrální práce ze Statistiky (SIS) Petr Procházka, Jakub Feninec Skupina: 97 Akademický rok: 01/013 Úvod V naší

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

PRŮZKUM VÝŽIVY LESA NA ÚZEMÍ ČESKÉ REPUBLIKY

PRŮZKUM VÝŽIVY LESA NA ÚZEMÍ ČESKÉ REPUBLIKY PRŮZKUM VÝŽIVY LESA NA ÚZEMÍ ČESKÉ REPUBLIKY Aplikované metodické postupy Tomáš Samek počet odběrných míst/vzorků volba odběrných míst pokyny k odběru vzorků, jejich označování a skladování předávání

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Pohyb tělesa po nakloněné rovině

Pohyb tělesa po nakloněné rovině Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka FVZ UO Hradec Králové } Dostatečné množství dostupných zdrojů nejenom na místě MU Lidé Materiál Transportní prostředky } Rychlost poskytnutí pomoci

Více

Inteligentní doprava jako součást konceptu Smart cities and regions

Inteligentní doprava jako součást konceptu Smart cities and regions Inteligentní doprava jako součást konceptu Smart cities and regions Prof. Dr. Ing. Miroslav Svítek Fakulta dopravní, ČVUT Konviktská 20 110 00 Praha 1 svitek@fd.cvut.cz Obsah Koncept chytrých měst a regionů

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008 Colosseum, a.s. ÚTIA AV ČR, v.v.i. 21. května 2008 Osnova presentace 1 Úvod 2 3 4 Hodnocení výsledků Budoucnost projektu Úvod Futures trhy Cíle obchodování s kontrakty Vyvinout původní, ucelenou, široce

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Informace o připravovaných. telematických aplikacích na dálnici D1

Informace o připravovaných. telematických aplikacích na dálnici D1 Informace o připravovaných telematických aplikacích na dálnici D1 Plánované telematické aplikace na dálnici D1 Plánované telematické aplikace na dálnici D1 neintrusivní dopravní detektory zařízení pro

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Chytrá města a regiony - inteligentní řízení dopravy

Chytrá města a regiony - inteligentní řízení dopravy Chytrá města a regiony - inteligentní řízení dopravy Prof. Dr. Ing. Miroslav Svítek Fakulta dopravní, ČVUT Konviktská 20 110 00 Praha 1 svitek@fd.cvut.cz Obsah Koncept chytrých měst a regionů Řízení procesů

Více

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D. Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při

Více

Role experimentu ve vědecké metodě

Role experimentu ve vědecké metodě Role experimentu ve vědecké metodě Erika Mechlová Ostravská univerzita v Ostravě Obsah Úvod 1. Pozorování, sbírání informací 2. Formulace problému 3. Stanovení hypotéz řešení problému 4. Provedení experimentu

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

BLOK 3: (záznam pozorování, experimentu, bádání, apod.)

BLOK 3: (záznam pozorování, experimentu, bádání, apod.) BLOK 3: PROTOKOLY (záznam pozorování, experimentu, bádání, apod.) LABORATORNÍ PROTOKOLY Dva druhy: (1) Zápisky (poznámky) o vlastním průběhu práce (2) Zpráva (shrnutí) o výsledcích Ad (1). Věrný zápis

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

ROZŠÍŘENÉ ASISTENČNÍ SYSTÉMY, POLO-AUTONOMNÍ/AUTONOMNÍ SYSTÉMY ŘÍZENÍ Z POHLEDU TECHNICKÝCH STANDARDŮ. Sdružení pro dopravní telematiku

ROZŠÍŘENÉ ASISTENČNÍ SYSTÉMY, POLO-AUTONOMNÍ/AUTONOMNÍ SYSTÉMY ŘÍZENÍ Z POHLEDU TECHNICKÝCH STANDARDŮ. Sdružení pro dopravní telematiku ROZŠÍŘENÉ ASISTENČNÍ SYSTÉMY, POLO-AUTONOMNÍ/AUTONOMNÍ SYSTÉMY ŘÍZENÍ Z POHLEDU TECHNICKÝCH STANDARDŮ Sdružení pro dopravní telematiku ORGANIZACE PRO TVORBU NOREM Normotvorné organizace z pohledu autonomních

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Rezonanční elektromotor

Rezonanční elektromotor - 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

1.3 Prezentace vlastní přednášky. v Power-Pointu

1.3 Prezentace vlastní přednášky. v Power-Pointu Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie 1.3 Prezentace vlastní přednášky v Power-Pointu Ing. Jiří PLISKA I & C energo, a.s. V Římově 20. 1. 2013 OBSAH 1. Šablona...

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více