Matematické modelování dopravního proudu

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematické modelování dopravního proudu"

Transkript

1 Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč Abstrakt: Cílem projektu bylo seznámení se s matematickým popisem dopravního proudu, Zpracování dat s dopravních měření a vytvoření jednoduchých matematických modelů různých dopravních situacích. 1 Úvod V této práci se zabýváme studiem základních matematických a fyzikálních vlastností souboru vozidel pohybujících se uvnitř rozsáhlého dopravního systému. V projektu byla použita data naměřená na evropských silnic pomocí magnetických indukčních smyček. Cílem bylo vlastnosti souboru teoreticky popsat, navrhnout a poté testovat jednoduchý matematický dopravní model a jeho výsledky porovnat se skutečným dopravním systémem. 2 Zpracování fyzikálních měření Pro obecnější představu o naměřených datech používáme aritmetický průměr z naměřených dat. Samotná průměrná hodnota jevu není ovšem dostatečným popisem. Proto zavádíme tzv. průměrnou odchylku. Která nám popisuje jak se moc se jednotlivé údaje lišily od vypočítaného průměru. Tedy uvádí jak moc se měřené hodnoty jednotlivých vozidel od sebe navzájem liší. Data s kterými jsme pracovali nám udávala přímo délku vozidel, jejich rychlost a čas průniku předního nárazníku vozidla měřícím bodem. Ostatní veličiny bylo nutné dopočítat. 3 Zkoumané jevy 3.1 Lokální charakteristiky Lokální charakteristiky dopravního proudu jsou veličiny, kterými lze popsat každé jednotlivé vozidlo zvlášť Délka vozidel v - Délka vozidel byla v naměřených datech, nebylo třeba ji jinak získávat

2 Průměrná délka vozidel - - udává součet délek l všech vozidel vydělený jejich počtem N Průměrná odchylka od průměrné délky vozidel - - je součet všech absolutních hodnot rozdílů délek l jednotlivých vozidel a průměrné délky vozidel vydělený počtem vozidel N Rychlost vozidel v - Rychlost vozidel byla také v naměřených datech, nebylo ji tedy třeba dopočítávat Průměrná rychlost vozidel - - je součet rychlostí v všech vozidel vydělený jejich počtem N Průměrná odchylka od průměrné rychlosti vozidel - - je součet všech absolutních hodnot rozdílů rychlostí v jednotlivých vozidel a průměrné rychlosti vozidel vydělený počtem vozidel N Časový odstup mezi i-tým a (i-1)-tým vozidlem - - Určíme tak, že od času, kdy bylo i-té vozidlo zaznamenáno detektorem, odečteme čas, kdy bylo vozidlo i-1 zaznamenáno detektorem, ovšem musíme ještě odečíst čas, za který vozidlo i-1 ujede vzdálenost rovnou své délce (tedy kdy zadní část vozidla projede detektorem) - jeho délku vydělíme jeho rychlostí. Je zde ovšem nutný převod jednotek z km/h na m/s (děleno 3,6). Pozn. t 1 časový odstup mezi předním nárazníkem druhého vozidla a zadním nárazníkem prvního vozidla t 2 časový odstup mezi předním nárazníkem třetího vozidla a zadním nárazníkem druhého vozidla

3 Průměrná hodnota časových odstupů mezi vozidly - - Určíme tak, že sečteme všechny časové odstupy mezi vozidly (začínáme od druhého vozidla, protože časových odstupů je o jeden méně než vozidel a prvním vozidlem, které před sebou má časový odstup od jiného vozidla, je druhé vozidlo). Součet časových odstupů vydělíme počtem měření N-1, protože s měřením časových odstupů začínáme u druhého vozidla a končíme u N-tého Průměrná odchylka časových odstupů mezi vozidly - Představuje průměrnou hodnotu absolutních rozdílů, kterou určíme sečtením všech absolutních rozdílů časového odstupu a průměrného časového odstupu. Součet vydělíme počtem měření, tzn. : tzn. : Čistá vzdálenost mezi vozidly - r i Určíme použitím předchozího výpočtu časového odstupu mezi i-tým a i-1-tým vozidlem. Tento vynásobíme rychlostí i-tého vozidla, kterou převedeme na z km/h na m/s. Pozn. r 1 vzdálenost mezi předním nárazníkem druhého vozidla a zadním nárazníkem prvního vozidla r 2 vzdálenost mezi předním nárazníkem třetího vozidla a zadním nárazníkem druhého vozidla Průměrná čistá vzdálenost mezi vozidly - Podobně jako u průměrné hodnoty časových odstupů - sečteme všechny čisté vzdálenosti mezi vozidly r i a vydělíme počtem měření N-1.

4 Pozn. čistá vzdálenost vzdálenost mezi zadním nárazníkem vozidla a předním nárazníkem vozidla jedoucího za ním Průměrná odchylka čistých vzdáleností mezi vozidly - Určíme ji tak, že sečteme všechny absolutní hodnoty rozdílů čistých vzdáleností r i a průměrnéčisté vzdálenost mezi vozidly a zase vydělíme počtem měření, tzn. : 3.2 Globální charakteristiky dopravního proudu Globální charakteristiky dopravního proudu jsou veličiny, kterými nelze popsat každé jednotlivé vozidlo zvlášť. Vztahují se pouze k většímu souboru dat Hustota provozu - je definována vztahem kde L označuje délku komunikace a N počet vozidel na komunikaci udává tedy počet vozidel na kilometr jednotka veh/km (z angličtiny vehicle vozidlo) Z nám známých veličin (délka vozidel, rychlost vozidel, rozestupy mezi vozidly, počet vozidel) vytvoříme vzorec pro výpočet hustoty provozu tak, že počet vozidel N vydělíme součtem délek všech vozidel a rozestupů všech vozidel (viz dříve). Hodnoty rychlosti jsou zadány v jednotkách km/ h, délky vozidel a rozestupů mezi nimi jsou zadány v metrech. Abychom získali výsledek v jednotkách veh/km, provedeme převod jednotek. Vzorec: Dopravní tok - J je definován vztahem kde T představuje dobu (v hodinách), po níž detektor zaznamenával průjezdy a N počet vozidel, které za uvedenou dobu detektor zaznamenal udává tedy počet vozidel, které projedou vybraným místem za hodinu jednotka veh/h Se zadanými veličinami vytvoříme vzorec pro výpočet dopravního toku tak, že počet vozidel N vydělíme celkovým časem měření, tj. rozdíl času příjezdu posledního vozidla a času příjezdu prvního vozidla (t N -t 1 ). Jelikož čas měření je zadán v sekundách, je ve vzorci navíc převod jednotek ze sekund na hodiny, aby výslednou jednotkou bylo veh/h. Vzorec:

5 4 Grafické zpracování měření - pro zobrazení naměřených dat používáme histogramu, kdy na hodnoty jednotlivých jevů (rychlost a délka vozidel) jsou zobrazeni na vodorovné ose a absolutní četnost (počet vozidel), relativní četnost (absolutní četnost podělená počtem vozidel), nebo hustota pravděpodobnosti (viz níže) jsou naneseny na svislou osu. Výška jednotlivých sloupců je úměrná počtu případů, kdy hodnota zkoumané veličiny spadá do příslušné kategorie (intervalu) na ose x. Tuto šířku sloupce označujeme d v. Při zobrazení absolutní četnosti, relativní četnosti a hustoty pravděpodobnosti v histogramu vzniknou tvarově stejné grafy, ale s různým měřítkem. d V Obr. 1: Histogram rozdělení počtu vozidel (absolutní četmost) v závislosti na jejich rychlosti, d v = 0,4 km/h 4.1 Absolutní četnost - počet vozidel součet absolutních četností je roven počtu vozidel 4.2 Relativní četnost - rč i je podílem absolutní četnosti a celkového počtu vozidel. Platí: (Jedná se o tzv. normovací podmínku.) tzn. rč i є <0,1> - tzn. pravděpodobnost vyjádřená v procentech nabývá hodnot 0% - 100%. 4.3 Hustota pravděpodobnosti odpovídá podílu relativní četnost rč i a d v. Hustota pravděpodobnosti hp i definujeme vzorcem. Normalizace pravděpodobnosti: a zároveň, tzn. - pravděpodobnost, že rychlost vozidla bude v rozmezí od nuly do nekonečna je rovna 100%

6 Obr. 1: Histogram rozdělení počtu (absolutní četnost) vozidel v závislosti na jejich rychlosti, d v = 0,4 km/h Obr. 2: Histogram hustoty pravděpodobnosti jednotlivých kategorií rychlosti, d v = 0,4 km/h

7 5 Buněčný dopravní model - buněčný dopravní model spočívá v tom, že silnici rozdělíme do jakýchsi buněk, do každé buňky lze umístit právě jedno vozidlo (tedy ne dvě, ale ani část vozidla vozidlo musí být v buňce celé). Dále je určena nějaká maximální rychlost rychlost jedna znamená v příštím kroku posunutí vozidla o jednu buňku vpřed. Pohyb v modelu se provádí pomocí následujícího postupu: 1. pokud je aktuální rychlost menší než maximální zvýší se rychlost o jedna 2. zjistí se počet volných buněk před vozidlem (tj. pozice předcházejícího vozidla pozice aktuálního vozidla) 3. pokud je rychlost větší než tato mezera je snížena na velikost této mezery 4. následuje pohyb všech vozidel s nastavenou rychlostí - toto celé se opakuje - dále umisťujeme mezi krok 3 a 4 tzv. náhodný faktor tj., že rychlost vozidla se s 50% pravděpodobností sníží o jedna Po rozjetí modelu se nastaví určitá buňka jako detektor a zaznamenává průjezdy vozidel za urřitý počet kroků. Tím lze vypočítat dopravní tok. S naměřených dopravních toků přiřazených k hustotě dopravy (záleží na počtu vozů umístěných do modelu) sestavíme graf. Obr. 3: Graf závislosti Dopravního toku na hustotě. (Tok počet vozidel za jeden krok, Hustota počet vozidel dělený počtem buněk) 6 Shrnutí Naše modely jeví mnoho podobných rysů skutečným měřením. Hodláme dále pokračovat v této práci a navrhnout další modely popisující i složitější situace např. dvouproudá silnice, křižovatka, silnice s možností předjíždění a další.

8 Poděkování - vedoucímu práce Mgr. Milanovi Krbálkovi, Ph.D. - učiteli matematiky RNDr. Stanislavovi Mácovi - Fakultě jaderné a fyzikálně inženýrské ČVUT

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Měření zrychlení volného pádu

Měření zrychlení volného pádu Měření zrychlení volného pádu Online: http://www.sclpx.eu/lab1r.php?exp=10 Pro tento experiment si nejprve musíme vyrobit hřeben se dvěma zuby, které budou mít stejnou šířku (např. 1 cm) a budou umístěny

Více

Měření odporu ohmovou metodou

Měření odporu ohmovou metodou ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího

Více

Statistika. pro žáky 8. ročníku. úterý, 26. března 13

Statistika. pro žáky 8. ročníku. úterý, 26. března 13 Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

UKAZATELÉ VARIABILITY

UKAZATELÉ VARIABILITY UKAZATELÉ VARIABILITY VÝZNAM Porovnejte známky dvou studentek ze stejného předmětu: Studentka A: Studentka B: Oba soubory mají stejný rozsah hodnoty, ale liší se známky studentky A jsou vyrovnanější, jsou

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

František Hudek. květen 2012

František Hudek. květen 2012 VY_32_INOVACE_FH06 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek květen 2012 8. ročník

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a

POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a délky na sebe navazujících úseků s konstantním podélným

Více

MĚŘENÍ FYZIKÁLNÍCH VELIČIN. m = 15 kg. Porovnávání a měření. Soustava SI (zkratka z francouzského Le Système International d'unités)

MĚŘENÍ FYZIKÁLNÍCH VELIČIN. m = 15 kg. Porovnávání a měření. Soustava SI (zkratka z francouzského Le Système International d'unités) MĚŘENÍ FYZIKÁLNÍCH VELIČIN Porovnávání a měření Při zkoumání světa kolem nás porovnáváme různé vlastnosti těles např. barvu, tvar, délku, tvrdost, stlačitelnost, teplotu, hmotnost, objem,. Často se však

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

ZAPOJENÍ REZISTORŮ VEDLE SEBE

ZAPOJENÍ REZISTORŮ VEDLE SEBE ZAPOJENÍ REZISTORŮ VEDLE SEBE Vzdělávací předmět: Fyzika Tematický celek dle RVP: Elektromagnetické a světelné děje Tematická oblast: Elektrické jevy Cílová skupina: Žák 8. ročníku základní školy Cílem

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Experiment P-17 SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE CÍL EXPERIMENTU Studium základních vlastností magnetu. Sledování změny silového působení magnetického pole magnetu na vzdálenosti. MODULY A SENZORY PC

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

1.1.24 Skaláry a vektory

1.1.24 Skaláry a vektory 1.1.4 Skaláry a vektory Předpoklady: 113 Př. 1: Vyřeš následující příklady: a) Na stole je položeno závaží o hmotnosti kg. Na závaží působí gravitační síla Země o velikosti 0 N a tlaková síla od stolu

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků) Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

1. OBSAH, METODY A VÝZNAM FYZIKY -

1. OBSAH, METODY A VÝZNAM FYZIKY - IUVENTAS - SOUKROMÉ GYMNÁZIUM A STŘEDNÍ ODBORNÁ ŠKOLA 1. OBSAH, METODY A VÝZNAM FYZIKY - STUDIJNÍ TEXTY Frolíková Martina Augustynek Martin Adamec Ondřej OSTRAVA 2006 Budeme rádi, když nám jakékoliv případné

Více

Základní vzorce a funkce v tabulkovém procesoru

Základní vzorce a funkce v tabulkovém procesoru Základní vzorce a funkce v tabulkovém procesoru Na tabulkovém programu je asi nejzajímavější práce se vzorci a funkcemi. Když jednou nastavíte, jak se mají dané údaje zpracovávat (některé buňky sečíst,

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla Měření délky První jednotky délky Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla stopa asi 30 cm palec asi 2,5 cm loket (vídeňský) asi 0,75

Více

Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...

Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu... Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 6 _ Výpočet dráhy... 5 7 _ Výpočet času... 6 8 _ PL:

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

metodou Monte Carlo J. Matěna, Gymnázium Českolipská, Praha

metodou Monte Carlo J. Matěna, Gymnázium Českolipská, Praha Výpočet obsahu plošných obrazců metodou Monte Carlo J. Löwit, Gymnázium Českolipská, Praha jakub.lowit@gmail.com J. Matěna, Gymnázium Českolipská, Praha matenajakub@gmail.com J. Novotná, Gymnázium, Chomutov

Více

Měření zrychlení na nakloněné rovině

Měření zrychlení na nakloněné rovině Měření zrychlení na nakloněné rovině Online: http://www.sclpx.eu/lab1r.php?exp=5 Při návrhu tohoto experimentu jsme vyšli z jeho klasického pojetí uvedeného v [4]. Protože jsme se snažili optimalizovat

Více

7 Pravděpodobnostní modely úvod

7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod Břetislav Fajmon, UMAT FEKT, VUT Brno Nyní ve druhé polovině kursu bude obsahem odlišná matematická disciplína, která snad má s numerickými

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Měření magnetické indukce elektromagnetu

Měření magnetické indukce elektromagnetu Měření magnetické indukce elektromagnetu Online: http://www.sclpx.eu/lab3r.php?exp=1 V tomto experimentu jsme využili digitální kuchyňské váhy, pomocí kterých jsme určovali sílu, kterou elektromagnet působí

Více

Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:

Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+: Pracovní úkol 1. Změřte charakteristiku Geigerova-Müllerova detektoru pro záření gamma a u jednotlivých měření stanovte chybu a vyznačte ji do grafu. Určete délku a sklon plata v charakteristice detektoru

Více

ZAPOJENÍ REZISTORŮ ZA SEBOU

ZAPOJENÍ REZISTORŮ ZA SEBOU ZAPOJENÍ REZISTORŮ ZA SEBOU Vzdělávací předmět: Fyzika Tematický celek dle RVP: Elektromagnetické a světelné děje Tematická oblast: Elektrické jevy Cílová skupina: Žák 8. ročníku základní školy Cílem pokusu

Více

Audit bezpečnosti pozemních komunikací. Místo pro přecházení, silnice I/35, křižovatka se silnicí III/01873 u Hrachovce

Audit bezpečnosti pozemních komunikací. Místo pro přecházení, silnice I/35, křižovatka se silnicí III/01873 u Hrachovce Audit bezpečnosti pozemních komunikací Místo pro přecházení, silnice I/35, křižovatka se silnicí III/01873 u Hrachovce únor 2014 OBSAH Obsah... 2 1. ÚVOD... 3 1.1. Identifikace zhotovitele... 3 1.2. Obsah

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030. MS Excel

Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030. MS Excel Masarykovo gymnázium Příbor, příspěvková organizace Jičínská 528, Příbor Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030 MS Excel Metodický materiál pro základní

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

Měření hodnoty g z periody kmitů kyvadla

Měření hodnoty g z periody kmitů kyvadla Měření hodnoty g z periody kmitů kyvadla Online: http://www.sclpx.eu/lab2r.php?exp=8 Úvod Při určení hodnoty tíhové zrychlení z periody kmitů kyvadla o délce l vycházíme ze známého vztahu (2.4.1) pro periodu

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Obecné, centrální a normované momenty

Obecné, centrální a normované momenty Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí

Více

4 Viskoelasticita polymerů II - creep

4 Viskoelasticita polymerů II - creep 4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Průměr Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Co je to průměr # Průměrem se rozumí klasický aritmetický průměr sledovaných hodnot. Můžeme si pro

Více

Nápovědy k numerickému myšlení TSP MU

Nápovědy k numerickému myšlení TSP MU Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

Renáta Bednárová STATISTIKA PRO EKONOMY

Renáta Bednárová STATISTIKA PRO EKONOMY Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy

Více

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice

Více

4 Kriteriální matice a hodnocení variant

4 Kriteriální matice a hodnocení variant 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální

Více

Logaritmická rovnice

Logaritmická rovnice Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,

Více

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice ÚSTAV TECHNIK Y A ŘÍZENÍ V ÝROBY Ústav techniky a řízení výroby Univerzity J. E. Purkyně v Ústí nad Labem Na Okraji 11 Tel.: +42 475 285 511 96 Ústí nad Labem Fax: +42 475 285 566 Internet: www.utrv.ujep.cz

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

Zadání projektu Pohyb

Zadání projektu Pohyb Zadání projektu Pohyb Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 22. 9. Vlastní práce 3 vyučovací hodiny + výuka v TV Prezentace projektu 11. 10. Test a odevzdání portfólií

Více

Měření vzdáleností, určování azimutu, práce s buzolou.

Měření vzdáleností, určování azimutu, práce s buzolou. Měření vzdáleností, určování azimutu, práce s buzolou. Měření vzdáleností Odhadem Vzdálenost lze odhadnout pomocí rozlišení detailů na pozorovaných objektech. Přesnost odhadu závisí na viditelnosti předmětu

Více