ALGEBRA. Zapisky z prednasky. 1 Algebry, homomorsmy a kongruence

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ALGEBRA. Zapisky z prednasky. 1 Algebry, homomorsmy a kongruence"

Transkript

1 ALGEBRA Zapisky z prednasky 1 Algebry, homomorsmy a kongruence denice Necht' A je mnozina, pak o zobrazen : A N! A rekneme, ze je n-arn operace, n 2 N 0 terminologicka poznamka 0-arn operace: A 0! A, A 0 = f g, je to vlastne vyber prvku 1-arn operace - unarn 2-arn operace - binarn 3-arn operace - ternaln denice Necht' A je mnozina, i ; i 2 I a to i nekonecna; jsou (n i -arn) operace. Pak A( i j i 2 I) nazveme (universaln) algebrou. prklady N(+; ) Z(+; ; ) Q n f0g( ; =) <(+; ; ) <(+; ; p ) denice Necht' A je mnozina s n-arn operac a B A. Rekneme, ze B je uzavrena na operaci, pokud 8b 1 ; :::; b n 2 B plat, ze (b 1 ; :::; b n ) 2 B. Je-li A( i ; i 2 I) algebra a B A, pak rekneme, ze B je podalgebra A( i ; i 2 I), pokud je B uzavrena na vsechny i ; i 2 I prklady N(+; ) - k 2 B, potom kn = fknjn 2 Ng jsou podalgebry N(+; ) Overen: Necht' b 1 ; b 2 2 kn 1. b 1 + b 2 2 kn 2. b 1 b 2 2 kn Z(+; ; 0) ma podalgebry kz = fk rjr 2 Zg (a zadne jine). Je dulezite si rozmyslet uzavrenost na nularn operaci 0 1

2 Vektorovy prostor U(+; tjt 2 T; 0) nad telesem T t : U! U, u! u t W je podprostor U, W je podalgebra U(+; t; 0) A( i ji 2 I) je algebra, potom A je podalgebra A Pokud zadna operace algebry A nen nularn, potom ; je podalgebrou A skorodenice Je-li A( i ji 2 I) algebra a B jej podalgebra, pak i = i db ni : B ni! B - mame prirozene danou strukturu na B prklady Q(+; ), Z Q je podalgebra algebry Q(+; ) restrikce! Z(+; ) Necht' M n (T ) jsou ctvercove matice radu n nad telesem T. Vezmeme algebru M 2 (<)( ), potom diagonaln matice D(<)( ) tvor podalgebru M 2 (<)( ). poznamka Necht' A je mnozina s operac a necht' A j, j 2 J je system podmnozin A uzavrenych na. Pak T j2j A j je opet uzavrena na 2. Necht' A( i ji 2 I) je algebra a A j ; j 2 J jsou jej podalgebry. Pak T j2j A j je podalgebra 1. je n-arn operace 8j 2 j : (a 1 ; a 2 ; :::; a n ) 2 \ j2j A j A j Podle predpokladu (a 1 ; :::; a n ) 2 A j 8j ) (a 1 ; :::; a n ) 2 T A j 2. A j jsou uzavrena na i 8i 2 I; j 2 J Podle 1. je T j2j A j uzavrena na i 8i 2 I, tedy je uzavrena na vsechny operace na algebre A( i ji 2 I), a proto je T j2j A j podalgebra A( i ji 2 I) denice Necht' A a B jsou mnoziny s n-arn operac a f : A! B. Rekneme, ze f je slucitelne s, pokud 8a 1 ; a 2 ; :::; a n 2 A B (f(a 1 ); f(a 2 ); :::; f(a n )) = f ( A (a 1 ; :::; a n )) denice Rekneme, ze algebra A(i ji 2 I) a B( i ji 2 I) jsou stejneho typu pokud i na A i na B jsou stejne arity 8i 2 I 2

3 denice Necht' A( i ji 2 I) a B( i ji 2 I) jsou algebry stejneho typu. Pak zobrazen f : A! B je homorsmus, pokud je f slucitelna se vsemi i. poznamka Necht' A, B, C jsou mnoziny s n-arn operac, f : A! B, g : B! C jsou zobrazen slucitelna s. Pak g f : A! C je slucitelne s. Je-li f bijekce, potom f 1 je opet slucitelne s. 2. Necht' A( i ji 2 I), B( i ji 2 I), C( i ji 2 I) jsou algebry stejneho typu a f : A! B, g : B! C jsou homomorsmy. Pak g f : A! C je opet homomorsmus. Je-li navc f bijekce, pak f 1 je take homomorsmus. 1. Vezmeme a 1 ; ::::; a n 2 A g(f((a 1 ; :::; n ))) sluc: f s = g((f(a 1 ); :::; f(a n ))) = sluc: g s = (g(f(a 1 )); :::; g(f(a n ))) f bijekce... f 1 je zobrazen B! A, b 1 ; b 2 ; :::; b n 2 B a chceme dokazat f 1 ( B (b 1 ; :::; b n ))? = A (f 1 (b 1 ); :::; f 1 (b n )) f A Tedy vezmeme f 1 (b 1 ); :::; f 1 (b n ) def: = B f f 1 (b 1 ) ; :::; f f 1 (b n ) f 1 (b 1 ); :::; f 1 (b n ) = f 1 f A b 1 ; :::; f 1 (b n ) Podle radku pred tm se toto rovna f 1 ((b 1 ; :::; b n )) Tedy i inverzn zobrazen je slucitelne s. 2. Podle prvnho bodu je g f slucitelne s i 8i 2 I, tedy g f je homomor- smus. f 1 je podle bodu 1. slucitelne se vsemi i, a tedy je take homomorsmus. denice Jsou-li A( i ji 2 I) a B( i ji 2 I) algebry stejneho typu a f : A! B je bijektivn homomorsmus, pak mluvme o isomorsmu. A a B jsou isomorfn algebry, pokud mezi nimi existuje isomorsmus. poznamka Dve isomorfn algebry maj "stejne algebraicke vlastnosti" (tj, logicke operace, mnozinove operace a vlastnosti algeber) 3

4 poznamka Necht' A a B jsou mnoziny s operac a C A; D B jsou uzavrene na. Je-li f : A! B slucitelne s, pak f(c) je (opet) uzavrene na v B a f 1 (D) = fa 2 Ajf(a) 2 Dg je uzavrena na v A 2. Necht' A( i ji 2 I) a B( i ji 2 I) jsou algebry stejneho typu a C A, D B podalgebry prslusnych algeber. Je-li f : A! B homomorsmus, pak f(c) B a f 1 (D) A jsou podalgebry 1. je n-arn operace, je na ni f(c) uzavrena? b 1 ; ::; b n 2 f(c) 9a 1 ; :::; a n 2 C : f(a i ) = b i 8i 2 I (b 1 ; :::; b n ) = (f(a 1 ); :::; f(a n )) = f((a 1 ; :::; a n )) Vme, ze C je uzavrena na, tedy (a 1 ; :::; a n ) 2 C, f((a 1 ; :::; a n )) 2 f(c) Dale a 1 ; :::; a n 2 f 1 (D) f(a i ) 2 D Lez f((a 1 ; :::; a n )) v mnozine D? f((a 1 ; :::; a n )) = (f(a 1 ); :::; f(a n )) {z } 2D To mus z uzavrenosti D na lezet v D, tedy (a 1 ; :::; a n ) 2 f 1 (D) 2. stac aplikovat 1. na i 8i prklady 1. linearn zobrazen f : U! V, kde U; V jsou vektorove prostory nad telesem T, jsou homomorsmy algebry U(+; tjt 2 T ) a V (+; tjt 2 T ) 2. ctvercove matice nad telesem T - M n (T ). Determinant : M n (T )! T je homomorsmus algebry M n (T )( ) a T ( ) 3. n : Z! Z n : n (k) = k mod n. Pak n je homomorsmus algebry Z(+; ) do algebry Z n (+; ) denice Rekneme, ze je relace na mnozine A, pokud A A. Necht' je relace na A, potom = f(b; a) 2 A Aj(a; b) 2 g je opacna relace + = f(a; b) 2 A Aj9a 1 ; :::; a n 2 A : a 1 = a; a n = b; (a i ; a i+1 ) 2 i = 1; :::; n 1g je transitivn obal id = f(a; a) 2 A Aja 2 Ag je identita 4

5 denice Rekneme, ze relace je reexivn, pokud id symetricka, pokud transitivn, pokud + ekvivalence, pokud je reexivn, symetricka a transitivn relace. denice Necht' A je mnozina a je ekvivalence na A, pak mnozina A = = f[a] ja 2 Ag, kde [a] = fb 2 Aj(a; b) 2 g, nazyvame faktor A podle poznamka 1.4 rozklad. Necht' A je mnozina a je ekvivalence na A, pak A = tvor A = [ f[a] ja 2 Ag a 2 [a] - reexivita, ale ony se prekryvaj x 2 [a] \[b] ) (a; x) 2 ; (b; x) 2 g ) f(x; a) 2 ; (x; b) 2 g ) (a; b) 2 ; (b; a) 2 (a; b) 2, [b] = fy 2 Aj(b; y) 2 g 8y 2 [b] (a; y) 2 ) y 2 [a] tj. [b] [a] symetricky [a] [b], tedy [a] = [b]. Obsahuj-li 2 trdy spolecny prvek, potom splyvaj, jestlize neobsahuj ani jeden prvek, pak jsou disjunkntn poznamka 1.5 Necht' fb i ji 2 Ig je rozklad mnoziny A. Pak relace na A denovana predpisem (a; b) 2 def 9i 2 I : a; b 2 B i je ekvivalence a A = = fb i ji 2 Ig 1. je ekvivalence a 2 B i pro nejake i 2 I ) (a; a) 2 - reexivita (a; b) 2 ) 9i a; b 2 B i ) (b; a) 2 - symetrie (a; b) 2 &(b; c) 2 ) 9i; j a; b 2 B i &b; c 2 B j. Protoze to je disjunktn rozklad, B i = B j, a tedy a; c 2 B j - transitivita 5

6 2. Dokazeme A = fb i ji 2 Ig "" def: [a] a 2 B i, [a] = fb 2 Ajb 2 B i g = B i [a] B i "" B i [a] vezmu libovolny prvek a zjistm, ze to dela rozkladovou trdu denice Necht' f : A! B je zobrazen. Pak jadrem f nazveme relaci ker f danou predpisem (a 1 ; a 2 ) 2 ker f def f(a 1 ) = f(a 2 ). Je-li ekvivalence na mnozine A, pak o zobrazen : A! A = dane formul (a) = [a] rekneme, ze je to prirozena projekce podle poznamka 1.6 plat Necht' f : A! B je zobrazen a je ekvivalence na A. Pak 1. ker f je ekvivalence 2. f je proste, ker f = id 3. ker = 4. zobrazen g : A =! B s vlastnost g = f existuje prave tehdy, kdyz ker f 1. reexivita: f(a) = f(a) ) (a; a) 2 ker f symetrie: f(a 1 ) = f(a 2 ); f(a 2 ) = f(a 1 ), tj. (a 1 ; a 2 ) 2 ker f ) (a 2 ; a 1 ) 2 ker f transitivita: (a 1 ; a 2 ) 2 ker f ) f(a 1 ) = f(a 2 ) = f(a 3 ) ) (a 1 ; a 3 ) 2 ker f 2. a stejne tak opacne a 1 6= a 2 ) f(a 1 ) 6= f(a 2 ) ) (a 1 ; a 2 ) =2 ker f 6

7 3. (a 1 ; a 2 ) 2 ker, (a 1 ) {z } [a 1] = (a 2 ), (a {z } 1 ; a 2 ) 2 [a 2] Predpokladame existenci g : g = f, tj. 8a 2 A g (a) = f(a) {z } [a] ) g([a] ) = f(a) Predpokladejme a; b 2 ) [a] = [b]. Pak Tedy a, b lez v jadru f(a) = g ([a] ) = g ([b] ) = f(b) 4. ")" "(" Predpokladame ker f Denujeme Je tato denice korektn g ([a] ) = f(a) [a] = [b] ) (a; b) 2 ker f...prvky se slepuj podle denice jadra f(a) = f(b) Zrejme g = f g ([a] ) = f(a) = f(b) = g ([b] ) prklad Deterministicky algoritmus f, A je mnozina vstupnch hodnot, B je mnozina moznych vystupnch hodnot f : A f! B, Potom ker f je zcela prirozene denovana ekvivalence: ztotoznuje vstupy, ktera daj stejny vysledek denice Necht' je n-arn operace na A, je ekvivalence na A. Rekneme, ze je slucitelna s, pokud (a i ; b i ) 2 i = 1; :::; n ) (a 1 ; :::; a n )(b 1 ; :::; b n ) Je-li A( i ; i 2 I) algebra a je ekvivalence na A, pak je kongruence na A, pokud je slucitelna s i ; 8i 2 I poznamka Necht' A; B jsou mnoziny, je operace na A; B a f je zobrazen A! B slucitelne s, Pak ker f je slucitelna s 2. Necht' A; B jsou algebry stejneho typu a f je homomorsmus A! B. Potom ker f je kongruence 7

8 1. (a i ; b i ) 2 ker f ) f(a i ) = f(b i ) 8i = 1; :::; n f ((a 1 ; :::; a n )) = (f(a 1 ; :::; a n )) = = (f(b 1 ; :::; b n )) = f ((b 1 ; :::; b n )) tj. ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 ker f Podle poznamky 1.6(1.) je ker f ekvivalence 2. plyne z 1. VETA Necht' je ekvivalence na A, je operace na A. Pak je slucitelna s prave kdyz je slucitelna s 2. Necht' je ekvivalence na algebre A. Pak je kongruence, je homomorsmus denice k 1.8 operaci na A = Necht' A ke mnozina s ekvivalenc a relac. Denujeme ([a 1 ] ; :::; [a n ] ) = [(a 1 ; :::; a n )] Na mnozine A = denujeme stejnym zpusobem algebru stejneho typu jako na A za predpokladu, ze A je algebra. Koreknost denice [a 1 ] = [b 1 ] ; :::; [a n ] = [b n ] ) (a 1 ; b 1 ). (a n ; b n )! [(a 1 ; :::; a n )] = [(b 1 ; :::; b n )] neboli je slucitelne s, pro algebry je denice korektn prave tehdy, kdyz je kongruence. Dukaz vety 1.8 je slucitelna s, potom je dobre denovana na A =.??? Je : A! A = slucitelna s??? ")" ((a 1 ; :::; a n )) def = [(a 1 ; :::; a n )] = ([a 1 ] ; :::; [a n ] ) = ( (a 1 ); :::; (a n )) tj. je slucitelne s 8

9 "(" Je-li slucitelne s... ker =, potom je korektne denovano, tedy ker je slucitelne s ) je slucitelne s... a druhy bod se dokaze pouzitm prvnho bodu na vsechny operace algebry. denice Grupoidem nazveme algebru G( ) s binarn operac. Prvek e nazveme neutralnm prvkem grupoidu G( ), pokud e g = g e = g 8g 2 G Rekneme, ze algebra M( ; e) je monoid, pokud je asociativn binarn operace a e je neutraln prvek M( ) prklady X 6= ;...mnozina znaku, M(X) mnozina slov na abecede X operace x 1 x 2 :::x n y 1 :::y m = x 1 :::x n y 1 :::y m e je prazdne slovo Potom M(X)(; e) je monoid X 6= ;, T (X) = ff : X! Xjf zobrazeng, potom T (X)(; id X ) je monoid T -telesom M n (T )-ctvercove matice nad T. M n (T )( ; I n ) je monoid det : M n (T )! T je homomorsmus monoidu M n (T )( ; I n ) a T ( ; 1) Poznamka 1.9 Necht' G( ) je grupoid. Pak na G existuje nejvyse jeden neutraln prvek. Dukaz Potom Pro spor necht' f; g 2 G jsou 2 ruzne neutraln prvky. e = e f = f poznamka 1.10 Necht' M( ; e) je monoid, necht' a; b; c 2 M tak, ze e = a b = c a, pak b = c c = c e = c (a b) asoc: = (c a)b = e b = b denice Je-li M( ; 1) monoid, potom prvek m 1 nezveme inverznm prvkem, pokud m m 1 = m 1 m = 1. Prvek je invertibiln, existuje-li j nemu inverzn prvek. 9

10 prklady M(X) obsahuje pouze jeden invertibiln prvek, a to prazdne slovo. v T (X) jsou invertibiln prave bijekce X nekonecna... 9f 2 T (X) pro nej najdeme nejake g 2 T [x] : g f 2 Id, ale f nen invertibiln naprklad f : N! N n! 2n g : N! N n! d n 2 e g(f(x)) = Id, ale f(g(x)) nen na, protoze f nen na. denice Podmonoidem nazveme podalgebru monoidu M( ; 1) poznamka 1.11 Necht' M( ; 1), pak M mnozina vsech invertibilnch prvku tvor podmonoid, navc kazdy inverzn prvek k nejakemu invertibilnmu prvku je tez invertibiln Dukaz M = fm 2 Mj9n 2 M : n m = m n = 1g 1 1 = 1, tj. 1 je inverzn sama k sobe ) 1 2 M (uzavrenost na operaci "1") Necht' a; b 2 M, tj. 9c; d 2 M Tedy a c = c a = 1 b d = d b = 1 {z} a (a b) (d c) asoc: = a (b d) c = a 1 c = a c = 1 (d c) (a b) = d (c a) b = d b = 1 Tedy (a b) 2 M a tm jsme overili uzavrenost na m 2 M 9n n m = m n = 1 neboli m je inverznm prvkem pro n denice Rekneme, ze G( ; 1 ; 1) je grupa, pokud G( ; 1) je monoid a 1 je unarn operace inverznho prvku 1 : G! G 8g 2 G : g g 1 = g 1 g = 1 10

11 poznamka 1.12 Necht' M( ; 1) je monoid, M mnozina vsech invertibilnch prvku, d M : M M! M m d M n = m n m; n 2 M a 1 prirad kazdemu prvku z M inverz. Potom M ( d M ; 1 ; 1) je grupa. z denice grupy a poznamky 1.11 prklady T (x)(; Id) - monoid, podle 1.12, (T (x)) = S(x) vsechny bijekce, pak S(x)(; 1 ; Id) je grupa, specielne S(f1; :::; ng) jsou permutace na f1; :::; ng M n (T )( ; I n ) GL n (T )( ; 1 ; I n ) je grupa, kde GL n (T ) jsou invertibiln matice nad telesem T denice Necht' G( ; 1 ; 1) je grupa. Rekneme, ze H G je podgrupa grupy G( ; 1 ; 1), pokud H je podalgebra algebry G( ; 1 ; 1) Rekneme, ze podgrupa H je normaln, plat-li 8g 2 G 8h 2 H : g h g 1 2 H Rekneme, ze grupa je komutativn, je-li jej binarn operace komutativn poznamka 1.13 Vsechny podgrupy komutativn grupy jsou normaln Necht' G( ; 1 ; 1) je komutativn grupa, H je podgrupa G, g 2 G, h 2 H prklad g h g 1 komut: = g g 1 h = 1 h = h 2 H S (f1; 2; 3g) ( ; 1 ; Id) fid; (12)g je podgrupa... (13) (12) (13) {z } 1 = (23) =2 H, tj. H nen normaln (31) VETA 1.14 Necht' G( ; 1 ; 1) je grupa. Pak je kongruence na grupe G( ; 1 ; 1) prave tehdy, kdyz [1] je normaln podgrupa (g; h) 2, g 1 h 2 [1] 11

12 ")" [1] je podgrupa { (1; 1) 2 - reexivita ) 1 2 [1] - uzavrenost na 1. { h 2 [1] tzn. (1; h) 2, a protoze je slucitelna s 1 - uzavrenost na ; h 1 {z} 1 A 2 ) h 1 2 [1] { h 1 ; h 2 2 [1] tzn. (1; h 1 ) 2 a (1; h 2 ) 2, a protoze je slucitelna s, tedy ; h 1 h 2 A 2 ) h1 h 2 2 [1] - uzavrenost na {z} 1 [1] je normaln Necht' g 2 G, h 2 [1], tedy (1; h) 2. je ekvivalence, tedy (g; g) 2 a (g 1 ; g 1 ) 2 Vme, ze je slucitelna s, takze Tedy (g 1; g h) 2 &(g 1 g 1 ; g h g 1 ) 2 {z } 1 g h g 1 2 [1] (g; h) 2, (g 1 ; g 1 ). Protoze je slucitelne s (g 1 g {z } =1 ; g 1 h) 2 ) g 1 h 2 [1] g 1 h 2 [1] tj. (1; g 1 h) 2, ale je kongruence, takze (g; g) 2, a protoze je slucitelna s (g 1; g g 1 h) = (g; h) 2 H je normaln podgrupa : (g; h) 2 def tedy 1 2 H? ekvivalevnce? "(" g 1 h 2 H, kazda podgrupa je uzavrena na 0-arn operaci, 12

13 { (reexivita) g 1 g = 1 2 H ) (g; g) 2 ) g 1 h 2 H, pak (g 1 h) 1 2 H, kvuli uzavrenosti na 1. (g 1 h) 1 = h 1 (g 1 ) 1 = h 1 g def ) (h; g) 2 { (symertie) (g; h) 2 def { (transitivita) (g; h) 2 ; (h; r) 2 def ) g 1 h 2 H; h 1 r 2 H, a protoze H je uzavrena g 1 r = (g 1 h) (h 1 r) 2 H def ) (g; r) 2?slucitelnost se vsemi operacemi? 1 2 H { (1; 1) 2, nebot' je reexivn { (g; h) 2 {z } 1 def ) g 1 h 2 H H normaln{ ) g (g 1 h) g 1 = hg 1 = (h 1 ) 1 g 1 2 H Tedy je slucitelne s 1 { (g 1 ; h 1 ); (g 2 ; h 2 ) 2 ) (h 1 ; g 1 ) 2 ) (g 1 ; h 1 ) 2 def ) g 1 1 h 1 ; g 1 2 h 2 2 H H normaln{ ) h 2 g 1 2 = g 2 g 1 2 h 2 g H ) g 1 2 g 1 H normaln{ 1 h 1 h 2 g 1 2 g 2 2 H {z } ) (g 1 g 2 ) 1 (h 1 h 2 ) 2 H ) (g 1 g 2 ; h 1 h 2 ) 2 [1] = h 2 Hj(1; h) 2 (tj: h = 1 1 h 2 H) 1 znacen Necht' G( ; 1 ; 1) je grupa, H je kongruence, H = [1] H (toto jednoznacne denuje tu kongruenci). G = ( ; 1 ; [1] H ) se obvykle znac G =H ( ; 1 ; [1] H ) Prklady Z(+; ; 0) je komutativn grupa. nz...nsechny celocselne nasobky n! podgrupy Z(+; ; 0), ktere jsou podle 1.13 normaln. Regularn matice GL n (T )( ; 1 ; I n ) Normaln podgrupou jsou naprklad konstantne diagonaln matice (vsechny prvky na diagonale jsou stejne) nebo matice se stejnym determinantem S n...permutace na f1; :::; ng A n - sude permutace tvor normaln grupu G( ; 1 ; 1) je grupa, pak [1], G jsou trivialn normaln grupy. 13

14 2 Uzaverove systemy na algebre denice Rekneme, ze C P(A) je uzaverovy system na mnozine A, pokud (1) A 2 C (2) B C ) T B = T B2B B 2 C denice Je-li C uzaverovy system, pak je uzaver mnoziny B A cl C (B) = \ fc 2 CjB Cg denice Zobrazen : P(A)! P(A) nazveme uzaverovym operatorem, pokud (1) B (B) 8B A (2) ((B)) = (B) (3) B C A! (B) (C) (monotonie) prklad V...vektorovy prostor, V...vsechny podprostory V. V je uzaverovy system: X V cl V (X) = L poznamka Necht' A je mnozina s operac. Pak vsechny podmnoziny uzavrene na tvor uzaverovy system na A 2. Necht' A( i ji 2 I) je algebra. Potom vsechny podalgebry tvor uzaverovy system na A. 1. viz. poznamka 1.1, (2) z denice 2. vlastnost (1), A je trivialne uzavrena na VETA Necht' C je uzaverovy system na A. Pak uzaver cl C je uzaverovy operator. 2. Necht' : P(A)! P(A) je uzaverovy operator na mnozine A. Potom C = fc 2 P(A)j(C) = Cg je uzaverovy system a cl C = 14

15 1. C...uzaverovy system Nejdrve overme axiom (1) \ cl C (B) = fc 2 CjB Cg 8C:BC ) B cl C (B) (2) prvn inkluze je trivialn druha je jiz trosku tezs cl C (cl C (B)) (1) cl C (B) 2 C cl C (B) 2 fc 2 Cjcl C (B) Cg cl C (B) \ fc 2 Cjcl C (B) Cg = cl C (cl C (B)) B 1 B 2 A fc 2 CjB 1 Cg fc 2 CjB 2 Cg cl C (B 1 ) = \ fc 2 CjB 1 Cg \ fc 2 CjB 2 Cg = cl C (B 2 ) 2....uzaverovy operator Je C = fc 2 P(A)j(C) = Cg uzaverovy system? A (A) A ) A = (A) ) A 2 C C i 2 C i 2 I (C i ) = C i \ i2i C i \ i2i \ i2i C i! C i C j j 2 I ) \ i2i C i! (C j ) = C j 8j 2 I \ i2i \ i2i C i! C i! \ j2i C j = [ i2i ) \ C i 2 C tj. C je uzaverovy system 15

16 3. = cl C, dokazeme 8B (B) = cl C (B) 4.?(B) cl C (B)? ((B)) = (B) ) (B) 2 C B (B) ) cl C (B) cl C (B) = \ fc 2 PjC = (C) & B Cg B C ) (B) (C) = C ) (B) vsech takovych mnozin, tedy je i v jejich pruniku, a tedy (B) cl C (B) To jest (B) = cl C (B) 8B 2 A prklad Z(+; ; 0), n i 2 N, n i Z = fn i zjz 2 Zg. Potom \ i2z n i Z = gcd(n 1 ; :::; n k )Z Neboli lez v uzaverovem systemu vsech podgrup poznamka 2.3 P Vsechny uzaverove systemy na A tvor uzaverovy system na P(A) je trivialne uzaverovy system. C i - uzaverove systemy na A, i 2 I B \ C i ) B C i 8i 2 I Ci uz: system ) \ B 2 Ci 8i 2 I ) \ B 2 \ i2i C i poznamka 2.4 Necht' A B jsou uzaverove systemy na A a C D A. Pak cl B (C) cl A (D) 16

17 fb 2 BjC Bg fa 2 AjC Ag (tato inkluze plyne z velikosti mnozin) ) cl B (C) = \ fb 2 BjC Bg \ fa 2 AjC Ag = cl A (C) z denice a (2.2) ) cl A (C) cl A (D) cl B (C) cl A (C) cl A (D) poznamka 2.5 Vsechny reexivn (symetricke, transitivn) relace i ekvivalence na mnozine A tvor uzaverove systemy na A A R... vsechny reexivn relace na A S... vsechny symetricke relace na A T... vsechny transitivn relace na A E... vsechny ekvivalence na A E = R \ S \ E A A 2 E(R; S; T ), tm je overena prvn podmnka uzaveroveho systemu i 2 R i 2 S (a; b) 2 \ i2i i 2 T id i 8i 2 I ) id \ i2i i 2 R i ) (a; b) 2 i 8i symetrie ) (b; a) 2 i 8i 2 I ) (b; a) 2 \ i 2 S (a; b); (b; c) 2 \ i ) (a; b); (b; c) i 8i 2 I ) (a; c) 2 i ) (a; b) 2 \ i ) \ i 2 T E je prunik uzaverovych systemu a vsechny uzaverove systemy na mnozine tvor uzaverovy system. Proto E mus byt tez uzaverovy system. 17

18 poznamka Necht' je operace na A. Pak vsechny ekvivalence slucitelne s tvor uzaverovy system na A A 2. Necht' A( i ji 2 I) je algebra. Potom vsechny kongruence na A tvor uzaverovy system na A A 1. A A je trivialne slucitelne s Necht' i je ekvivalence slucitelne s, i 2 I. Potom T i je podle poznamky 2.5 tez ekvivalence Necht' a 1 ; :::; a n ; b 1 ; :::; b n 2 A a (a j ; b j ) 2 T i2i i 8j = 1; :::; n ) (a j ; b j ) 2 i 8i 2 I 8j = 1; :::; n ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 i 8i 2 I ) ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 \ i2i i neboli je slusitelna s ekvivelenc vzniklou prunikem ekvivalenc slucitelnych s 2. E i...mnozina vsech ekvivalenc slucitelnych s i tvor uzaverovy system. KOngruence je podle denice slucitelna se vsemi operacemi kongruence= T i2i E i - tedy dle poznamky 2.3 uzaverovy system Necht' je relace na A. Pokud je reexivn (resp. symet-, + je opet reexivn (resp. symetricka) poznamka 2.7 ricka), tak [ Necht' je reexivn id [ id + = f(a; b) 2 A Aja 0 ; :::; a n 2 A; a 0 = a; a n = b; (a i 1 ; a i ) 2 8i 2 1; :::; ng Necht' je symetricka = [ 1 (a; b) 2 + z denice a 0 ; :::; a n 2 A tz. a 0 = a, a n = b, (a i 1 ; a i ) ) ) (a i ; a i 1 ) 2 ) (a n ; a 0 )

19 VETA 2.8 Necht' je relace na A. Potom ( [ id) [ ( [ id) + = ( [ [ id) + je nejmens ekvivalence obsahujc relaci (E-ekvivalence na A, cl E () = ( [ [ id) + ) [ id je reexivn ( [ id) S ( [ id) je reexivn a symetricka relace := (( [ id) S ( [ id) ) + je ekvivalence Dale je treba dokazat jej minimalitu cl E () ( [ id) cl E [ id = cl E () ( [ [ id) ( [ id) 1 cl E () [ cl E ( ) = cl E () + cle () + = cl E () ( [ id) [ ( [ id) denice Necht' A je algebra, A je system vsech podalgeber, X A. Rekneme, ze X generuje (podalgebru) cl A (X) poznamka 2.9 Necht' A( i ji 2 I), B( i ji 2 I) jsou algebry stejneho typu. Necht' f; g : A! B jsou homomorsmy. Pokud X generuje A a f(x) = g(x) 8x 2 X, pak f = g Y = fy 2 Ajf(y) = g(y)g = X A( i ) f ( i (y 1 ; ::; y n )) = i (f(y 1 ); :::; f(y n ))) = i (g(y 1 ); :::; g(y n )) = g ( i (y 1 ; :::; y n )) ) Y je uzavrena na i 8i 2 I, tj. Y je podalgebra, X Y a X dle predpokladu generuje A, tedy Y = A 19

20 prklady Necht' Z(+; ; 0) je grupa a G(+; ; 0) algebra, obe jsou stejneho typu. Necht' f; g : Z! G jsou homomorsmy {z } n < f1g >= f1 + ::: + 1 jn 2 Ng [ f0g [ f( 1) + ::: + ( 1)jn 2 Ng = Z {z } n M(X) - vsechna slova nad psmeny z X, M(X)( ; e) G( ; e) je nejaky monoid Y G tak, ze < Y >= G < X >= M(X) f; g : M(X)! G( ; e) f(x) = g(x) 8x 2 X 2:9 ) f = g M(Y )( ; e) 9!' : M(Y )! G ' je homomorsmus ker ' - kongruence na M(Y ), '(y) 8y 2 Y 3 Isomorsmy algeber denice Necht' A, B jsou algebry stejneho typu. A ' B (A je isomorfn B), pokud 9f : A! B vzajemne jednoznacny homomorsmus (isomorsmus). poznamka 3.1 Necht' M je mnozina algebra, pak ' tvor ekvivalenci na M. z (1:2) Id : A! A je isomorsmus ) reexivita ', symetrie a transitivita denice Necht' je dvojice ekvivalenc na A. Pak = je relace na A = dana predpisem ([a] ; [b] ) 2 = (a; b) 2 poznamka 3.2 na A = Necht' jsou ekvivalence na A. Pak = je ekvivalence plyne okamzite z reexivity, symetrie a transitivity relace. poznamka 3.3 Necht' A je algebra, bud' kongruence na A obsahujc. Pak je kongruence na A prave tehdy, kdyz = je kongruence na algebre A = 20

21 ")" dle 3.1 = je ekvivalence na A = Necht' je libovolna n-arn operace na A a na A = a 1 ; :::; a n ; b 1 ; :::; b n 2 A ([a i ] ; [b i ] ) 2 = ([a 1 ] ; :::; [a n ] ) = [(a 1 ; :::; a n )] ([b 1 ] ; :::; [b n ] ) = [(b 1 ; :::; b n )] Vme, ze ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 a podle denice = (([a 1 ] ; :::; [a n ] ); ([b 1 ] ; :::; [b n ] )) 2 = "(" = je kongruence, je ekvivalence ma A. Dokazujeme, ze je slucitelna s Predpokladam a 1 ; :::; a n ; b 1 ; :::; b n (a i ; b i ) 2 ) ([a i ] ; [b i ] ) 2 = dale ( ([a 1 ] ; :::; [a n ] ) ; ([b 1 ] ; :::; [b n ] )) 2 = tedy dle denice ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 poznamka Necht' f : A! B je zobrazen slucitelne s operac, kde je operace na A a B stejne arity. Necht' je ekvivalence na A slucitelna s. Pak existuje zobrazen g : A =! B slucitelna s. Pak existuje zobrazen g : A =! B slucitelne s splnujc podmnku g = f, ker f Navc g je bijekce prave tehdy kdyz = ker f 2. Necht' f : A! B je homomorsmus algeber A, B stejneho typu a je kongruence na A. Pak existuje homomorsmus g : A =! B takovy, ze g = f, ker f Navc g je isomorsmus prave tehdy kdyz g je na a = ker f (veta o homomorsmu) 21

22 1. Podle poznamky zobrazen g : A =! B : g = f ) ker f, chceme dokazeme, ze g ([a] ) = g (a) = f(a) 8a 2 A ")" prmo z poznamky 1.6(4)) ker f "(" vme, ze 9g - zobrazen a chceme dokazat, ze je slucitelne s VETA veta o isomorsmu Necht' f : A! B je homomorsmus algeber stejneho typu. Pak f(a) je podalgebra B (tzn. je stejneho typu) a A =ker f ' f(a) f : A! f(a) je podalgebra B (viz poznamka 1.3) podle poznamky 3.3(2.) je = ker f 9g : A =ker f! f(a) podle 3.3(2) ker f = a f je na f(a), potom g je isomorsmus VETA 3.7 Necht' jsou dve kongruence na algebre A. Pak A === ' A = A! A = A! A = Vme, ze, ker = Z poznamky 3.3 9g : A =! A = g([a] ) = [a] je homomorsmus dle 3.3 ker g = f([a] ; [b] )j[a] = [b] g to je podle denice = g je na, a tedy dle 1. vety o isomorsmu A ==ker g ' A = a z toho hned plyne tvrzen 22

23 4 Svazy denice Rekneme, ze relace na M je usporadan, pokud je reexivn, transitivn a slabe antisymetricka, neboli prklady a b&b a ) a = b P(X) - potence na X, pak je usporadan Z a "standardni" na N relace "j" je taktez usporadan Id na M - extremn prpad denice Necht' je usporadan na M 6= ; a A M. Rekneme, ze m 2 A je nejvets (nejmens) prvek A, pokud 8a 2 A : a m (m a) denice Rekneme, ze sup (A) (resp. inf (A) 2 M) je supremum (resp. inmum) mnoziny A, pokud sup (A) je nejmens prvek z mnoziny fm 2 Mja m 8a 2 Ag. Inmum je nejvets doln zavora denice Rekneme, ze dvojice (M; ) je svaz, pak existuje sup (fa; bg) a inf (fa; bg) pro (kazda dve) a; b 2 M denice O svazu (M; ) rekneme, ze je uplny, existuje-li supremum i inmum pro kazdou (i nekonecnou) podmnozinu M denice Zavedeme binarn operace _ a ^ na M predpisem a; b 2 M a ^ b = inf (fa; bg) a _ b = sup (fa; bg) poznamka 4.1 8a; b; c 2 M: (S1) komutativita (S2) idempotence a ^ b = b ^ a a _ b = b _ a a ^ a = a = a _ a 23

24 (S3) asociativita (S4) absorbce a ^ (b ^ c) = (a ^ b) ^ c a _ (b _ c) = (a _ b) _ c a ^ (b _ a) = a a _ (b ^ a) = a (S1) a (S2) jsou trivialn (S3) stac dokazat, ze a ^ (b ^ c) =? inf (fa; b; cg) (= c ^ (a ^ b)) {z } =:i z denice i a; i b; i c i (b ^ c) i a ^ (b ^ c) a ^ (b ^ c) a a ^ (b ^ c) (b ^ c) b a ^ (b ^ c) (b ^ c) c slaba antisymetrie a ^ (b ^ c) i ) a ^ (b ^ c) = i Pujdeme-li z druhe strany, tak to taky vyjde, cmz mame existenci (S4) a ^ (b _ a) a a a (reexivita) a b _ a (horn odhad)) a a ^ (b _ a) Tedy ze slabe antisymetrie a = a ^ (b _ a) poznamka 4.2 Necht' M(^; _) je algebra s dvojic binarnch operac splnujcch podmnky (S1)-(S4). Denujeme na M relaci predpisem a b def: a _ b = b Pak (M; ) je svaz a a ^ b = inf (fa; bg) a a _ b = sup (fa; bg) 24

25 tm je dokazana reexivita (S1)a ^ a = a (S1)a _ a = a ) a a a b b c ' b = a _ b c = b _ c c = (a _ b) _ c S3 = a _ (b _ c) = a _ c {z } =c Neboli a c a tm je hotov transitivity a b; b a ) b = a _ b S1 = b _ a = a A to je presne slaba symetrie Neboli takto denovana relace tvor usporadan na M Dale a ^ b = a ^ (a _ b) S1 = a ^ (b _ a) S4 = a Touto rovnost je dokazan vztah a b, a = a ^ b Dale budeme predpokladat (c d ) c = c ^ d) (a ^ b) ^ a S1 = a ^ (a ^ b) S3 = (a ^ a) ^ b S2 = a ^ b tj. (a ^ b) a, pro (a ^ b) ^ a dostanu podobnym postupem a ^ b b, tj. a ^ b je dolnm odhadem pro fa; bg Vezmu c a; b, c = c ^ a c ^ (a ^ b) S3 = (c ^ a) ^ b = c ^ b = c ) c (a ^ b) To znamena, ze a ^ b je nejvets v mnozine dolnch odhadu, a ^ b pak mus byt inmum fa; bg. dusledek (S; )! S(^; _)! (S; ~) )= ~ S(^; _)! (S; )! S(^; _) ) ^ = ^; _ = ^ Dky tomu mame jednoznacnou korespondenci svazu a pruseku+sloucen. Dale budeme svazem nazyvat i algebry S(^; _) splnujcm (S1)-(S4). VETA 4.3 Kazdy uzaverovy system je uplnym svazem S(C; ), B C sup B [! [ = cl C ( B) = cl C B B2B inf B \ = B \ = B B2B 25

26 plyne ihned z vlastnost uzaveroveho systemu znacen Vezmu svaz (S; ). Rekneme, ze a pokryva b, a; b 2 (a < b), pokud b 6= a, b a, b c a ) b = c _ a = c: Necht' f resp. g 2 S je nejvets resp. nejmens prvek S, potom a resp. b nazveme atomem resp. koatomem svazu S, pokud f < a resp. b < e Hasseovym diagramem svazu nazvu orientovany graf s vrcholy S. Mezi a a b bude hrana vedouc od a k b, pokud a < b poznamka 4.4 Je-li S(^; _) svaz, pak S(_; ^) je take svaz Plyne hned z 4.1 a 4.2. poznamka 4.5 Necht' (S; ) je svaz a a; b; c 2 S. Pokud a c, potom a _ (b ^ c) (a _ b) ^ c a (a _ b) a a c, tedy a (a _ b) ^ c b ^ c b a _ b a b ^ c c, tedy (b ^ c) (a _ b) ^ c Tedy a _ (b ^ c) (a _ b) ^ c denice O svazu S(^; _) rekneme, ze je modularn, pokud plat 8a; b; c 2 S a c ) a _ (b ^ c) = (a _ b) ^ c denice Necht' je usporadan na A a na B. Rekneme, ze zobrazen f : A! B je monotonn, pokud a 1 a 2 ) f(a 1 ) f(a 2 ). poznamka 4.6 Necht' f : A! B je homomorsmus svazu A(^; _) a B(^; _). Potom f je monotonn. Necht' a 1 a 2 (, a 2 = a 1 _ a 2 ). f(a 2 ) = f(a 1 _ a a2 ) homomorfismus = f(a 1 ) _ f(a 2 ) Podle denice potom f(a 1 ) f(a 2 ) poznamka 4.7 Necht' f : A! B je bijektivn zobrazen dvou svazu (A; ) a (B; ). Pak f je isomorsmus svazu, f i f 1 jsou monotonn zobrazen 26

27 " ) " f; f 1 jsou isomorsmy, tedy podle poznamky 4.6 jsou obe zobrazen monotonn f; f 1 stac ukazat, ze f je slucitelne s _, zbytek uz plyne ze symetri. Necht' a; b 2 A. Necht' a a _ b, b a _ b. Zobrazen f je monotonn, takze mame ) f(a) _ f(b) {z } nejmens{ horn{ odhad f(a) f(a _ b) f(b) f(a _ b) Dale necht' d = f(a) _ f(b). f(a) d a f(b) d, vme ze f 1 jsou monotonn Opet pouzijeme monotonnost f Dky slabe symetrii, (1) a (2) Neboli f je slucitelne s _ f(a _ b) {z } (1) nejaky horn{ odhad a = f 1 (f(a)) f 1 (d) b = f 1 (f(b)) f 1 (d) a _ b f 1 (d) f(a _ b) f f 1 (d) = d = f(a) _ f(b)(2) f(a _ b) = f(a) _ f(b) " ( " poznamka 4.8 Necht' C je uzaverovy system lez v mnozine vsech ekvivalenc na A. Necht' N je nejaky podsystem P(A) a e 2 A tak, ze 2 C ) [e] 2 N N 2 N ) 9ekvivalence 2 C, ze N = [e] =rho [e] [e] pro ; 2 C ) Pak N je uzaverovy system (a tudz svaz) a zobrazen ' : C! N dane predpisem '() = [e] je svazovy isomorsmus. 27

28 A = [e] A A A A 2 C, A A je ekvivalence a to ta nejets, takze lez v C. A = faj(e; a) 2 A Ag 2 N (to plat z prvnho predpokladu) Necht' N i 2 N i 2 I, potom s vyuzitm druheho predpokladu 9 i 2 C N i = [e] i VETA 4.9 Nevht' G( ; 1 ; 1) je grupa, pak svaz vsech kongruenc na G je isomorfn svazu vsech normalnch podgrup G (s usporadanm ) \ i2i = \ i2i [e] i = fa 2 Aj(e; a) 2 i 8i 2 Ig = [e]ti2i i 2 N T i 2 C, nebot' C je uzaverovy system Je ' bijekce? dobre denovane zobrazen je to na 8N 2 N prirad [e] [e] ) - a stejne pro =; Tedy ano, ' je bijekce '; ' 1 je prmo z denice monotonn 4:7 ) ' je isomorsmus svazu. Dukaz Necht' C jsou vsechny kongruence na G 2 C ) [1] 2 N kde N jsou vsechny normaln podgrupy G Z 4.8 evidentne plat [1] [1], (a; b) 2 1:14 ) a b 1 2 [1] [1], (a; b) 2 Tedy z 4:8 je N uzaverovy system a ' je isomorsmus denice Necht' A; B jsou mnoziny a : P(A)! P(B), : P(B)! (P )(A). Rekneme, ze ; tvor Galiosovu korespondenci, plat-li 8A 1 ; A 2 2 P(A); B 1 ; B 2 2 P(B) (1) A 1 A 2 ) (A 1 ) (A 2 ) B 1 B 2 ) (B 1 ) (B 2 ) (2) A 1 (A 1 ); B 1 (B 1 ) 28

29 poznamka 4.10 Necht' : P(A)! P(B) a : P(B)! P(A) je Galoisova korespondence. Pak (respektive ) je uzaverovy operator na P(A) (resp. na P(B)). Necht' A resp B je uzaverovy sysem na A resp. B prslusny resp.. Dale (A) B, (B) A. Restrikce resp. na A resp B (oznacme je 0 : A! B, 0 : B! A) jsou vzajemne inverzn bijekce nejdrve dokazme, ze je uzaverovy operator ( symetricky) (2) ) A 1 (A 1 ) A 1 A 2 ) (A 1 ) (A 2 ) ) (A 1 ) (A 2 ) Tm je dokazana monotonie?(()()) (A 1 )? = (A 1 )? (A 1 ) (2) ((A 1 )) B 1 = (A 1 ) (2) ((A 1 )) (1 ) (A 1 ) (A 1 ) Tedy mame uzaverove systemy?(a) B? (symetricky (B) A) Necht' A 1 2 A ) (A 1 ) = A 1 A = fa 1 2 P(A)j(A 1 ) = A 1 g B = fb 1 2 P(B)j(B 1 ) = B 1 g ( ((A 1 ))) = ((A 1 )) = (A 1 ) ) (A 1 2 B) 0 0 : B! B? = Id B 0 0 : A! A? = Id A Jinymi slovy to znamena, ze 0 a 0 jsou bijekce a jsou k sobe vzajemne inverzn 5 Grupy 0 0 (B) 1 ) = (B 1 ) predpoklad = B 1 ) 0 0 = Id B denice G( ; 1 ; 1) je grupa, pokud je asociativ binarn operace, 1 je unarn a a 1 = a 1 a = 1 a 1 je neutraln prvek poznamka 5.1 Je-li f zobrazen dvou grup slucitelne s binarn operac, pak f je homomorsmus 29

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8].

Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8]. 1. Algebry, homomorfismy, kongruence Definice. Prokaždécelé n 0nazveme n-ární operací na množině Akaždé zobrazení A n A(číslo nbudemenazývataritounebočetnostíoperace).nechť (α i i I)jesystémoperacínamnožině

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4.

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4. Obsah 1. Základní algebraické pojmy........................ 2 2. Monoidové okruhy a některé další základní konstrukce.............. 4 3. Podgrupy a jiné podstruktury....................... 7 4. Kvocientní

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Matematické základy kryptografických algoritmů Eliška Ochodková

Matematické základy kryptografických algoritmů Eliška Ochodková Matematické základy kryptografických algoritmů Eliška Ochodková Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte Úvod Právě se díváte na moje řešení příkladů z X01AVT z roku 2007/2008. Zajisté obsahují spousty chyb a nedokáže je pochopit nikdo včetně autora, ale aspoň můžou posloužit jako menší návod k tomu, jak

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C,

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C, Výsledky operací jsou tedy popsány pomocí svých koeficientů algoritmicky. Na vstupu do algoritmu jsou koeficienty polynomů, které sčítáme resp. násobíme. S proměnnou x algoritmy nepracují. Polynomy Polynom

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Diskrétní matematika. Martin Kovár

Diskrétní matematika. Martin Kovár Diskrétní matematika Martin Kovár Tento text byl vytvořen v rámci realizace projektu CZ.1.07/2.2.00/15.0156, Inovace výuky matematických předmětů v rámci studijních programů FEKT a FIT VUT v Brně, realizovaném

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Matematické struktury

Matematické struktury . Texty k přednášce Matematické struktury Aleš Pultr Katedra aplikované matematiky a ITI, MFF University Karlovy, 2005 . 2 Obsah Místo úvodu Kapitola I : Množiny, relace, zobrazení 1. Množiny : dohoda

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě

Více

MASARYKOVA UNIVERZITA. Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ

MASARYKOVA UNIVERZITA. Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ MASARYKOVA UNIVERZITA Přírodovědecká fakulta Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ Bakalářská práce Vedoucí práce: prof. RNDr. Radan Kučera, DSc. Studijní program: matematika Studijní obor: obecná

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. TEORIE ČÍSEL MNOHOČLENŮ A MNOHOČLENY V TEORII ČÍSEL Jakub Opršal Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Algoritmy okolo teorie čísel

Algoritmy okolo teorie čísel Algoritmy okolo teorie čísel Martin Mareš mj@ucw.cz, 22. 1. 2011 Úvodem Tento textík rozebírá několik základních algoritmických problémů souvisících s teorií čísel: počítání největších společných dělitelů

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Algoritmy okolo teorie čísel

Algoritmy okolo teorie čísel Úvodem Algoritmy okolo teorie čísel Martin Mareš mj@ucw.cz Tento textík rozebírá několik základních algoritmických problémů souvisících s teorií čísel: Notace. počítání největších společných dělitelů řešení

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor 2 Předmluva (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor Výpočetní technika na Elektrotechnické fakultě ČVUT. Jak název napovídá, hlavním cílem

Více

5. ročník, 2015 / 2016 Mezinárodní korespondeční seminář iks

5. ročník, 2015 / 2016 Mezinárodní korespondeční seminář iks Řešení 1. série Úloha N1. Existuje nekonečná posloupnost přirozených čísel a 1, a 2,... taková, že a i a a j jsou nesoudělná právě když i j = 1? Řešení. Označme {r i } posloupnost všech prvočísel seřazených

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

UDBS Cvičení 10 Funkční závislosti

UDBS Cvičení 10 Funkční závislosti UDBS Cvičení 10 Funkční závislosti Ing. Miroslav Valečko Zimní semestr 2014/2015 25. 11. 2014 Návrh schématu databáze Existuje mnoho způsobů, jak navrhnout schéma databáze Některá jsou lepší, jiná zase

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Přírodovědecká fakulta Metody řešení diofantických rovnic STUDIJNÍ TEXT Vypracoval: Jan Steinsdörfer Ústí nad Labem 2015 Obsah Úvod 2 1 Vznik diofantických

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Letem světem s aerobikem v Podolí u Brna aneb jak prožila den Kateřina Křístková - lektorka z Ostravy

Letem světem s aerobikem v Podolí u Brna aneb jak prožila den Kateřina Křístková - lektorka z Ostravy L b P B b j ž Kř Kř - O S x DEN ý žů b b 2. bř, b ý. Přb ý, b ů, ř, ý ř, g úů, b x w,, ý, j Sb b ý ů, ý j. A Z Sb j š j b, b j, ů g, ý ů x. Z ž žj x řš j. A wb Z fb j j 2. 3. 2013 P B L b. O ř ý : K Z?

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi HPSim PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ 1962 - Carl Adam Petri formalismus pro popis souběžných synchronních distribučních systémů Modelování Petriho sítěmi Grafický popis a analýza systémů, ve kterých

Více

Reziduovaná zobrazení

Reziduovaná zobrazení Reziduovaná zobrazení Irina Perfilieva Irina.Perfilieva@osu.cz 1. března 2015 Outline 1 Reziduované zobrazení 2 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce.

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce. Hledání kořenů Úloha: Pro danou funkci f(x) máme najít číslo r tak, aby f(r) = 0. Pozor, počítač totiž kořen nepozná! Má jistou přesnost výpočtu δ > 0 a prohlásí f(r) = 0 pokaždé, když f(x) < δ. Není ovšem

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru J s m e j e d i n ý s l e v o v ý s e r v e r B E Z P R O V I Z E s v o u c h e r y p r o u ž i v a t e l e Z D A R M A! Z í s k e j t e n o v é z á k a z n í kzy v! i d i t e l n t e s e n a i n t e r!

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3. Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

! "#" $ % % &$ ' ( # )

! # $ % % &$ ' ( # ) "#"$%% &$'(# ) "# $ %& ' "*+ ", -.-/% ", ) 0"/-/% 1 1"234/ 5" 5 "#) 0 6",7## 5 8"3/ /. 0 "%#) #9 10 ",. :% ; /% # /;.)9).% # #) =? /#) ;/ " @A : "#" ) A% 3?>#B#: @C3 55516

Více

REDOMA s.r.o., 17. listopadu 338, Děčín, Telefon 412 513 460, www.redoma.cz, redoma@redoma.cz KOMPLETNÍ MALOOBCHODNÍ CENÍK (bez DPH), LEDEN 2013

REDOMA s.r.o., 17. listopadu 338, Děčín, Telefon 412 513 460, www.redoma.cz, redoma@redoma.cz KOMPLETNÍ MALOOBCHODNÍ CENÍK (bez DPH), LEDEN 2013 REDOMA s.r.o., 17. listopadu 338, Děčín, Telefon 412 513 460, www.redoma.cz, redoma@redoma.cz KOMPLETNÍ MALOOBCHODNÍ CENÍK (bez DPH), LEDEN 2013 # Obj.číslo Název zboží Cena MJ Sortiment LTD 1 D408215

Více

ť Á ČÍ Á ť ť Í Á Í Í ú ť Ů Ů ú ť Ě Ů Ž ť ť Ů Ů Ů Á ť Í Ó Á Ý ň Č Ě Ó Ž ň ť ú ň ť Ě Í Í Í Á Ý ť Í Á Ž Ů ť Ů Ž Ě ť ť ú ť ť ť Ž Ě Ě ť Ů Ů Ě Ů Ě Ž ť Ě Ě Ě Ó Í Ď Ó ť Ě Ě Í Ý Ě Ů Ó Ů ť ť ť É Ž Š Š Š Ž Č Š Š

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

J. Zendulka: Databázové systémy 4 Relační model dat 1

J. Zendulka: Databázové systémy 4 Relační model dat 1 4. Relační model dat 4.1. Relační struktura dat... 3 4.2. Integritní pravidla v relačním modelu... 9 4.2.1. Primární klíč... 9 4.2.2. Cizí klíč... 11 4.2.3. Relační schéma databáze... 13 4.3. Relační algebra...

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

1 Úvod - jazyk matematiky 2 1.1 Co je to matematika... 2 1.2 Co je algebra... 3 1.3 Jazyk matematiky... 6

1 Úvod - jazyk matematiky 2 1.1 Co je to matematika... 2 1.2 Co je algebra... 3 1.3 Jazyk matematiky... 6 Obsah 1 Úvod - jazyk matematiky 2 11 Co je to matematika 2 12 Co je algebra 3 13 Jazyk matematiky 6 2 Polynomy 12 21 Co to je polynom? 12 22 Operace s polynomy 13 23 Hornerovo schema 20 24 Kořeny polynomu

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více