ALGEBRA. Zapisky z prednasky. 1 Algebry, homomorsmy a kongruence

Rozměr: px
Začít zobrazení ze stránky:

Download "ALGEBRA. Zapisky z prednasky. 1 Algebry, homomorsmy a kongruence"

Transkript

1 ALGEBRA Zapisky z prednasky 1 Algebry, homomorsmy a kongruence denice Necht' A je mnozina, pak o zobrazen : A N! A rekneme, ze je n-arn operace, n 2 N 0 terminologicka poznamka 0-arn operace: A 0! A, A 0 = f g, je to vlastne vyber prvku 1-arn operace - unarn 2-arn operace - binarn 3-arn operace - ternaln denice Necht' A je mnozina, i ; i 2 I a to i nekonecna; jsou (n i -arn) operace. Pak A( i j i 2 I) nazveme (universaln) algebrou. prklady N(+; ) Z(+; ; ) Q n f0g( ; =) <(+; ; ) <(+; ; p ) denice Necht' A je mnozina s n-arn operac a B A. Rekneme, ze B je uzavrena na operaci, pokud 8b 1 ; :::; b n 2 B plat, ze (b 1 ; :::; b n ) 2 B. Je-li A( i ; i 2 I) algebra a B A, pak rekneme, ze B je podalgebra A( i ; i 2 I), pokud je B uzavrena na vsechny i ; i 2 I prklady N(+; ) - k 2 B, potom kn = fknjn 2 Ng jsou podalgebry N(+; ) Overen: Necht' b 1 ; b 2 2 kn 1. b 1 + b 2 2 kn 2. b 1 b 2 2 kn Z(+; ; 0) ma podalgebry kz = fk rjr 2 Zg (a zadne jine). Je dulezite si rozmyslet uzavrenost na nularn operaci 0 1

2 Vektorovy prostor U(+; tjt 2 T; 0) nad telesem T t : U! U, u! u t W je podprostor U, W je podalgebra U(+; t; 0) A( i ji 2 I) je algebra, potom A je podalgebra A Pokud zadna operace algebry A nen nularn, potom ; je podalgebrou A skorodenice Je-li A( i ji 2 I) algebra a B jej podalgebra, pak i = i db ni : B ni! B - mame prirozene danou strukturu na B prklady Q(+; ), Z Q je podalgebra algebry Q(+; ) restrikce! Z(+; ) Necht' M n (T ) jsou ctvercove matice radu n nad telesem T. Vezmeme algebru M 2 (<)( ), potom diagonaln matice D(<)( ) tvor podalgebru M 2 (<)( ). poznamka Necht' A je mnozina s operac a necht' A j, j 2 J je system podmnozin A uzavrenych na. Pak T j2j A j je opet uzavrena na 2. Necht' A( i ji 2 I) je algebra a A j ; j 2 J jsou jej podalgebry. Pak T j2j A j je podalgebra 1. je n-arn operace 8j 2 j : (a 1 ; a 2 ; :::; a n ) 2 \ j2j A j A j Podle predpokladu (a 1 ; :::; a n ) 2 A j 8j ) (a 1 ; :::; a n ) 2 T A j 2. A j jsou uzavrena na i 8i 2 I; j 2 J Podle 1. je T j2j A j uzavrena na i 8i 2 I, tedy je uzavrena na vsechny operace na algebre A( i ji 2 I), a proto je T j2j A j podalgebra A( i ji 2 I) denice Necht' A a B jsou mnoziny s n-arn operac a f : A! B. Rekneme, ze f je slucitelne s, pokud 8a 1 ; a 2 ; :::; a n 2 A B (f(a 1 ); f(a 2 ); :::; f(a n )) = f ( A (a 1 ; :::; a n )) denice Rekneme, ze algebra A(i ji 2 I) a B( i ji 2 I) jsou stejneho typu pokud i na A i na B jsou stejne arity 8i 2 I 2

3 denice Necht' A( i ji 2 I) a B( i ji 2 I) jsou algebry stejneho typu. Pak zobrazen f : A! B je homorsmus, pokud je f slucitelna se vsemi i. poznamka Necht' A, B, C jsou mnoziny s n-arn operac, f : A! B, g : B! C jsou zobrazen slucitelna s. Pak g f : A! C je slucitelne s. Je-li f bijekce, potom f 1 je opet slucitelne s. 2. Necht' A( i ji 2 I), B( i ji 2 I), C( i ji 2 I) jsou algebry stejneho typu a f : A! B, g : B! C jsou homomorsmy. Pak g f : A! C je opet homomorsmus. Je-li navc f bijekce, pak f 1 je take homomorsmus. 1. Vezmeme a 1 ; ::::; a n 2 A g(f((a 1 ; :::; n ))) sluc: f s = g((f(a 1 ); :::; f(a n ))) = sluc: g s = (g(f(a 1 )); :::; g(f(a n ))) f bijekce... f 1 je zobrazen B! A, b 1 ; b 2 ; :::; b n 2 B a chceme dokazat f 1 ( B (b 1 ; :::; b n ))? = A (f 1 (b 1 ); :::; f 1 (b n )) f A Tedy vezmeme f 1 (b 1 ); :::; f 1 (b n ) def: = B f f 1 (b 1 ) ; :::; f f 1 (b n ) f 1 (b 1 ); :::; f 1 (b n ) = f 1 f A b 1 ; :::; f 1 (b n ) Podle radku pred tm se toto rovna f 1 ((b 1 ; :::; b n )) Tedy i inverzn zobrazen je slucitelne s. 2. Podle prvnho bodu je g f slucitelne s i 8i 2 I, tedy g f je homomor- smus. f 1 je podle bodu 1. slucitelne se vsemi i, a tedy je take homomorsmus. denice Jsou-li A( i ji 2 I) a B( i ji 2 I) algebry stejneho typu a f : A! B je bijektivn homomorsmus, pak mluvme o isomorsmu. A a B jsou isomorfn algebry, pokud mezi nimi existuje isomorsmus. poznamka Dve isomorfn algebry maj "stejne algebraicke vlastnosti" (tj, logicke operace, mnozinove operace a vlastnosti algeber) 3

4 poznamka Necht' A a B jsou mnoziny s operac a C A; D B jsou uzavrene na. Je-li f : A! B slucitelne s, pak f(c) je (opet) uzavrene na v B a f 1 (D) = fa 2 Ajf(a) 2 Dg je uzavrena na v A 2. Necht' A( i ji 2 I) a B( i ji 2 I) jsou algebry stejneho typu a C A, D B podalgebry prslusnych algeber. Je-li f : A! B homomorsmus, pak f(c) B a f 1 (D) A jsou podalgebry 1. je n-arn operace, je na ni f(c) uzavrena? b 1 ; ::; b n 2 f(c) 9a 1 ; :::; a n 2 C : f(a i ) = b i 8i 2 I (b 1 ; :::; b n ) = (f(a 1 ); :::; f(a n )) = f((a 1 ; :::; a n )) Vme, ze C je uzavrena na, tedy (a 1 ; :::; a n ) 2 C, f((a 1 ; :::; a n )) 2 f(c) Dale a 1 ; :::; a n 2 f 1 (D) f(a i ) 2 D Lez f((a 1 ; :::; a n )) v mnozine D? f((a 1 ; :::; a n )) = (f(a 1 ); :::; f(a n )) {z } 2D To mus z uzavrenosti D na lezet v D, tedy (a 1 ; :::; a n ) 2 f 1 (D) 2. stac aplikovat 1. na i 8i prklady 1. linearn zobrazen f : U! V, kde U; V jsou vektorove prostory nad telesem T, jsou homomorsmy algebry U(+; tjt 2 T ) a V (+; tjt 2 T ) 2. ctvercove matice nad telesem T - M n (T ). Determinant : M n (T )! T je homomorsmus algebry M n (T )( ) a T ( ) 3. n : Z! Z n : n (k) = k mod n. Pak n je homomorsmus algebry Z(+; ) do algebry Z n (+; ) denice Rekneme, ze je relace na mnozine A, pokud A A. Necht' je relace na A, potom = f(b; a) 2 A Aj(a; b) 2 g je opacna relace + = f(a; b) 2 A Aj9a 1 ; :::; a n 2 A : a 1 = a; a n = b; (a i ; a i+1 ) 2 i = 1; :::; n 1g je transitivn obal id = f(a; a) 2 A Aja 2 Ag je identita 4

5 denice Rekneme, ze relace je reexivn, pokud id symetricka, pokud transitivn, pokud + ekvivalence, pokud je reexivn, symetricka a transitivn relace. denice Necht' A je mnozina a je ekvivalence na A, pak mnozina A = = f[a] ja 2 Ag, kde [a] = fb 2 Aj(a; b) 2 g, nazyvame faktor A podle poznamka 1.4 rozklad. Necht' A je mnozina a je ekvivalence na A, pak A = tvor A = [ f[a] ja 2 Ag a 2 [a] - reexivita, ale ony se prekryvaj x 2 [a] \[b] ) (a; x) 2 ; (b; x) 2 g ) f(x; a) 2 ; (x; b) 2 g ) (a; b) 2 ; (b; a) 2 (a; b) 2, [b] = fy 2 Aj(b; y) 2 g 8y 2 [b] (a; y) 2 ) y 2 [a] tj. [b] [a] symetricky [a] [b], tedy [a] = [b]. Obsahuj-li 2 trdy spolecny prvek, potom splyvaj, jestlize neobsahuj ani jeden prvek, pak jsou disjunkntn poznamka 1.5 Necht' fb i ji 2 Ig je rozklad mnoziny A. Pak relace na A denovana predpisem (a; b) 2 def 9i 2 I : a; b 2 B i je ekvivalence a A = = fb i ji 2 Ig 1. je ekvivalence a 2 B i pro nejake i 2 I ) (a; a) 2 - reexivita (a; b) 2 ) 9i a; b 2 B i ) (b; a) 2 - symetrie (a; b) 2 &(b; c) 2 ) 9i; j a; b 2 B i &b; c 2 B j. Protoze to je disjunktn rozklad, B i = B j, a tedy a; c 2 B j - transitivita 5

6 2. Dokazeme A = fb i ji 2 Ig "" def: [a] a 2 B i, [a] = fb 2 Ajb 2 B i g = B i [a] B i "" B i [a] vezmu libovolny prvek a zjistm, ze to dela rozkladovou trdu denice Necht' f : A! B je zobrazen. Pak jadrem f nazveme relaci ker f danou predpisem (a 1 ; a 2 ) 2 ker f def f(a 1 ) = f(a 2 ). Je-li ekvivalence na mnozine A, pak o zobrazen : A! A = dane formul (a) = [a] rekneme, ze je to prirozena projekce podle poznamka 1.6 plat Necht' f : A! B je zobrazen a je ekvivalence na A. Pak 1. ker f je ekvivalence 2. f je proste, ker f = id 3. ker = 4. zobrazen g : A =! B s vlastnost g = f existuje prave tehdy, kdyz ker f 1. reexivita: f(a) = f(a) ) (a; a) 2 ker f symetrie: f(a 1 ) = f(a 2 ); f(a 2 ) = f(a 1 ), tj. (a 1 ; a 2 ) 2 ker f ) (a 2 ; a 1 ) 2 ker f transitivita: (a 1 ; a 2 ) 2 ker f ) f(a 1 ) = f(a 2 ) = f(a 3 ) ) (a 1 ; a 3 ) 2 ker f 2. a stejne tak opacne a 1 6= a 2 ) f(a 1 ) 6= f(a 2 ) ) (a 1 ; a 2 ) =2 ker f 6

7 3. (a 1 ; a 2 ) 2 ker, (a 1 ) {z } [a 1] = (a 2 ), (a {z } 1 ; a 2 ) 2 [a 2] Predpokladame existenci g : g = f, tj. 8a 2 A g (a) = f(a) {z } [a] ) g([a] ) = f(a) Predpokladejme a; b 2 ) [a] = [b]. Pak Tedy a, b lez v jadru f(a) = g ([a] ) = g ([b] ) = f(b) 4. ")" "(" Predpokladame ker f Denujeme Je tato denice korektn g ([a] ) = f(a) [a] = [b] ) (a; b) 2 ker f...prvky se slepuj podle denice jadra f(a) = f(b) Zrejme g = f g ([a] ) = f(a) = f(b) = g ([b] ) prklad Deterministicky algoritmus f, A je mnozina vstupnch hodnot, B je mnozina moznych vystupnch hodnot f : A f! B, Potom ker f je zcela prirozene denovana ekvivalence: ztotoznuje vstupy, ktera daj stejny vysledek denice Necht' je n-arn operace na A, je ekvivalence na A. Rekneme, ze je slucitelna s, pokud (a i ; b i ) 2 i = 1; :::; n ) (a 1 ; :::; a n )(b 1 ; :::; b n ) Je-li A( i ; i 2 I) algebra a je ekvivalence na A, pak je kongruence na A, pokud je slucitelna s i ; 8i 2 I poznamka Necht' A; B jsou mnoziny, je operace na A; B a f je zobrazen A! B slucitelne s, Pak ker f je slucitelna s 2. Necht' A; B jsou algebry stejneho typu a f je homomorsmus A! B. Potom ker f je kongruence 7

8 1. (a i ; b i ) 2 ker f ) f(a i ) = f(b i ) 8i = 1; :::; n f ((a 1 ; :::; a n )) = (f(a 1 ; :::; a n )) = = (f(b 1 ; :::; b n )) = f ((b 1 ; :::; b n )) tj. ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 ker f Podle poznamky 1.6(1.) je ker f ekvivalence 2. plyne z 1. VETA Necht' je ekvivalence na A, je operace na A. Pak je slucitelna s prave kdyz je slucitelna s 2. Necht' je ekvivalence na algebre A. Pak je kongruence, je homomorsmus denice k 1.8 operaci na A = Necht' A ke mnozina s ekvivalenc a relac. Denujeme ([a 1 ] ; :::; [a n ] ) = [(a 1 ; :::; a n )] Na mnozine A = denujeme stejnym zpusobem algebru stejneho typu jako na A za predpokladu, ze A je algebra. Koreknost denice [a 1 ] = [b 1 ] ; :::; [a n ] = [b n ] ) (a 1 ; b 1 ). (a n ; b n )! [(a 1 ; :::; a n )] = [(b 1 ; :::; b n )] neboli je slucitelne s, pro algebry je denice korektn prave tehdy, kdyz je kongruence. Dukaz vety 1.8 je slucitelna s, potom je dobre denovana na A =.??? Je : A! A = slucitelna s??? ")" ((a 1 ; :::; a n )) def = [(a 1 ; :::; a n )] = ([a 1 ] ; :::; [a n ] ) = ( (a 1 ); :::; (a n )) tj. je slucitelne s 8

9 "(" Je-li slucitelne s... ker =, potom je korektne denovano, tedy ker je slucitelne s ) je slucitelne s... a druhy bod se dokaze pouzitm prvnho bodu na vsechny operace algebry. denice Grupoidem nazveme algebru G( ) s binarn operac. Prvek e nazveme neutralnm prvkem grupoidu G( ), pokud e g = g e = g 8g 2 G Rekneme, ze algebra M( ; e) je monoid, pokud je asociativn binarn operace a e je neutraln prvek M( ) prklady X 6= ;...mnozina znaku, M(X) mnozina slov na abecede X operace x 1 x 2 :::x n y 1 :::y m = x 1 :::x n y 1 :::y m e je prazdne slovo Potom M(X)(; e) je monoid X 6= ;, T (X) = ff : X! Xjf zobrazeng, potom T (X)(; id X ) je monoid T -telesom M n (T )-ctvercove matice nad T. M n (T )( ; I n ) je monoid det : M n (T )! T je homomorsmus monoidu M n (T )( ; I n ) a T ( ; 1) Poznamka 1.9 Necht' G( ) je grupoid. Pak na G existuje nejvyse jeden neutraln prvek. Dukaz Potom Pro spor necht' f; g 2 G jsou 2 ruzne neutraln prvky. e = e f = f poznamka 1.10 Necht' M( ; e) je monoid, necht' a; b; c 2 M tak, ze e = a b = c a, pak b = c c = c e = c (a b) asoc: = (c a)b = e b = b denice Je-li M( ; 1) monoid, potom prvek m 1 nezveme inverznm prvkem, pokud m m 1 = m 1 m = 1. Prvek je invertibiln, existuje-li j nemu inverzn prvek. 9

10 prklady M(X) obsahuje pouze jeden invertibiln prvek, a to prazdne slovo. v T (X) jsou invertibiln prave bijekce X nekonecna... 9f 2 T (X) pro nej najdeme nejake g 2 T [x] : g f 2 Id, ale f nen invertibiln naprklad f : N! N n! 2n g : N! N n! d n 2 e g(f(x)) = Id, ale f(g(x)) nen na, protoze f nen na. denice Podmonoidem nazveme podalgebru monoidu M( ; 1) poznamka 1.11 Necht' M( ; 1), pak M mnozina vsech invertibilnch prvku tvor podmonoid, navc kazdy inverzn prvek k nejakemu invertibilnmu prvku je tez invertibiln Dukaz M = fm 2 Mj9n 2 M : n m = m n = 1g 1 1 = 1, tj. 1 je inverzn sama k sobe ) 1 2 M (uzavrenost na operaci "1") Necht' a; b 2 M, tj. 9c; d 2 M Tedy a c = c a = 1 b d = d b = 1 {z} a (a b) (d c) asoc: = a (b d) c = a 1 c = a c = 1 (d c) (a b) = d (c a) b = d b = 1 Tedy (a b) 2 M a tm jsme overili uzavrenost na m 2 M 9n n m = m n = 1 neboli m je inverznm prvkem pro n denice Rekneme, ze G( ; 1 ; 1) je grupa, pokud G( ; 1) je monoid a 1 je unarn operace inverznho prvku 1 : G! G 8g 2 G : g g 1 = g 1 g = 1 10

11 poznamka 1.12 Necht' M( ; 1) je monoid, M mnozina vsech invertibilnch prvku, d M : M M! M m d M n = m n m; n 2 M a 1 prirad kazdemu prvku z M inverz. Potom M ( d M ; 1 ; 1) je grupa. z denice grupy a poznamky 1.11 prklady T (x)(; Id) - monoid, podle 1.12, (T (x)) = S(x) vsechny bijekce, pak S(x)(; 1 ; Id) je grupa, specielne S(f1; :::; ng) jsou permutace na f1; :::; ng M n (T )( ; I n ) GL n (T )( ; 1 ; I n ) je grupa, kde GL n (T ) jsou invertibiln matice nad telesem T denice Necht' G( ; 1 ; 1) je grupa. Rekneme, ze H G je podgrupa grupy G( ; 1 ; 1), pokud H je podalgebra algebry G( ; 1 ; 1) Rekneme, ze podgrupa H je normaln, plat-li 8g 2 G 8h 2 H : g h g 1 2 H Rekneme, ze grupa je komutativn, je-li jej binarn operace komutativn poznamka 1.13 Vsechny podgrupy komutativn grupy jsou normaln Necht' G( ; 1 ; 1) je komutativn grupa, H je podgrupa G, g 2 G, h 2 H prklad g h g 1 komut: = g g 1 h = 1 h = h 2 H S (f1; 2; 3g) ( ; 1 ; Id) fid; (12)g je podgrupa... (13) (12) (13) {z } 1 = (23) =2 H, tj. H nen normaln (31) VETA 1.14 Necht' G( ; 1 ; 1) je grupa. Pak je kongruence na grupe G( ; 1 ; 1) prave tehdy, kdyz [1] je normaln podgrupa (g; h) 2, g 1 h 2 [1] 11

12 ")" [1] je podgrupa { (1; 1) 2 - reexivita ) 1 2 [1] - uzavrenost na 1. { h 2 [1] tzn. (1; h) 2, a protoze je slucitelna s 1 - uzavrenost na ; h 1 {z} 1 A 2 ) h 1 2 [1] { h 1 ; h 2 2 [1] tzn. (1; h 1 ) 2 a (1; h 2 ) 2, a protoze je slucitelna s, tedy ; h 1 h 2 A 2 ) h1 h 2 2 [1] - uzavrenost na {z} 1 [1] je normaln Necht' g 2 G, h 2 [1], tedy (1; h) 2. je ekvivalence, tedy (g; g) 2 a (g 1 ; g 1 ) 2 Vme, ze je slucitelna s, takze Tedy (g 1; g h) 2 &(g 1 g 1 ; g h g 1 ) 2 {z } 1 g h g 1 2 [1] (g; h) 2, (g 1 ; g 1 ). Protoze je slucitelne s (g 1 g {z } =1 ; g 1 h) 2 ) g 1 h 2 [1] g 1 h 2 [1] tj. (1; g 1 h) 2, ale je kongruence, takze (g; g) 2, a protoze je slucitelna s (g 1; g g 1 h) = (g; h) 2 H je normaln podgrupa : (g; h) 2 def tedy 1 2 H? ekvivalevnce? "(" g 1 h 2 H, kazda podgrupa je uzavrena na 0-arn operaci, 12

13 { (reexivita) g 1 g = 1 2 H ) (g; g) 2 ) g 1 h 2 H, pak (g 1 h) 1 2 H, kvuli uzavrenosti na 1. (g 1 h) 1 = h 1 (g 1 ) 1 = h 1 g def ) (h; g) 2 { (symertie) (g; h) 2 def { (transitivita) (g; h) 2 ; (h; r) 2 def ) g 1 h 2 H; h 1 r 2 H, a protoze H je uzavrena g 1 r = (g 1 h) (h 1 r) 2 H def ) (g; r) 2?slucitelnost se vsemi operacemi? 1 2 H { (1; 1) 2, nebot' je reexivn { (g; h) 2 {z } 1 def ) g 1 h 2 H H normaln{ ) g (g 1 h) g 1 = hg 1 = (h 1 ) 1 g 1 2 H Tedy je slucitelne s 1 { (g 1 ; h 1 ); (g 2 ; h 2 ) 2 ) (h 1 ; g 1 ) 2 ) (g 1 ; h 1 ) 2 def ) g 1 1 h 1 ; g 1 2 h 2 2 H H normaln{ ) h 2 g 1 2 = g 2 g 1 2 h 2 g H ) g 1 2 g 1 H normaln{ 1 h 1 h 2 g 1 2 g 2 2 H {z } ) (g 1 g 2 ) 1 (h 1 h 2 ) 2 H ) (g 1 g 2 ; h 1 h 2 ) 2 [1] = h 2 Hj(1; h) 2 (tj: h = 1 1 h 2 H) 1 znacen Necht' G( ; 1 ; 1) je grupa, H je kongruence, H = [1] H (toto jednoznacne denuje tu kongruenci). G = ( ; 1 ; [1] H ) se obvykle znac G =H ( ; 1 ; [1] H ) Prklady Z(+; ; 0) je komutativn grupa. nz...nsechny celocselne nasobky n! podgrupy Z(+; ; 0), ktere jsou podle 1.13 normaln. Regularn matice GL n (T )( ; 1 ; I n ) Normaln podgrupou jsou naprklad konstantne diagonaln matice (vsechny prvky na diagonale jsou stejne) nebo matice se stejnym determinantem S n...permutace na f1; :::; ng A n - sude permutace tvor normaln grupu G( ; 1 ; 1) je grupa, pak [1], G jsou trivialn normaln grupy. 13

14 2 Uzaverove systemy na algebre denice Rekneme, ze C P(A) je uzaverovy system na mnozine A, pokud (1) A 2 C (2) B C ) T B = T B2B B 2 C denice Je-li C uzaverovy system, pak je uzaver mnoziny B A cl C (B) = \ fc 2 CjB Cg denice Zobrazen : P(A)! P(A) nazveme uzaverovym operatorem, pokud (1) B (B) 8B A (2) ((B)) = (B) (3) B C A! (B) (C) (monotonie) prklad V...vektorovy prostor, V...vsechny podprostory V. V je uzaverovy system: X V cl V (X) = L poznamka Necht' A je mnozina s operac. Pak vsechny podmnoziny uzavrene na tvor uzaverovy system na A 2. Necht' A( i ji 2 I) je algebra. Potom vsechny podalgebry tvor uzaverovy system na A. 1. viz. poznamka 1.1, (2) z denice 2. vlastnost (1), A je trivialne uzavrena na VETA Necht' C je uzaverovy system na A. Pak uzaver cl C je uzaverovy operator. 2. Necht' : P(A)! P(A) je uzaverovy operator na mnozine A. Potom C = fc 2 P(A)j(C) = Cg je uzaverovy system a cl C = 14

15 1. C...uzaverovy system Nejdrve overme axiom (1) \ cl C (B) = fc 2 CjB Cg 8C:BC ) B cl C (B) (2) prvn inkluze je trivialn druha je jiz trosku tezs cl C (cl C (B)) (1) cl C (B) 2 C cl C (B) 2 fc 2 Cjcl C (B) Cg cl C (B) \ fc 2 Cjcl C (B) Cg = cl C (cl C (B)) B 1 B 2 A fc 2 CjB 1 Cg fc 2 CjB 2 Cg cl C (B 1 ) = \ fc 2 CjB 1 Cg \ fc 2 CjB 2 Cg = cl C (B 2 ) 2....uzaverovy operator Je C = fc 2 P(A)j(C) = Cg uzaverovy system? A (A) A ) A = (A) ) A 2 C C i 2 C i 2 I (C i ) = C i \ i2i C i \ i2i \ i2i C i! C i C j j 2 I ) \ i2i C i! (C j ) = C j 8j 2 I \ i2i \ i2i C i! C i! \ j2i C j = [ i2i ) \ C i 2 C tj. C je uzaverovy system 15

16 3. = cl C, dokazeme 8B (B) = cl C (B) 4.?(B) cl C (B)? ((B)) = (B) ) (B) 2 C B (B) ) cl C (B) cl C (B) = \ fc 2 PjC = (C) & B Cg B C ) (B) (C) = C ) (B) vsech takovych mnozin, tedy je i v jejich pruniku, a tedy (B) cl C (B) To jest (B) = cl C (B) 8B 2 A prklad Z(+; ; 0), n i 2 N, n i Z = fn i zjz 2 Zg. Potom \ i2z n i Z = gcd(n 1 ; :::; n k )Z Neboli lez v uzaverovem systemu vsech podgrup poznamka 2.3 P Vsechny uzaverove systemy na A tvor uzaverovy system na P(A) je trivialne uzaverovy system. C i - uzaverove systemy na A, i 2 I B \ C i ) B C i 8i 2 I Ci uz: system ) \ B 2 Ci 8i 2 I ) \ B 2 \ i2i C i poznamka 2.4 Necht' A B jsou uzaverove systemy na A a C D A. Pak cl B (C) cl A (D) 16

17 fb 2 BjC Bg fa 2 AjC Ag (tato inkluze plyne z velikosti mnozin) ) cl B (C) = \ fb 2 BjC Bg \ fa 2 AjC Ag = cl A (C) z denice a (2.2) ) cl A (C) cl A (D) cl B (C) cl A (C) cl A (D) poznamka 2.5 Vsechny reexivn (symetricke, transitivn) relace i ekvivalence na mnozine A tvor uzaverove systemy na A A R... vsechny reexivn relace na A S... vsechny symetricke relace na A T... vsechny transitivn relace na A E... vsechny ekvivalence na A E = R \ S \ E A A 2 E(R; S; T ), tm je overena prvn podmnka uzaveroveho systemu i 2 R i 2 S (a; b) 2 \ i2i i 2 T id i 8i 2 I ) id \ i2i i 2 R i ) (a; b) 2 i 8i symetrie ) (b; a) 2 i 8i 2 I ) (b; a) 2 \ i 2 S (a; b); (b; c) 2 \ i ) (a; b); (b; c) i 8i 2 I ) (a; c) 2 i ) (a; b) 2 \ i ) \ i 2 T E je prunik uzaverovych systemu a vsechny uzaverove systemy na mnozine tvor uzaverovy system. Proto E mus byt tez uzaverovy system. 17

18 poznamka Necht' je operace na A. Pak vsechny ekvivalence slucitelne s tvor uzaverovy system na A A 2. Necht' A( i ji 2 I) je algebra. Potom vsechny kongruence na A tvor uzaverovy system na A A 1. A A je trivialne slucitelne s Necht' i je ekvivalence slucitelne s, i 2 I. Potom T i je podle poznamky 2.5 tez ekvivalence Necht' a 1 ; :::; a n ; b 1 ; :::; b n 2 A a (a j ; b j ) 2 T i2i i 8j = 1; :::; n ) (a j ; b j ) 2 i 8i 2 I 8j = 1; :::; n ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 i 8i 2 I ) ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 \ i2i i neboli je slusitelna s ekvivelenc vzniklou prunikem ekvivalenc slucitelnych s 2. E i...mnozina vsech ekvivalenc slucitelnych s i tvor uzaverovy system. KOngruence je podle denice slucitelna se vsemi operacemi kongruence= T i2i E i - tedy dle poznamky 2.3 uzaverovy system Necht' je relace na A. Pokud je reexivn (resp. symet-, + je opet reexivn (resp. symetricka) poznamka 2.7 ricka), tak [ Necht' je reexivn id [ id + = f(a; b) 2 A Aja 0 ; :::; a n 2 A; a 0 = a; a n = b; (a i 1 ; a i ) 2 8i 2 1; :::; ng Necht' je symetricka = [ 1 (a; b) 2 + z denice a 0 ; :::; a n 2 A tz. a 0 = a, a n = b, (a i 1 ; a i ) ) ) (a i ; a i 1 ) 2 ) (a n ; a 0 )

19 VETA 2.8 Necht' je relace na A. Potom ( [ id) [ ( [ id) + = ( [ [ id) + je nejmens ekvivalence obsahujc relaci (E-ekvivalence na A, cl E () = ( [ [ id) + ) [ id je reexivn ( [ id) S ( [ id) je reexivn a symetricka relace := (( [ id) S ( [ id) ) + je ekvivalence Dale je treba dokazat jej minimalitu cl E () ( [ id) cl E [ id = cl E () ( [ [ id) ( [ id) 1 cl E () [ cl E ( ) = cl E () + cle () + = cl E () ( [ id) [ ( [ id) denice Necht' A je algebra, A je system vsech podalgeber, X A. Rekneme, ze X generuje (podalgebru) cl A (X) poznamka 2.9 Necht' A( i ji 2 I), B( i ji 2 I) jsou algebry stejneho typu. Necht' f; g : A! B jsou homomorsmy. Pokud X generuje A a f(x) = g(x) 8x 2 X, pak f = g Y = fy 2 Ajf(y) = g(y)g = X A( i ) f ( i (y 1 ; ::; y n )) = i (f(y 1 ); :::; f(y n ))) = i (g(y 1 ); :::; g(y n )) = g ( i (y 1 ; :::; y n )) ) Y je uzavrena na i 8i 2 I, tj. Y je podalgebra, X Y a X dle predpokladu generuje A, tedy Y = A 19

20 prklady Necht' Z(+; ; 0) je grupa a G(+; ; 0) algebra, obe jsou stejneho typu. Necht' f; g : Z! G jsou homomorsmy {z } n < f1g >= f1 + ::: + 1 jn 2 Ng [ f0g [ f( 1) + ::: + ( 1)jn 2 Ng = Z {z } n M(X) - vsechna slova nad psmeny z X, M(X)( ; e) G( ; e) je nejaky monoid Y G tak, ze < Y >= G < X >= M(X) f; g : M(X)! G( ; e) f(x) = g(x) 8x 2 X 2:9 ) f = g M(Y )( ; e) 9!' : M(Y )! G ' je homomorsmus ker ' - kongruence na M(Y ), '(y) 8y 2 Y 3 Isomorsmy algeber denice Necht' A, B jsou algebry stejneho typu. A ' B (A je isomorfn B), pokud 9f : A! B vzajemne jednoznacny homomorsmus (isomorsmus). poznamka 3.1 Necht' M je mnozina algebra, pak ' tvor ekvivalenci na M. z (1:2) Id : A! A je isomorsmus ) reexivita ', symetrie a transitivita denice Necht' je dvojice ekvivalenc na A. Pak = je relace na A = dana predpisem ([a] ; [b] ) 2 = (a; b) 2 poznamka 3.2 na A = Necht' jsou ekvivalence na A. Pak = je ekvivalence plyne okamzite z reexivity, symetrie a transitivity relace. poznamka 3.3 Necht' A je algebra, bud' kongruence na A obsahujc. Pak je kongruence na A prave tehdy, kdyz = je kongruence na algebre A = 20

21 ")" dle 3.1 = je ekvivalence na A = Necht' je libovolna n-arn operace na A a na A = a 1 ; :::; a n ; b 1 ; :::; b n 2 A ([a i ] ; [b i ] ) 2 = ([a 1 ] ; :::; [a n ] ) = [(a 1 ; :::; a n )] ([b 1 ] ; :::; [b n ] ) = [(b 1 ; :::; b n )] Vme, ze ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 a podle denice = (([a 1 ] ; :::; [a n ] ); ([b 1 ] ; :::; [b n ] )) 2 = "(" = je kongruence, je ekvivalence ma A. Dokazujeme, ze je slucitelna s Predpokladam a 1 ; :::; a n ; b 1 ; :::; b n (a i ; b i ) 2 ) ([a i ] ; [b i ] ) 2 = dale ( ([a 1 ] ; :::; [a n ] ) ; ([b 1 ] ; :::; [b n ] )) 2 = tedy dle denice ((a 1 ; :::; a n ); (b 1 ; :::; b n )) 2 poznamka Necht' f : A! B je zobrazen slucitelne s operac, kde je operace na A a B stejne arity. Necht' je ekvivalence na A slucitelna s. Pak existuje zobrazen g : A =! B slucitelna s. Pak existuje zobrazen g : A =! B slucitelne s splnujc podmnku g = f, ker f Navc g je bijekce prave tehdy kdyz = ker f 2. Necht' f : A! B je homomorsmus algeber A, B stejneho typu a je kongruence na A. Pak existuje homomorsmus g : A =! B takovy, ze g = f, ker f Navc g je isomorsmus prave tehdy kdyz g je na a = ker f (veta o homomorsmu) 21

22 1. Podle poznamky zobrazen g : A =! B : g = f ) ker f, chceme dokazeme, ze g ([a] ) = g (a) = f(a) 8a 2 A ")" prmo z poznamky 1.6(4)) ker f "(" vme, ze 9g - zobrazen a chceme dokazat, ze je slucitelne s VETA veta o isomorsmu Necht' f : A! B je homomorsmus algeber stejneho typu. Pak f(a) je podalgebra B (tzn. je stejneho typu) a A =ker f ' f(a) f : A! f(a) je podalgebra B (viz poznamka 1.3) podle poznamky 3.3(2.) je = ker f 9g : A =ker f! f(a) podle 3.3(2) ker f = a f je na f(a), potom g je isomorsmus VETA 3.7 Necht' jsou dve kongruence na algebre A. Pak A === ' A = A! A = A! A = Vme, ze, ker = Z poznamky 3.3 9g : A =! A = g([a] ) = [a] je homomorsmus dle 3.3 ker g = f([a] ; [b] )j[a] = [b] g to je podle denice = g je na, a tedy dle 1. vety o isomorsmu A ==ker g ' A = a z toho hned plyne tvrzen 22

23 4 Svazy denice Rekneme, ze relace na M je usporadan, pokud je reexivn, transitivn a slabe antisymetricka, neboli prklady a b&b a ) a = b P(X) - potence na X, pak je usporadan Z a "standardni" na N relace "j" je taktez usporadan Id na M - extremn prpad denice Necht' je usporadan na M 6= ; a A M. Rekneme, ze m 2 A je nejvets (nejmens) prvek A, pokud 8a 2 A : a m (m a) denice Rekneme, ze sup (A) (resp. inf (A) 2 M) je supremum (resp. inmum) mnoziny A, pokud sup (A) je nejmens prvek z mnoziny fm 2 Mja m 8a 2 Ag. Inmum je nejvets doln zavora denice Rekneme, ze dvojice (M; ) je svaz, pak existuje sup (fa; bg) a inf (fa; bg) pro (kazda dve) a; b 2 M denice O svazu (M; ) rekneme, ze je uplny, existuje-li supremum i inmum pro kazdou (i nekonecnou) podmnozinu M denice Zavedeme binarn operace _ a ^ na M predpisem a; b 2 M a ^ b = inf (fa; bg) a _ b = sup (fa; bg) poznamka 4.1 8a; b; c 2 M: (S1) komutativita (S2) idempotence a ^ b = b ^ a a _ b = b _ a a ^ a = a = a _ a 23

24 (S3) asociativita (S4) absorbce a ^ (b ^ c) = (a ^ b) ^ c a _ (b _ c) = (a _ b) _ c a ^ (b _ a) = a a _ (b ^ a) = a (S1) a (S2) jsou trivialn (S3) stac dokazat, ze a ^ (b ^ c) =? inf (fa; b; cg) (= c ^ (a ^ b)) {z } =:i z denice i a; i b; i c i (b ^ c) i a ^ (b ^ c) a ^ (b ^ c) a a ^ (b ^ c) (b ^ c) b a ^ (b ^ c) (b ^ c) c slaba antisymetrie a ^ (b ^ c) i ) a ^ (b ^ c) = i Pujdeme-li z druhe strany, tak to taky vyjde, cmz mame existenci (S4) a ^ (b _ a) a a a (reexivita) a b _ a (horn odhad)) a a ^ (b _ a) Tedy ze slabe antisymetrie a = a ^ (b _ a) poznamka 4.2 Necht' M(^; _) je algebra s dvojic binarnch operac splnujcch podmnky (S1)-(S4). Denujeme na M relaci predpisem a b def: a _ b = b Pak (M; ) je svaz a a ^ b = inf (fa; bg) a a _ b = sup (fa; bg) 24

25 tm je dokazana reexivita (S1)a ^ a = a (S1)a _ a = a ) a a a b b c ' b = a _ b c = b _ c c = (a _ b) _ c S3 = a _ (b _ c) = a _ c {z } =c Neboli a c a tm je hotov transitivity a b; b a ) b = a _ b S1 = b _ a = a A to je presne slaba symetrie Neboli takto denovana relace tvor usporadan na M Dale a ^ b = a ^ (a _ b) S1 = a ^ (b _ a) S4 = a Touto rovnost je dokazan vztah a b, a = a ^ b Dale budeme predpokladat (c d ) c = c ^ d) (a ^ b) ^ a S1 = a ^ (a ^ b) S3 = (a ^ a) ^ b S2 = a ^ b tj. (a ^ b) a, pro (a ^ b) ^ a dostanu podobnym postupem a ^ b b, tj. a ^ b je dolnm odhadem pro fa; bg Vezmu c a; b, c = c ^ a c ^ (a ^ b) S3 = (c ^ a) ^ b = c ^ b = c ) c (a ^ b) To znamena, ze a ^ b je nejvets v mnozine dolnch odhadu, a ^ b pak mus byt inmum fa; bg. dusledek (S; )! S(^; _)! (S; ~) )= ~ S(^; _)! (S; )! S(^; _) ) ^ = ^; _ = ^ Dky tomu mame jednoznacnou korespondenci svazu a pruseku+sloucen. Dale budeme svazem nazyvat i algebry S(^; _) splnujcm (S1)-(S4). VETA 4.3 Kazdy uzaverovy system je uplnym svazem S(C; ), B C sup B [! [ = cl C ( B) = cl C B B2B inf B \ = B \ = B B2B 25

26 plyne ihned z vlastnost uzaveroveho systemu znacen Vezmu svaz (S; ). Rekneme, ze a pokryva b, a; b 2 (a < b), pokud b 6= a, b a, b c a ) b = c _ a = c: Necht' f resp. g 2 S je nejvets resp. nejmens prvek S, potom a resp. b nazveme atomem resp. koatomem svazu S, pokud f < a resp. b < e Hasseovym diagramem svazu nazvu orientovany graf s vrcholy S. Mezi a a b bude hrana vedouc od a k b, pokud a < b poznamka 4.4 Je-li S(^; _) svaz, pak S(_; ^) je take svaz Plyne hned z 4.1 a 4.2. poznamka 4.5 Necht' (S; ) je svaz a a; b; c 2 S. Pokud a c, potom a _ (b ^ c) (a _ b) ^ c a (a _ b) a a c, tedy a (a _ b) ^ c b ^ c b a _ b a b ^ c c, tedy (b ^ c) (a _ b) ^ c Tedy a _ (b ^ c) (a _ b) ^ c denice O svazu S(^; _) rekneme, ze je modularn, pokud plat 8a; b; c 2 S a c ) a _ (b ^ c) = (a _ b) ^ c denice Necht' je usporadan na A a na B. Rekneme, ze zobrazen f : A! B je monotonn, pokud a 1 a 2 ) f(a 1 ) f(a 2 ). poznamka 4.6 Necht' f : A! B je homomorsmus svazu A(^; _) a B(^; _). Potom f je monotonn. Necht' a 1 a 2 (, a 2 = a 1 _ a 2 ). f(a 2 ) = f(a 1 _ a a2 ) homomorfismus = f(a 1 ) _ f(a 2 ) Podle denice potom f(a 1 ) f(a 2 ) poznamka 4.7 Necht' f : A! B je bijektivn zobrazen dvou svazu (A; ) a (B; ). Pak f je isomorsmus svazu, f i f 1 jsou monotonn zobrazen 26

27 " ) " f; f 1 jsou isomorsmy, tedy podle poznamky 4.6 jsou obe zobrazen monotonn f; f 1 stac ukazat, ze f je slucitelne s _, zbytek uz plyne ze symetri. Necht' a; b 2 A. Necht' a a _ b, b a _ b. Zobrazen f je monotonn, takze mame ) f(a) _ f(b) {z } nejmens{ horn{ odhad f(a) f(a _ b) f(b) f(a _ b) Dale necht' d = f(a) _ f(b). f(a) d a f(b) d, vme ze f 1 jsou monotonn Opet pouzijeme monotonnost f Dky slabe symetrii, (1) a (2) Neboli f je slucitelne s _ f(a _ b) {z } (1) nejaky horn{ odhad a = f 1 (f(a)) f 1 (d) b = f 1 (f(b)) f 1 (d) a _ b f 1 (d) f(a _ b) f f 1 (d) = d = f(a) _ f(b)(2) f(a _ b) = f(a) _ f(b) " ( " poznamka 4.8 Necht' C je uzaverovy system lez v mnozine vsech ekvivalenc na A. Necht' N je nejaky podsystem P(A) a e 2 A tak, ze 2 C ) [e] 2 N N 2 N ) 9ekvivalence 2 C, ze N = [e] =rho [e] [e] pro ; 2 C ) Pak N je uzaverovy system (a tudz svaz) a zobrazen ' : C! N dane predpisem '() = [e] je svazovy isomorsmus. 27

28 A = [e] A A A A 2 C, A A je ekvivalence a to ta nejets, takze lez v C. A = faj(e; a) 2 A Ag 2 N (to plat z prvnho predpokladu) Necht' N i 2 N i 2 I, potom s vyuzitm druheho predpokladu 9 i 2 C N i = [e] i VETA 4.9 Nevht' G( ; 1 ; 1) je grupa, pak svaz vsech kongruenc na G je isomorfn svazu vsech normalnch podgrup G (s usporadanm ) \ i2i = \ i2i [e] i = fa 2 Aj(e; a) 2 i 8i 2 Ig = [e]ti2i i 2 N T i 2 C, nebot' C je uzaverovy system Je ' bijekce? dobre denovane zobrazen je to na 8N 2 N prirad [e] [e] ) - a stejne pro =; Tedy ano, ' je bijekce '; ' 1 je prmo z denice monotonn 4:7 ) ' je isomorsmus svazu. Dukaz Necht' C jsou vsechny kongruence na G 2 C ) [1] 2 N kde N jsou vsechny normaln podgrupy G Z 4.8 evidentne plat [1] [1], (a; b) 2 1:14 ) a b 1 2 [1] [1], (a; b) 2 Tedy z 4:8 je N uzaverovy system a ' je isomorsmus denice Necht' A; B jsou mnoziny a : P(A)! P(B), : P(B)! (P )(A). Rekneme, ze ; tvor Galiosovu korespondenci, plat-li 8A 1 ; A 2 2 P(A); B 1 ; B 2 2 P(B) (1) A 1 A 2 ) (A 1 ) (A 2 ) B 1 B 2 ) (B 1 ) (B 2 ) (2) A 1 (A 1 ); B 1 (B 1 ) 28

29 poznamka 4.10 Necht' : P(A)! P(B) a : P(B)! P(A) je Galoisova korespondence. Pak (respektive ) je uzaverovy operator na P(A) (resp. na P(B)). Necht' A resp B je uzaverovy sysem na A resp. B prslusny resp.. Dale (A) B, (B) A. Restrikce resp. na A resp B (oznacme je 0 : A! B, 0 : B! A) jsou vzajemne inverzn bijekce nejdrve dokazme, ze je uzaverovy operator ( symetricky) (2) ) A 1 (A 1 ) A 1 A 2 ) (A 1 ) (A 2 ) ) (A 1 ) (A 2 ) Tm je dokazana monotonie?(()()) (A 1 )? = (A 1 )? (A 1 ) (2) ((A 1 )) B 1 = (A 1 ) (2) ((A 1 )) (1 ) (A 1 ) (A 1 ) Tedy mame uzaverove systemy?(a) B? (symetricky (B) A) Necht' A 1 2 A ) (A 1 ) = A 1 A = fa 1 2 P(A)j(A 1 ) = A 1 g B = fb 1 2 P(B)j(B 1 ) = B 1 g ( ((A 1 ))) = ((A 1 )) = (A 1 ) ) (A 1 2 B) 0 0 : B! B? = Id B 0 0 : A! A? = Id A Jinymi slovy to znamena, ze 0 a 0 jsou bijekce a jsou k sobe vzajemne inverzn 5 Grupy 0 0 (B) 1 ) = (B 1 ) predpoklad = B 1 ) 0 0 = Id B denice G( ; 1 ; 1) je grupa, pokud je asociativ binarn operace, 1 je unarn a a 1 = a 1 a = 1 a 1 je neutraln prvek poznamka 5.1 Je-li f zobrazen dvou grup slucitelne s binarn operac, pak f je homomorsmus 29

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení

ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení 6.10. Euklidův algoritmus a ekvivalence Nechť a 0 > a 1 jsou dvě přirozená čísla. Připomeňme Euklidův algoritmus hledání největšího společného dělitele (NSD)

Více

Teorie grup 1 Příklad axiomatické teorie

Teorie grup 1 Příklad axiomatické teorie Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Algebraické struktury

Algebraické struktury Algebraické struktury KMA/ALG Sylabus Teorie grup - grupy, podgrupy, normální podgrupy, faktorgrupy, Lagrangeova věta. Homomorfismus grup, věty o izomorfismu grup, cyklické grupy a jejich struktura. Direktní

Více

Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8].

Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8]. 1. Algebry, homomorfismy, kongruence Definice. Prokaždécelé n 0nazveme n-ární operací na množině Akaždé zobrazení A n A(číslo nbudemenazývataritounebočetnostíoperace).nechť (α i i I)jesystémoperacínamnožině

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4.

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4. Obsah 1. Základní algebraické pojmy........................ 2 2. Monoidové okruhy a některé další základní konstrukce.............. 4 3. Podgrupy a jiné podstruktury....................... 7 4. Kvocientní

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

MASARYKOVA UNIVERZITA V BRNĚ. Akce grupy

MASARYKOVA UNIVERZITA V BRNĚ. Akce grupy MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Bakalářská práce z matematiky Akce grupy Brno 2009 Lenka Macálková Prohlášení: Prohlašuji, že jsem tuto bakalářskou práci vypracovala zcela samostatně

Více

1. Základy logiky a teorie množin

1. Základy logiky a teorie množin . Základy logiky a teorie množin Studijní text. Základy logiky a teorie množin A. Logika Matematická logika vznikla v 9. století. Jejím zakladatelem byl anglický matematik G. Boole (85 864). Boole prosadil

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Základy teorie grup. Martin Kuřil

Základy teorie grup. Martin Kuřil Základy teorie grup Martin Kuřil Abstrakt Text je vhodný pro samostudium a jako studijní opora pro studenty distanční a kombinované formy studia. V textu jsou vyloženy základy teorie grup od zavedení pojmu

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

TEORIE MATIC. Tomáš Vondra

TEORIE MATIC. Tomáš Vondra TEORIE MATIC Tomáš Vondra 2 Obsah 1 Opakování 5 1.1 Základní operace s maticemi..................... 5 1.2 Determinant matice......................... 7 1.2.1 Cauchyův-Binedův vzorec..................

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Nejdříve připomeneme pojmy, které jsou vám známy ze střední školy:

Nejdříve připomeneme pojmy, které jsou vám známy ze střední školy: 1 Úvod Nejdříve připomeneme pojmy, které jsou vám známy ze střední školy: 1.1 Elementy matematické logiky Výroky Připomeňme, že výrok chápeme jako jazykové vyjádření myšlenek, jimiž přisuzujeme předmětům

Více

1 Matematika jako část logiky

1 Matematika jako část logiky 1 Matematika jako část logiky Matematika, kterou jste se učili na střední škole, byla spíše matematikou praktickou. To znamená, že obsahovala hlavně návody jak počítat s čísly, jak upravovat různé výrazy

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Lineární Algebra I. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Adam Liška 8. prosince 2014 http://kam.mff.cuni.cz/~fiala http://www.adliska.com 1 Obsah 1 Soustavy lineárních

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Diskrétní matematika

Diskrétní matematika České Vysoké Učení Technické v Praze Fakulta elektrotechnická Diskrétní matematika Sbírka řešených příkladů Jiří Velebil katedra matematiky APraha, 2007 velebil@math.feld.cvut.cz http://math.feld.cvut.cz/velebil

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

Matematické základy kryptografických algoritmů Eliška Ochodková

Matematické základy kryptografických algoritmů Eliška Ochodková Matematické základy kryptografických algoritmů Eliška Ochodková Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

Základy teorie grup Elements of Group Theory

Základy teorie grup Elements of Group Theory Technická univerzita v Liberci FAKULTA PEDAGOGICKÁ Katedra: Studijní program: Kombinace: Matematiky a didaktiky matematiky Učitelství pro 3. stupeň matematika, zeměpis Základy teorie grup Elements of Group

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics Komutativní a nekomutativní polookruhy ve školské matematice Drahomíra Holubová Resume Polookruhy, které nejsou okruhy, mají významné zastoupení ve školské matematice. Tento příspěvek uvádí příklady komutativních

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

DISKRÉTNÍ MATEMATIKA I

DISKRÉTNÍ MATEMATIKA I Fakulta pedagogická, Technická univerzita v Liberci DISKRÉTNÍ MATEMATIKA I Doc. RNDr. Miroslav Koucký, CSc. Prof. RNDr. Bohdan Zelinka, DrSc. Liberec, 4 Obsah Kap. Základní poznatky o množinách 7. Pojem

Více

MNOŽINY. x A. Jeho varianty paradox mostu se šibenicí, paradox holiče.

MNOŽINY. x A. Jeho varianty paradox mostu se šibenicí, paradox holiče. MNOŽINY Naivní definice (pojetí): Množina [set] je přesně definovaný soubor prvků, které mají nějakou vlastnost. O čemkoliv je třeba umět jednoznačně rozhodnout, zda do dané množiny patří či nikoliv. Vztah

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Algebra 2 Teorie čísel. Michal Bulant

Algebra 2 Teorie čísel. Michal Bulant Algebra 2 Teorie čísel Home Page Michal Bulant katedra matematiky, Přírodovědecká fakulta, Masarykova univerzita, Janáčkovo nám. 2a, 662 95 Brno E-mail address: bulant@math.muni.cz Page 1 of 103 Abstrakt.

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

M/146000, M/146100, M/146200 LINTRA PLUS

M/146000, M/146100, M/146200 LINTRA PLUS M/46000, M/4600, M/4600 LINTRA PLUS Bezpístnicové válce Dvojčinné, magnetický a nemagnetický píst - Ø 6 až 80 mm Nové odlehčené provedení výlisku s univerzálními montážními drážkami Osvědčený a patentovaný

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole.

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Kapitola 7 Stromy Stromy jsou jednou z nejdůležitějších tříd grafů. O tom svědčí i množství vět, které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Představíme také dvě

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz (tištěná ISBN 978-80-247-7512-8 (elektronická verze ve formátu verze) PDF) Grada Publishing, a.s. 2012 U k á z k a k n i h y z i n t e r n e t o

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Učitelství 2. stupně ZŠ tématické plány předmětů matematika

Učitelství 2. stupně ZŠ tématické plány předmětů matematika Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie

Více

Křenovice horní nádraží - Brno - Blansko - - Skalice nad Svitavou - Březová nad Svitavou (I. část)

Křenovice horní nádraží - Brno - Blansko - - Skalice nad Svitavou - Březová nad Svitavou (I. část) S2+R2 Integrovaný dopravní systém ihomoravského kraje Informace a podněty: 5 4317 4317, www.idsjmk.cz Platí od 14.12.2014 do 12.12.2015 40 Brno 75 Brno zastávka 167 Vyškov 234 Boskovice město 258 Obora

Více

Jan Pavĺık. FSI VUT v Brně 14.5.2010

Jan Pavĺık. FSI VUT v Brně 14.5.2010 Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více