1. Nástroje řízení (kvality)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Nástroje řízení (kvality)"

Transkript

1 1. Nástroje řízení (kvality) 2. Kvantifikace rizik Petr Misák Ústav stavebního zkušebnictví VUT FAST v Brně

2 Jednoduché nástroje řízení kvality - MOTIVACE Chceme-li řídit jakost, musíme o ní shromáždit všechny potřebné informace, vhodnou formou je zpracovat, analyzovat a využít je při řešení problémů a realizaci zlepšovacích aktivit. Nejsou obtížné na pochopení pro jakéhokoliv pracovníka organizace. K tomu přispívá i grafická podoba příslušející každému nástroji.

3 Základní přínosy pomáhají určit, v jakém stavu je objekt (výrobek, proces, zdroj,...) pomáhají odhalit priority, které mají být řešeny pomáhají nalézt příčiny sledovaného stavu objektu umožní sledovat vývoj stavu objektu, a tím odhalit možnosti dalšího zlepšování

4 Jsou to: Formuláře pro sběr dat Vývojový (postupový) diagram Diagram příčin a následků Paretův diagram Bodový diagram Histogram Regulační diagram

5 Formuláře pro sběr dat umožňují zaznamenat získané informace o jakosti znázornění vztahy mezi nimi umožňují utřídit informace tak, aby poskytly jasný obraz o situaci, respektive aby umožnily aplikaci metod a technik jejich další analýzy. Jedná se o různé protokoly (o kontrole, o validaci, o prověrkách, o kvalifikaci,...), tabulky naměřených hodnot ze zkoušek, ze sledování procesů apod.

6 Formuláře pro sběr dat Příčiny vad Typy vady Kdo provedl sběr údajů: Kde: Datum: Jak:

7 Konstrukce formuláře pro sběr dat neexistuje standardizovaný formát, každý formulář je konstruován k určitému účelu a jeho plnění musí být podřízen, hned na počátku musí být rozhodnuto, které informace jsou potřebné pro porozumění problému a k iniciaci správných opatření, problém při sestavování formuláře netkví v tom, jak sbírat data, ale v tom, jak dospět k užitečným informacím.

8 Konstrukce formuláře pro sběr dat Záznam o neshodách číslo: Neshodu zjistil: Datum: Místo: Předáno k řešení: Neshoda Četnost Celkem A IIIIIIIIIII 11 B IIIIIIIIIIIIIIIIIIIII 21 C IIIII 5 D IIIIIIIIIIIIIIIIIIIIIIIIII 26 E IIIIIIIIIIIIIIIIII 18 Celkem 81

9 Konstrukce formuláře pro sběr dat Dieta Snídaně Kcal Náklady Pondělí Gulášová polévka, 3 rohlíky, ,- malá plzeň 12 o Úterý Lák z okurků 800 0,-

10 Vývojový diagram Vývojový diagram pomáhá porozumět procesu tím, že jej stratifikuje do jednotlivých dílčích činností (kroků) a okamžiků rozhodování o jeho dalším průběhu rozkreslením do schématu. Je vhodný především pro složité a nepřehledné procesy, jejichž detailní rozčlenění umožní: pochopit, jak proces pracuje, odhalit místa vzniku problémů, ověřit nezbytnost provádění dílčích kroků, a tím odhalit nepotřebné aktivity, odkrýt a přezkoumat vztahy mezi jednotlivými kroky, najít možnosti dalšího zlepšování.

11 Konstrukce vývojového diagramu Definování procesu a stanovení jeho hranic (začátek, konec, vazby na okolní procesy) Definování jednotlivých kroků procesu včetně okamžiků rozhodování Znázornění průběhu procesu využitím normalizované symboliky (norma ISO , eventuálně ISO 5807) v přehledné formě Validace prvotní konstrukce se skutečností Vypracování konečné podoby

12 Prvky vývojového diagramu Údaje Postup Dokumenty NE Rozhodnutí Dokument Alternativní postup Konec Spojka ANO

13 Příklad vývojového diagramu Sedím na přednášce Poznámky z přednášek 1 Zapamatuji si něco? NE NE Daří se mi ve cvičení? ANO ANO Můžu pracovat ve cvičení Jdu koupit skripta Zápočet Případové studie 1 Konec Konec

14 Diagram příčin a následků (Ishikawův diagram) slouží pro zobrazení a utřídění všech možných příčin a subpříčin, které ovlivňují daný následek. předkládá celistvý pohled na sledovanou situaci. Analýzu jednotlivých příčin lze provádět do libovolné hloubky, aniž by se ztrácely souvislosti. Následkem nemusí být pouze identifikovaný či potenciální problém, může jím být jakákoliv entita (např. jakost výrobku, procesu, zdroje apod.), respektive stanovený cíl.

15 Diagram příčin a následků (Ishikawův diagram) Hlavní přínosy: poskytuje celkový a strukturovaný pohled na zkoumaný stav, zachycuje všechny možné příčiny i subpříčiny ve vzájemných souvislostech, je účinným pomocníkem pro následnou analýzu příčin i vedení diskuse o možných nápravných, preventivních i zlepšovacích opatřeních. Samotný diagram neodhalí význam zaznamenaných příčin ve vztahu k následku. K tomu je nutno použít další nástroje a metody (Paretův diagram, FMEA).

16 Konstrukce diagramu příčin a následků Pro odpovědnou konstrukci diagramu příčin a následku je nutno využít týmové spolupráce: shromáždění všech možných příčin (stávajících i potenciálních) bez jakéhokoliv seskupení či vymezení vzájemných souvislostí využitím brainstormingu Identifikace hlavních kategorií (nosných šipek budoucího diagramu), přiřazení příčin jednotlivým kategoriím a jejich dekompozice v jednotlivých úrovních (příčina - subpříčina - atd.) týmové posouzení adekvátnosti přiřazení příčin a jejich vzájemných souvislostí doplnění dalších příčin, které nebyly v prvním kroku identifikovány a jejich další rozpracování do dílčích šipek (dobře sestrojený diagram by neměl mít nosné šipky s méně než dvěma úrovněmi!)

17 Konstrukce diagramu příčin a následků Kategorie Kategorie Příčina Příčina Následek Kategorie

18

19 Paretův diagram slouží k určení nejdůležitějších problémů, faktorů, oblastí,..., na které je potřeba se prioritně zaměřit. Je založen na tzv. Paretově principu, podle něhož cca 80% následku způsobuje cca 20% nejdůležitějších příčin (tzv. rozhodující menšina). Právě soustředěním pozornosti na tyto příčiny a jejich řešením lze dosáhnout nejlepšího zlepšení. Původní Paretova analýza (Vilfredo Pareto) byla později doplněna o grafické znázornění podílů jednotlivých příčin na celkovém důsledku M. O. Lorenzem (Lorenzova křivka).

20 Paretův diagram Takto pojatý Paretův diagram poskytuje absolutní přehlednost a jednoznačnou vypovídací schopnost. Možnosti aplikace jsou široké a diagram je možno považovat za obecnou metodu zjišťování priorit. Jeho využití v managementu kvality prokázal a prosadil J. M. Juran. Přínosy: uspořádá příčiny ve sledu jejich významu, oddělí významné (rozhodující menšinu) od méně významných (zanedbatelná většina) a tím určí, na které příčiny je nutno obrátit pozornost při hledání řešení.

21 Konstrukce Paretova diagramu Definování následku a shromáždění informací o všech možných příčinách (například pomocí Ishikawova diagramu). Číselná kvantifikace jednotlivých příčin - tzv. četností. Je možno využít několik způsobů: počet výskytů, finanční hodnoty (náklady, ztráty), bodovací techniky (u kvalitativních položek). Budeme-li chtít navíc zdůraznit různý význam příčin ve vztahu k následku (například zohledněním důležitosti pro zákazníka), a tím změnit skutečné pořadí četností, můžeme původní hodnoty přepočítat pomocí dodatečně stanovených koeficientů významnosti (vah). Sestrojení diagramu, který tvoří sloupce absolutních četností hodnot jednotlivých položek a Lorenzova křivka.

22 Paretův diagram - příklad Náklady na nejčastější neshody (reklamace) v tis. Kč/rok: (Viz příklad formuláře pro sběr dat) Položka: TSKP: Kč: Zařizovací předměty ZTI (A) Podlahy povlakové (B) Konstrukce klempířské (C) Obklady (D) Okna a balkónové dveře (E)

23 Paretův diagram - příklad Seřadíme skupiny podle významnosti a určíme četnosti: Náklady na nejčastější neshody (reklamace) v tis. Kč/rok: Položka: TSKP: Kč: Kumulovaná Kumulovaná Relativní absolutní relativní četnost četnost četnost Obklady (D) ,10 32,10 Podlahy povlakové (B) ,93 58,02 Okna a balkónové dveře (E) ,22 80,25 Zařizovací předměty ZTI (A) ,58 93,83 Konstrukce klempířské (C) ,17 100,00 CELKEM: 81

24 Paretův diagram příklad Sestavíme Paretův diagram a Lorencovu křivku

25 Sestavení PD v MS Excel Nástroje řízení (kvality)

26 Sestavení PD v MS Excel Nástroje řízení (kvality)

27 Sestavení PD v MS Excel Nástroje řízení (kvality)

28 Sestavení PD v MS Excel Nástroje řízení (kvality)

29 Sestavení PD v MS Excel Nástroje řízení (kvality)

30 Sestavení PD v MS Excel Nástroje řízení (kvality)

31 Sestavení PD v MS Excel Nástroje řízení (kvality)

32 Sestavení PD v MS Excel Nástroje řízení (kvality)

33 Sestavení PD v MS Excel Nástroje řízení (kvality)

34 Sestavení PD v MS Excel Nástroje řízení (kvality)

35 Sestavení PD v MS Excel Nástroje řízení (kvality)

36 Sestavení PD v MS Excel Nástroje řízení (kvality)

37 Sestavení PD v MS Excel Nástroje řízení (kvality)

38 Sestavení PD v MS Excel Nástroje řízení (kvality)

39 Bodový diagram (korelační diagram) slouží ke zjištění či ověření vzájemné závislosti dvou jevů - např. teploty a vlhkostí při skladování, mezi znaky jakosti výrobku, mezi dvěma parametry procesu apod. Nahrazuje složité výpočty korelačních koeficientů v případech, kdy chceme získat o případné závislosti pouze orientační informaci. Přínosy: odhalí případnou existenci závislostí mezi zkoumanými jevy znázorní charakter a těsnost případné závislosti potvrdí nezávislost přispívá ke snížení rizik při eventuálních změnách hodnot jedné proměnné (je-li odhalena závislost, je nutno počítat i se změnou hodnoty druhé)

40 Konstrukce bodového diagramu Předpokladem konstrukce bodového diagramu je vyjádření obou zkoumaných jevů v číselné podobě a nashromáždění jejich souběžných hodnot. Při změně hodnoty jedné proměnné x se zjistí hodnota druhé proměnné y a zaznamená se jako bod do souřadné roviny. Z rozmístění bodů se pak uvažuje o případné závislosti (kladné, záporné, křivkové) a jejím charakteru (silná, slabá).

41 Příklady y y Silná záporná závislost x Slabá záporná závislost x

42 Příklady y y Nezávislost x Silná kladná závislost x

43 Histogram grafické ztvárnění hodnot v tabulce četnosti nástroj, který jednoduchou formou vypovídá o chování procesu zpřístupňuje a zprůhledňuje nepřehledné tabulky rozsáhlých číselných údajů o jednom jevu, který vykazuje variabilitu v důsledku působení různých vlivů množinu proměnlivých hodnot sledovaného jevu sumarizuje v určitém časovém okamžiku do sloupcového diagramu

44 Histogram počet výskytů sledovaná veličina intervalové dělení

45 Histogram Při konstrukci histogramu postupujeme v následujících krocích: vybereme nejmenší a největší výběrovou hodnotu x (1) a x (n) vypočteme výběrové rozpětí jako rozdíl největší a nejmenší výběrové hodnoty: R = x (1) - x (n) interval, který je o málo větší než výběrové rozpětí R rozdělíme na m stejných intervalů (tříd), přičemž se doporučuje 7 m 20; menší počet intervalů by měl odpovídat menšímu souboru dat jednoznačně stanovíme způsob zařazování zjištěných hodnot do tříd sestrojíme sloupcový diagram nad jednotlivými třídami tak, aby výška sloupce v i - té třídě (i = 1,,m), byla absolutní četností výskytu hodnot v této třídě. Tedy na vodorovnou osu naneseme hodnoty středů všech tříd a na svislou osu četnosti. Závěrem se histogram vyhodnotí a učiní se příslušná rozhodnutí.

46 Tvar histogramu normální asymetrický bimodální dvojitý

47 Regulační diagram zpracovává obdobný soubor údajů jako histogram na rozdíl od histogramu zobrazuje vývoj sledovaného jevu základní informací je posloupnost výběrů v čase Každý výběr je reprezentován: střední hodnotou - pokud se jedná o kvalitativní veličinu, například počet neshod střední hodnotou a rozptýlením - jedná-li se o kvantitativní veličinu Vývoj těchto charakteristik je zobrazen vůči limitům (tzv. regulačním mezím), jejichž vzdálenost vychází obvykle z přirozeného kolísání kontrolované veličiny samotné. Překročení mezí je signálem, že něco není v pořádku - proces není statisticky zvládnutý a že je nutný zásah (řešení).

48 Regulační diagram 21,2 21 UCL průmě ůměr 20,8 20,6 20,4 20, ,8 19,6 CL LCL 19, číslo skupiny

49 Regulační diagram - kvantitativní veličina U kvantitativní veličiny (rozměr, hmotnost, atd.) vycházíme z předpokladu jejího normálního rozdělení. Toto rozdělení reprezentují: charakteristiky polohy - aritmetický průměr, medián charakteristiky variability - variační rozpětí, směrodatná odchylka Pracujeme proto vždy s dvojicí diagramů, např.: aritmetický průměr a rozpětí aritmetický průměr a směrodatná odchylka medián a rozpětí

50 2. Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Petr Misák Ústav stavebního zkušebnictví VUT FAST v Brně

51 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik FMEA - Failure Mode and Effects Analysis Jedná se o analýzu možných vad a jejich následků. Obecně platí, že čím v ranějších fázích životního cyklu se podaří odhalit riziko možného výskytu neshodného produktu, tím nižší jsou finanční ztráty. Použití: Při vývoji nových materiálů a produktů (FMEA-K: konstrukční FMEA) Při hodnocení technologických postupů (FMEA-T: technologická FMEA)

52 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik FMEA - Failure Mode and Effects Analysis Postup: Před započetím provádění metodiky FMEA by měly být s ohledem na efektivnost stanovit předmět analýzy. Dále by měla být shromážděna data o popisu procesu (technologický postup), vývojovém diagramu procesu s vyznačenými kontrolními operacemi/regulací procesu (SPC), informace o všech minulých (popř. i potenciálních) problémech s výrobkem/dílem/procesem a jejich řešení a tyto informace rozčlenit do tří kategorií z hlediska: významu vady (důsledky pro zákazníka), příčiny vady, kontrolní či regulační opatření (SPC)

53 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik FMEA - Failure Mode and Effects Analysis Do technických požadavků by měly být zahrnuty zejména požadavky: zákazníka, právních, normativních a jiných požadavků, po případě dalších zainteresovaných stran.

54 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Enviromentální a ekologické požadavky V oblasti enviromentu jde především o zamezení realizace negativních enviromentálních aspektů. Jedná se zejména o oblasti, které souvisí s: ochranou ovzduší, nakládání s nebezpečnými chemickými látkami a odpady vodním hospodářstvím a ochranou vod, zdravými životními podmínkami (např. ochrana proti hluku a prachu), spotřebou přírodních zdrojů (využití odpadních látek úspora přírodních zdrojů, využití recyklátů), úsporou energií (teplo, elektrická energie).

55 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Bezpečnostní požadavky Stejně závažné jsou požadavky, které vyplývají z legislativy a požadavků bezpečnosti a ochrany zdraví při práci. Zde se jedná zejména o: identifikace nebezpečí, rizik a tzv. skoronehod, požární bezpečnost, hygienu, ochranu zdraví, uživatelskou bezpečnost.

56 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Kvalitativní a technické požadavky Vycházejí z podstaty postupu nebo procesu, který je analyzován. Zejména se jedná o rizika nesplnění: normativních předpisů, požadavků zákazníka a ostatních zainteresovaných stran

57 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Kvalitativní a technické požadavky Vycházejí z podstaty postupu nebo procesu, který je analyzován. Zejména se jedná o rizika nesplnění: normativních předpisů, požadavků zákazníka a ostatních zainteresovaných stran

58 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Stanovení závažnosti rizika Ohodnocení expertem Výpočet Pravděpodobnost výskytu daného rizika Zkoumané riziko Zájem zainteresovaných skupin o riziko Celková závažnost rizika Možnost předcházení realizace rizika Postup výpočtů

59 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Pravděpodobnost výskytu daného rizika Parametr Popis parametru Hodnocení Trvalá Častý Malá Výjimečná Riziko je z hlediska organizace nevýznamné, legislativní požadavky splněny Riziko je z hlediska organizace významný, legislativní požadavky splněny, potřeba řešení není naléhavá Riziko je významné, legislativní požadavky dosud plněny, potřeba řešení je naléhavá (hodnocení je dále použito pokud jeden z hodnotících parametrů má hodnotu 5) Riziko je velmi významné, potřeba řešení je prioritní, v případě neplnění legislativních požadavků je potřeba řešení akutní (hodnocení je dále použito pokud dva z hodnotících parametrů mají hodnotu 5) Nepravděpodobná Realizace rizika je možný pouze teoreticky 1

60 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Zájem zainteresovaných skupin o riziko Parametr Popis parametru Hodnocení Malý Střední Velký Zainteresované strany a skupiny neprojevují o dané riziko zájem Zainteresované strany a skupiny projevují o dané riziko zájem (například při diskusích na školení zaměstnanců) Zainteresované strany projevují o riziko vážný zájem (komunikace se zainteresovanými stranami, petice, zájem sdělovacích prostředků) 1 2 3

61 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Možnost předcházení realizace rizika Parametr Popis parametru Hodnocení Nemožné Výskyt aspektu je zcela nepředvídatelný, opatření k zamezení jsou pouze na úrovni havarijní připravenosti a reakce 5 Omezené Možné Výskyt aspektu je těžko předvídatelný, opatření k zamezení jsou známa ale těžko použitelná Výskyt aspektu je těžko předvídatelný, opatření k zamezení jsou známa a jsou používána (záchytné vany) 4 3 Náhodný Snadné Výskyt aspektu je častý, zpravidla zaviněný technologickou nekázní nebo mu nelze zcela zabránit, opatření k omezení jsou známa a standardně používána Výskyt je snadno předvídatelný, opatření k předcházení jsou známá a použitelná 2 1

62 Celková klasifikace závažnosti je vypočítávána jako součin všech kritérií. Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Parametr Popis parametru Hodnocení Minimální Riziko je tak nepravděpodobné, že není společností bráno v úvahu do 10 Malá Činnost, ve které riziko vzniká, splňuje legislativní, normativní a další podmínky, potřeba řešení problémů není naléhavá, výskyt rizika je snadno předvídatelný, opatření k předcházení jsou známa a snadno použitelná Střední Rizika spojená s činností nejsou významná, potřeba řešení problémů není naléhavá, výskyt je častý, snadno předvídatelný, opatření k předcházení jsou známa a standardně používána Významná Rizika spojená s činností mohou způsobit neplnění legislativních podmínek, potřeba řešení je naléhavá, výskyt je předvídatelný, opatření k předcházení jsou známa a standardně používána, výskyt rizika nepůsobí přímé finanční ztráty, poškození zdraví, majetku nebo životním prostředí, zjednání nápravy je v silách společnosti. Potřeba řízení rizik v činnosti je prioritní, zainteresované strany a skupiny projevují o dané riziko zájem, je nutné školení a kontrola pracovníků. Rizika spojená s činností Velmi mohou způsobit neplnění legislativních podmínek, výskyt je předvídatelný, opatření významná k předcházení jsou známa a používána, výskyt rizika zpravidla způsobí přímé finanční ztráty, poškození zdraví, majetku nebo životním prostředí, zjednání nápravy je v silách společnosti. Riziko spojené s činností je z hlediska organizace extrémně významné, potřeba řešení je prioritní, zainteresované strany a skupiny projevují o dané riziko vážný Kritická zájem, je nutné školení a kontrola pracovníků, výskyt je předvídatelný, opatření k předcházení jsou známa a používána, výskyt rizika zpravidla působí přímé finanční více ztráty, poškození zdraví, majetku nebo životního prostředí, zjednání nápravy zpravidla není zcela v silách společnosti.

63 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Celková klasifikace závažnosti

64 Kvantifikace kvalitativních environmentálních a bezpečnostních rizik Shrnutí

65 Děkuji za pozornost Petr Misák Ústav stavebního zkušebnictví FAST VUT v Brně

Jednoduché nástroje řízení jakosti

Jednoduché nástroje řízení jakosti Jednoduché nástroje řízení jakosti Jednoduché nástroje řízení jakosti Ing. Tomáš Vymazal, Ph.D. VUT FAST v Brně Ústav stavebního zkušebnictví vymazal.t@fce.vutbr.cz Chceme-li řídit jakost, musíme o ní

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Systémy řízení QMS, EMS, SMS, SLP

Systémy řízení QMS, EMS, SMS, SLP Systémy řízení QMS, EMS, SMS, SLP Ústí nad Labem 11/2013 Ing. Jaromír Vachta Systém řízení QMS Systém managementu kvality Systém řízení podle ČSN EN ISO 9001:2009 - stanovení, pochopení a zajištění plnění

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter

1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter NORMY A STANDARDY KVALITY 1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter pokud u výrobku, který byl vyroben podle

Více

Management kvality, environmentu a bezpečnosti práce

Management kvality, environmentu a bezpečnosti práce Jaromír Veber a kol. Management kvality, environmentu a bezpečnosti práce Legislativa, systémy, metody, praxe Management Press, Praha 2006 Autorský kolektiv: Ing. Marie Hůlová, CSc. subkapitola 6.6 Ing.

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

ČSN EN ISO 50001:2012 ZKUŠENOSTI S UPLATŇOVÁNÍM

ČSN EN ISO 50001:2012 ZKUŠENOSTI S UPLATŇOVÁNÍM ČSN EN ISO 50001:2012 ZKUŠENOSTI S UPLATŇOVÁNÍM EnMS 1 SYSTÉM MANAGEMENTU HOSPODAŘENÍ S ENERGIÍ Záměrem je přijetí a zavedení systematického přístupu k dosahování neustálého zlepšování energetické náročnosti,

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

AUDITOR EMS PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.9/2007

AUDITOR EMS PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.9/2007 Gradua-CEGOS, s.r.o., certifikační orgán pro certifikaci osob č. 3005 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17024 AUDITOR EMS PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ

Více

MANAŽER EMS PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.8/2007

MANAŽER EMS PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.8/2007 Gradua-CEGOS, s.r.o., certifikační orgán pro certifikaci osob č. 3005 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17024 MANAŽER EMS PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Přehled technických norem z oblasti spolehlivosti

Přehled technických norem z oblasti spolehlivosti Příloha č. 1: Přehled technických norem z oblasti spolehlivosti NÁZVOSLOVNÉ NORMY SPOLEHLIVOSTI IDENTIFIKACE NÁZEV Stručná charakteristika ČSN IEC 50(191): 1993 ČSN IEC 60050-191/ Změna A1:2003 ČSN IEC

Více

SW podpora při řešení projektů s aplikací statistických metod

SW podpora při řešení projektů s aplikací statistických metod SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Porovnání softwarových produktů pro podporu hodnocení způsobilosti technologických procesů. Bc. Jan VERBERGER

Porovnání softwarových produktů pro podporu hodnocení způsobilosti technologických procesů. Bc. Jan VERBERGER Porovnání softwarových produktů pro podporu hodnocení způsobilosti technologických procesů Bc. Jan VERBERGER Diplomová práce 2006 UTB ve Zlíně, Fakulta technologická 3 UTB ve Zlíně, Fakulta technologická

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

výchovy a sportu v testu 12minutového plavání

výchovy a sportu v testu 12minutového plavání Zpracovala: Pokorná Jitka Katedra plaveckých sportů UK FTVS Výkonnost studentů 1.. ročník níků Fakulty tělesné výchovy a sportu v testu 12minutového plavání Irena Čechovská, Barbora Čechovská, Gabriela

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Úvod. Projektový záměr

Úvod. Projektový záměr Vzdělávací program Řízení jakosti a management kvality Realizátor projektu: Okresní hospodářská komora Karviná Kontakt: Svatováclavská 97/6 733 01 KARVINÁ +420 596 311 707 hkok@hkok.cz www.akademieok.cz

Více

Statistika pro gymnázia

Statistika pro gymnázia Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. 9. přednáška Normy ISO 9001, ISO 14001 a OHSAS 18001 Doc.

Více

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR 1 aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Úvod. Postup praktického testování

Úvod. Postup praktického testování Testování vzorků kalů odebraných v rámci Doškolovacího semináře Manažerů vzorkování odpadů 21. 10. 2014 v ČOV Liberec, akciové společnosti Severočeské vodovody a kanalizace Úvod Společnost Forsapi, s.r.o.

Více

Projektový manažer 250+ Kariéra projektového manažera začíná u nás! G Řízení kvality, kontroling, rizika. G1 Řízení projektu

Projektový manažer 250+ Kariéra projektového manažera začíná u nás! G Řízení kvality, kontroling, rizika. G1 Řízení projektu Projektový manažer 250+ Kariéra projektového manažera začíná u nás! G Řízení kvality, kontroling, rizika G1 Řízení projektu Anotace tématu: V rámci tohoto tématu jsou nejprve probrány základní informace

Více

Obsah. iii 1. ÚVOD 1 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY RIZIKA 5

Obsah. iii 1. ÚVOD 1 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY RIZIKA 5 Obsah 1. ÚVOD 1 1.1 ÚVOD 1 1.2 PROČ JE ŘÍZENÍ RIZIK DŮLEŽITÉ 1 1.3 OBECNÁ DEFINICE ŘÍZENÍ RIZIK 2 1.4 PŮVOD VZNIKU A STRUKTURA 3 1.5 ZÁMĚR 3 1.6 ROZSAH KNIHY 4 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

A05 Stanovení způsobů ověření Praktické předvedení praktická neznamená jen manuální nebo ruční

A05 Stanovení způsobů ověření Praktické předvedení praktická neznamená jen manuální nebo ruční A05 Stanovení způsobů ověření Způsob ověření se stanovuje pro každé jednotlivé kritérium. Určuje, jakým postupem je kritérium ověřováno. Základní způsoby ověření jsou: - praktické předvedení - písemné

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 CZ.1.07/1.5.00/34.0410 VI/2 Rozvoj finanční

Více

Zdravotnické laboratoře. MUDr. Marcela Šimečková

Zdravotnické laboratoře. MUDr. Marcela Šimečková Zdravotnické laboratoře MUDr. Marcela Šimečková Český institut pro akreditaci o.p.s. 14.2.2006 Obsah sdělení Zásady uvedené v ISO/TR 22869- připravené technickou komisí ISO/TC 212 Procesní uspořádání normy

Více

1. soustředění (2 hod.)

1. soustředění (2 hod.) Metodický list kombinovaného studia předmětu MnJ - MANAGEMENT JAKOSTI Název tématického celku: Systémy jakosti 1. soustředění (2 hod.) Cíl: Cílem tématického celku je objasnit význam systému managementu

Více

REGISTR RIZIK REGISTR RIZIK - STAVBA BOURACÍ PRÁCE. společnost: Zpracoval: Podpis: Datum: Schválil: Podpis: Datum:

REGISTR RIZIK REGISTR RIZIK - STAVBA BOURACÍ PRÁCE. společnost: Zpracoval: Podpis: Datum: Schválil: Podpis: Datum: REGISTR RIZIK - hodnocení rizik možného ohrožení bezpečnosti a zdraví zaměstnanců včetně identifikace nebezpečí, hodnocení a řízení rizik pro: STAVBA BOURACÍ PRÁCE společnost: Hřbitovní 15, 312 00 Plzeň

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Systém environmentálního řízení

Systém environmentálního řízení EMS Systém environmentálního řízení Pavel Růžička, MŽP Seminář k environmentální politice pro MSP Brno, 14.12.2007 Systémy environmentálního řízení Systematický přístup k ochraně ŽP ve všech směrech podnikatelské

Více

Řízení rizik. Ing. Petra Plevová. plevova.petra@klikni.cz http://plevovapetra.wbs.cz

Řízení rizik. Ing. Petra Plevová. plevova.petra@klikni.cz http://plevovapetra.wbs.cz Řízení rizik Ing. Petra Plevová plevova.petra@klikni.cz http://plevovapetra.wbs.cz Procesní řízení a řízení rizik V kontextu současných změn je třeba vnímat řízení jakékoli organizace jako jednoduchý,

Více

Management. Rozhodování. Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky

Management. Rozhodování. Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky Management Rozhodování Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Více

Procesy, procesní řízení organizace. Výklad procesů pro vedoucí odborů krajského úřadu Karlovarského kraje

Procesy, procesní řízení organizace. Výklad procesů pro vedoucí odborů krajského úřadu Karlovarského kraje Procesy, procesní řízení organizace Výklad procesů pro vedoucí odborů krajského úřadu Karlovarského kraje Co nového přináší ISO 9001:2008? Vnímání jednotlivých procesů organizace jako prostředku a nástroje

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

VYUŽITÍ SWOT ANALÝZY PRO DLOUHODOBÉ PLÁNOVÁNÍ

VYUŽITÍ SWOT ANALÝZY PRO DLOUHODOBÉ PLÁNOVÁNÍ OBRANA A STRATEGIE Anotace: VYUŽITÍ SWOT ANALÝZY PRO DLOUHODOBÉ PLÁNOVÁNÍ Ing. Monika Grasseová, Ph.D. Cílem příspěvku je informovat o praktickém postupu použití SWOT analýzy při dlouhodobém plánování,

Více

Č.t. Téma školení Cílová skupina Rozsah

Č.t. Téma školení Cílová skupina Rozsah Témata školení Č.t. Téma školení Cílová skupina Rozsah I. Všeobecné požadavky I.1. Základní požadavky ISO 9001 - Procesní přístup - Vysvětlení vybraných požadavků ISO 9001 I.2. Základní požadavky ISO/TS

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Techniky detekce a určení velikosti souvislých trhlin

Techniky detekce a určení velikosti souvislých trhlin Techniky detekce a určení velikosti souvislých trhlin Přehled Byl-li podle obecných norem nebo regulačních směrnic detekovány souvislé trhliny na vnitřním povrchu, musí být následně přesně stanoven rozměr.

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

Metodika implementace Průřezového tématu Environmentální výchova I

Metodika implementace Průřezového tématu Environmentální výchova I Elektronická publikace Metodika implementace Průřezového tématu Environmentální výchova I Zpracovaly: Bc. Jaroslava Rozprýmová a Mgr. Milica Sedláčková Témata: 1. Zemědělství a životní prostředí 2. Ekologické

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

ZÁVĚREČ Á ZPRÁVA ROK 2007

ZÁVĚREČ Á ZPRÁVA ROK 2007 Ing. Zdenka Kotoulová SLEEKO Dětská 288/1915, 100 00 Praha 10 ZÁVĚREČ Á ZPRÁVA ROK 2007 PŘÍLOHA 1: Charakteristiky živnostenských odpadů v EU a metodické přístupy jejich zjišťování (rešeršní zpráva) Označení

Více

Hodnocení kvality logistických procesů

Hodnocení kvality logistických procesů Téma 5. Hodnocení kvality logistických procesů Kvalitu logistických procesů nelze vyjádřit absolutně (nelze ji měřit přímo), nýbrž relativně porovnáním Hodnoty těchto znaků někdo buď předem stanovil (norma,

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

3/4.5 PRÁCE S CÍLI ISŘ S OHLEDEM NA POŽADAVKY ZAINTERESOVANÝCH STRAN

3/4.5 PRÁCE S CÍLI ISŘ S OHLEDEM NA POŽADAVKY ZAINTERESOVANÝCH STRAN INTEGROVANÝ SYSTÉM ŘÍZENÍ část 3, díl 4, kapitola 5, str. 1 ddíl 4, efektivnost ISŘ přínosy a bariéry 3/4.5 PRÁCE S CÍLI ISŘ S OHLEDEM NA POŽADAVKY ZAINTERESOVANÝCH STRAN Při práci auditora systémů managementu

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser

MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser MANAŽERSKÉ ROZHODOVÁNÍ Zpracoval Ing. Jan Weiser Obsah výkladu Rozhodovací procesy a problémy Dvě stránky rozhodování Klasifikace rozhodovacích procesů Modely rozhodování Nástroje pro podporu rozhodování

Více

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK 1. Na základě údajů uvedených v tabulce rozhodněte, zda existuje závislost mezi roky a počtem firem ve Šluknovském výběžku, které zaměstnávaly osoby zdravotně

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

ENVIRONMENTÁLNÍ EKONOMIKA I.

ENVIRONMENTÁLNÍ EKONOMIKA I. ENVIRONMENTÁLNÍ EKONOMIKA I. Ekonomické škody ze znehodnocování životního prostředí Ing. Alena Bumbová, Ph.D. Univerzita obrany Fakulta ekonomiky a managementu Katedra ochrany obyvatelstva Kounicova 65

Více

Aktuální legislativa v oblasti integrované prevence 2014 Změny ve vzoru žádosti

Aktuální legislativa v oblasti integrované prevence 2014 Změny ve vzoru žádosti Aktuální legislativa v oblasti integrované prevence 2014 Změny ve vzoru žádosti Ondřej Skoba Odbor životního prostředí a zemědělství Oddělení hodnocení ekologických rizik Praha, 11.09.2014 Struktura prezentace

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC PROJEKTOVÉ ŘÍZENÍ STAVEB FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České

Více

Koncentrace formaldehydu ve vnitřním prostředí

Koncentrace formaldehydu ve vnitřním prostředí Koncentrace formaldehydu ve vnitřním prostředí (výsledky měření) M. Mikešová, V. Vrbíková Centrum laboratorních činností SZÚ Praha Odbor chemických a fyzikálních laboratoří Použité fotografie pochází z

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

SPECIFIKA CERTIFIKACE PODLE ČSN EN ISO 9001:2001 V ORGANIZACÍCH, KTERÉ SE ZABÝVAJÍ VÝVOJEM SOFTWARE

SPECIFIKA CERTIFIKACE PODLE ČSN EN ISO 9001:2001 V ORGANIZACÍCH, KTERÉ SE ZABÝVAJÍ VÝVOJEM SOFTWARE SPECIFIKA CERTIFIKACE PODLE ČSN EN ISO 9001:2001 V ORGANIZACÍCH, KTERÉ SE ZABÝVAJÍ VÝVOJEM SOFTWARE Václav Šebesta Ústav informatiky Akademie věd ČR, e-mail: vasek@cs.cas.cz Abstrakt Jestliže ještě před

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Obsah. 1.1 Práce se záznamy... 3 1.2 Stránka Dnes... 4. 2.1 Kontakt se zákazníkem... 5

Obsah. 1.1 Práce se záznamy... 3 1.2 Stránka Dnes... 4. 2.1 Kontakt se zákazníkem... 5 CRM SYSTÉM KORMORÁN UŽIVATELSKÁ PŘÍRUČKA Obsah 1 Základní práce se systémem 3 1.1 Práce se záznamy................................. 3 1.2 Stránka Dnes.................................... 4 1.3 Kalendář......................................

Více

MANAŽER SM BOZP PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.10/2007

MANAŽER SM BOZP PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.10/2007 Gradua-CEGOS, s.r.o., certifikační orgán pro certifikaci osob č. 3005 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17024 MANAŽER SM PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ

Více

Ochrana ovzduší v rámci IPPC, legislativní rámec BREF

Ochrana ovzduší v rámci IPPC, legislativní rámec BREF Ochrana ovzduší v rámci IPPC, legislativní rámec BREF Aplikace BAT po novele zákona o integrované prevenci Ing. Jan Slavík, Ph.D. Dny teplárenství a energetiky Hradec Králové, 25.04.2014 Výjimka z aplikace

Více

Posouzení vlivů Programu rozvoje Libereckého kraje 2007-2013 na životní prostředí. Veřejné projednání Liberec, 9. srpna 2007 Mgr.

Posouzení vlivů Programu rozvoje Libereckého kraje 2007-2013 na životní prostředí. Veřejné projednání Liberec, 9. srpna 2007 Mgr. Posouzení vlivů Programu rozvoje Libereckého kraje 2007-2013 na životní prostředí Veřejné projednání Liberec, 9. srpna 2007 Mgr. Michal Musil Obsah prezentace Základní informace o SEA Metodický přístup

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Workshop 31. 1. 2008 Ostrava Procesní a systémová FMEA analýza možných vad a jejich důsledků

Workshop 31. 1. 2008 Ostrava Procesní a systémová FMEA analýza možných vad a jejich důsledků 31. 1. 2008 Ostrava Procesní a systémová FMEA analýza možných vad a jejich důsledků Získat teoretické znalosti snižování rizika ve výrobních procesech a systémech. Umět aplikovat získané znalosti při řešení

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Energy Strategic Asset Management. D12/15.2 User Manual CZECH REPUBLIC

Energy Strategic Asset Management. D12/15.2 User Manual CZECH REPUBLIC Energy Strategic Asset Management D12/15.2 User Manual CZECH REPUBLIC Projekt ESAM - Energeticky účinné strategické řízení domovního fondu Uživatelský manuál Softwarový nástroj projektu ESAM Dne: 1.12.2008

Více

ZO/04 PŘÍRUČKA INTEGROVANÉHO SYSTÉMU MANAGEMENTU

ZO/04 PŘÍRUČKA INTEGROVANÉHO SYSTÉMU MANAGEMENTU Druh dokumentu: Vydání č.: ZÁKLADNÍ ORGANIZAČNÍ NORMA Registrační číslo dokumentu: ZO/04 6 Účinnost vydání od: 5.9.2011 Tento dokument ruší: Název dokumentu: PŘÍRUČKA INTEGROVANÉHO SYSTÉMU MANAGEMENTU

Více

Bohemius, k.s. www.bohemius.cz

Bohemius, k.s. www.bohemius.cz Bohemius, k.s. Je vývoj výsledků provozoven závislý na konkrétním zaměstnanci? Je to náhoda, nebo úmysl? Umíme předpovědět vývoj dat v našich podmínkách? Jaké mohu očekávat výkyvy? Jaké je tedy riziko

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více