Organely vyskytující se pouze u rostlinné bu ky. Bun ná st na neživá sou ást všech rostlinných bun k (celulóza)
|
|
- Kristýna Vlčková
- před 10 lety
- Počet zobrazení:
Transkript
1 Organely vyskytující se pouze u rostlinné bu ky Bun ná st na neživá sou ást všech rostlinných bun k (celulóza)
2
3 Plastidy semiautonomní organely charakteristické pro zelené rostliny 1. Bezbarvé leukoplasty heterotrofní pletiva, slouží k ukládání zásobních látek (amyloplasty-škrob, proteinoplasty proteiny, elaioplasty-tuky) 2. Barevné s r znými pigmenty: a) Fotosynteticky aktivní CHLOROPLASTY zelené RODOPLASTY ervené FEOPLASTY hn dé b) Fotosynteticky neaktivní - CHROMOPLASTY Chloroplast kovitý tvar, na povrchu dvojitá membrána. Vn jší tvo í tylakoidy a jejich navrstvením vzniká grana. Prostor uvnit se nazývá matrix = stroma Funkce: FOTOSYNTÉZA
4
5
6 Rozmnožování A) NEPOHLAVNÍ - lení bu ky -Pu ení -Fragmentace -Vegetativní rozmnožování -Tvorba výtrus B) POHLAVNÍ -Tvorba pohlavních bun k
7 Bun ný cyklus
8 Kontrolní body bun ného cyklu
9 Typy d lení Amitóza = p ímé d lení Probíhá jen vyjíme, hlavn u nemocných bun k. Dce inné bu ky nemají rovnocené množství DNA a nejsou schopny normálního života. Netvo í se chromozómy a nevzniká d lící aparát. Mitóza = nep ímé d lení Probíhá u v tšiny bun k a zabezpe uje rovnom rné rozd lení genetického materiálu mezi dce inné bu ky. 1. KARYOKINEZE - profáze - metafáze - anafáze - telofáze 2. CYTOKINEZE - proud ním cytoplasmy se p ibližn rozd lí na bun né organely do vznikajících dce inných bun k - v rovníkové rovin bu ky se za íná tvo it p epážka
10 a)pu ENÍ probíhá u n kterých jednobun ných organism (kvasinky, prvoci) - cytoplasma se rozd lí nerovnom rn - na mate ské bu ce vznikne pupen, který se odd lí b) ZAŠKRCOVÁNÍ rýhování probíhá u živo išných bun k c) P EHRÁDE NÉ D LENÍ probíhá u rostlinných bun k Meioza = reduk ní = zrací d lení Uplat uje se p i zrání rozmnožovacích bun k (gamet, spór). Probíhá proto, aby p i pohlavním rozmnožování organismu nedocházelo k násobení po tu chromozóm. Z p vodní diploidní mate ské bu ky vzniknou ty i haploidní bu ky dce inné.
11 Bun ný cyklus - mitóza
12 Chromosomy Haploidní po et chromosom (n sada = 23) - obsahuje navzájem r zné (heterogenní) chromosomy = gonosomy Diploidní po et chromosom (2n sada = 46)!-! obsahují páry navzájem shodných (homologních) chromosom
13
14 Meioza
15 Srovnání meiozy s mitozou
16
17 Realizace genetické informace
18 Replikace
19
20
21 DNA-polymeráza! Syntéza probíhá ve sm ru 5-3!
22
23
24 Transkripce
25 Exon vs. Intron
26 trna Translace
27
28
29
30
31 Srovnání realizace genetické informace u prokaryot a eukaryot
32 DNA - technologie
33 Sekvenování DNA
34 Klonování DNA
35 PCR polymerázová et zová reakce
36 Poškození DNA Velice závažný stav Poškození DNA se odrazí v syntéze poškozených protein Repara ní mechanismy DNA Rozmnožovací schopnosti bun k
37 Mechanismy poškození DNA
38
39 Repara ní mechanismy DNA P ímá reparace Excisní reparace Mismatch reparace SSB reparace (DSB reparace)
40 Systém oprav chybného párování bází u savc Poškozený et zec DNA obsahuje nesprávn párovanou bázi (T). Toto nesprávné párování je rozpoznáno proteinovým heterodimerem MSH6-MSH2 (MutS α). Proteiny MLH1/PMS2 (MutL a) a PCNA (prolifera ní jaderný antigen) utvo í na DNA strukturu smy ky (angl. loop structure). Enzymy DNA exonukleáza a DNA helikáza degradují tu ást et zce DNA, která obsahuje chybné párování. Vzniklá mezera je poté dopln na díky replika nímu aparátu správnou sekvencí bází.
41 Další signální cesta Aktivace neopravenými nebo nereplikovanými úseky DNA Výsledkem je poté blokáda bun ného cyklu v G 1 /S a G 2 /M fázi poskytnutí asu pro reparaci DNA Protein p53 inhibice b.c. p íp. apoptóza
42 Význam proteinu p53 Nádorový supresor Nej ast jší mutace u lidských onkologických onemocn ní (nad 50%) Sekven specifický transkrip ní faktor Zastavení bun ného cyklu Apoptóza Diferenciace
43 Protein p53 je mutovaný v zných typech nádor
44 Metabolismus! P em na látek a energie! Dva typy proces : a) Anabolické = biosyntetické - vznik nových složit jších látek - spot eba energie ENDERGONICKÉ D JE b) Katabolické = rozkladné - vznik jednodušších látek - zisk energie EXERGONICKÉ D JE
45 ATP nejb žn jší typ zdroje energie pro živé organismy
46 1.Podle zdroje p ijímané energie a) Fotofrofní organismy b) Chemotrofní organismy Chemoorganotrofie Chemolitotrofie 2.Podle zdroje stavebního materiálu a) Autotrofní organismy b) Heterotrofní organismy 3.Podle vztahu ke kyslíku a) Aerobní organismy b) Anaerobní organismy c) Fakultativn anaerobní organismy
47 Hlavní metabolické pochody Fotosyntéza Biosyntéza polysacharid Glykolýza Citrátový (Krebs v) cyklus Dýchací et zec Pentózový cyklus Proteosyntéza Biosyntéza triacylglycerol β-oxidace Replikace a transkripce DNA
48 Základní funkce (mnohobun ných) organism p íjem látek a energie a jejich výdej p íjem signál z okolí a jejich zpracování ízení všech proces v organismu pohyb v prostoru ochrana a obrana rozmnožování
Zemědělská botanika. Vít Joza joza@zf.jcu.cz
Zemědělská botanika Vít Joza joza@zf.jcu.cz Botanika: její hlavní obory systematická botanika popisuje, pojmenovává a třídí rostliny podle jejich příbuznosti do botanického systému anatomie zabývá se vnitřní
- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )
Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna
Eukaryotická buňka. Stavba. - hlavní rozdíly:
Eukaryotická buňka - hlavní rozdíly: rostlinná buňka živočišná buňka buňka hub buněčná stěna ano (celulóza) ne ano (chitin) vakuoly ano ne (prvoci ano) ano lysozomy ne ano ne zásobní látka škrob glykogen
1.Biologie buňky. 1.1.Chemické složení buňky
1.Biologie buňky 1.1.Chemické složení buňky 1. Stavbu molekuly DNA objasnil: a) J. B. Lamarck b) W. Harwey c) J.Watson a F.Crick d) A. van Leeuwenhoeck 2. Voda obsažená v buňkách je: a) vázaná na lipidy
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Karyokineze. Amitóza. Mitóza. Meióza. Dělení jádra. Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky.
Karyokineze Dělení jádra Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky Druhy karyokineze Amitóza Mitóza Meióza Amitóza Přímé dělení jádra Genetická informace je rozdělena
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
Mitóza, meióza a buněčný cyklus. Milan Dundr
Mitóza, meióza a buněčný cyklus Milan Dundr Rozmnožování eukaryotických buněk Mitóza (mitosis) Mitóza dělení (nepřímé) tělních (somatických) buněk 1 jádro s2n (diploidním počtem) chromozómů (dvouchromatidových)
Číslo a název projektu Číslo a název šablony
Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05
Základy buněčné biologie
Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách
Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako
4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola
4. Eukarya - plastidy, mitochondrie, cytoskelet, vakuola Plastidy odděleny dvojitou membránou (u vyšších rostlin) - bezbarvé leukoplasty (heterotrofní pletiva) funkce: zásobní; proteinoplasty, - barevné
Metabolismus příručka pro učitele
Metabolismus příručka pro učitele Obecné informace Téma Metabolismus je určeno na čtyři až pět vyučovacích hodin. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí. Celek
Stavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
http://www.accessexcellence.org/ab/gg/chromosome.html
3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické
ROZMNOŽOVÁNÍ BUŇKY příručka pro učitele
ROZMNOŽOVÁNÍ BUŇKY příručka pro učitele Obecné informace Téma Rozmnožování buňky je určeno na dvě až tři vyučovací hodiny. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí.
Bu?ka - maturitní otázka z biologie (6)
Bu?ka - maturitní otázka z biologie (6) by Biologie - Pátek, Únor 21, 2014 http://biologie-chemie.cz/bunka-6/ Otázka: Bu?ka P?edm?t: Biologie P?idal(a): david PROKARYOTICKÁ BU?KA = Základní stavební a
Výukový materiál zpracovaný v rámci projektu Výuka modern
St ední pr myslová škola strojnická Olomouc, t. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka modern Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 P írodov dné
Úvod do radia ní patofyziologie
Úvod do radia ní patofyziologie Ionizující zá ení Zá ení emitované radioaktivními nuklidy edstavuje proud hmotných ástic resp. foton Elektromagnetické nebo korpuskulární zá ení, které p i pr niku hmotou
8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů
Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího
Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Inovace studia molekulární. a buněčné biologie
Inovace studia molekulární I n v e s t i c e d o r o z v o j e v z d ě l á v á n í a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Organismy. Látky. Bakterie drobné, okem neviditelné, některé jsou původci nemocí, většina z nich je však velmi užitečná a v přírodě potřebná
Organismy Všechny živé tvory dohromady nazýváme živé organismy (zkráceně "organismy") Živé organismy můžeme roztřídit na čtyři hlavní skupiny: Bakterie drobné, okem neviditelné, některé jsou původci nemocí,
Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU
BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů
Rozmnožování buněk Vertikální přenos GI. KBI / GENE Mgr. Zbyněk Houdek
Rozmnožování buněk Vertikální přenos GI KBI / GENE Mgr. Zbyněk Houdek Buněčný cyklus Buňky vznikají z bb. a jedinou možnou cestou, jak vytvořit více bb. je jejich dělením. Vertikální přenos GI: B. (mateřská)
Mitóza a buněčný cyklus
Mitóza a buněčný cyklus Něco o chromosomech - Chromosom = 1 molekula DNA + navázané proteiny -V diploidní buňce jsou od každého chromosomu 2 kopie (= homologní chromosomy) - Homologní chromosomy nesou
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
Spermatogeneze saranče stěhovavé (Locusta migratoria)
Spermatogeneze saranče stěhovavé (Locusta migratoria) Vývoj pohlavních buněk u živočichů zahrnuje několik dějů, které zajistí, že dojde k redukci a promíchání genetického materiálu a vzniklé buňky jsou
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost
VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické
Aplikované vědy. Hraniční obory o ţivotě
BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)
Model mitózy Kat. číslo 103.7491
Model mitózy Kat. číslo 103.7491 Mitóza Mitóza, nazývaná také nepřímé jaderné dělení nebo ekvační dělení, je nejvíce rozšířená forma rozmnožování buněk. Buňka (mateřská buňka) se přitom rozdělí na 2 dceřiné
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Výukový materiál zpracovaný v rámci projektu Výuka modern
St ední pr myslová škola strojnická Olomouc, t. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka modern Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 P írodov dné
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,
Výukový materiál zpracovaný v rámci projektu Výuka modern
St ední pr myslová škola strojnická Olomouc, t. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka modern Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 P írodov dné
Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD
Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Cvičeníč. 4: Chromozómy, karyotyp a mitóza. Mgr. Zbyněk Houdek
Cvičeníč. 4: Chromozómy, karyotyp a mitóza Mgr. Zbyněk Houdek Chromozomy Geny jsou u eukaryotických organizmů z převážnéčásti umístěny právě na chromozómech v b. jádře. Jejich velikost a tvar jsou rozmanité,
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE
Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.
Kyselina hyaluronová. Kyselina hyaluronová. Streptococcus equi subsp. produkovaná kyselina hyaluronová a. Autor prezentace: Mgr.
Kyselina hyaluronová Streptococcus equi subsp. zooepidemicus a jím produkovaná kyselina hyaluronová a glukuronidáza Marcela Tlustá Biotechnologická laborato Meyer a Palmer, 1934 Extracelulární matrix,
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 1 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Charakteristika buněčného cyklu eukaryot
FOTOSYNTÉZA Správná odpověď:
FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází
Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings
Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy
Maturitní témata Biologie MZ 2017
Maturitní témata Biologie MZ 2017 1. Buňka - stavba a funkce buněčných struktur - typy buněk - prokaryotní buňka - eukaryotní buňka - rozdíl mezi rostlinnou a živočišnou buňkou - buněčný cyklus - mitóza
Výukový materiál zpracovaný v rámci projektu Výuka modern
St ední pr myslová škola strojnická Olomouc, t. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka modern Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 P írodov dné
Maturitní témata - BIOLOGIE 2018
Maturitní témata - BIOLOGIE 2018 1. Obecná biologie; vznik a vývoj života Biologie a její vývoj a význam, obecná charakteristika organismů, přehled živých soustav (taxonomie), Linného taxony, binomická
Souhrnný test A. 3. c,d
Souhrnný test A Platí: 1. Molekuly bílkovin jsou stavební součástí 1. a,b a) všech protilátek, b) některých hormonů, 2. c,d c) enzymů katalyzujících pochody buněčného metabolismu, 3. b,c,d d) všech buněčných
MENDELISMUS GENOVÉ INTERAKCE NEMENDELISMUS
MENDELISMUS GENOVÉ INTERAKCE NEMENDELISMUS Biologie a genetika BSP, LS4, 2014/2015, Ivan Literák 4. GENOVÉ INTERAKCE Dva (příp. více) geny ovlivňují 1 znak (kvalitativní!) 2 major-geny se ovlivňují -
1 (2) CYTOLOGIE stavba buňky
1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Stavba prokaryotické buňky
Prokaryota Stavba prokaryotické buňky Stavba prokaryotické buňky Tvary bakterií Rozmnožování bakterií - 1) příčné dělení nepohlavní 2) pučení 3) pomocí artrospór artrospóra vzniká fragmentací vláken u
- pro učitele - na procvičení a upevnění probírané látky - prezentace
Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby
DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje.
Genomika DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje. Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat
CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor: Mgr. Barbora Blažková Tematický celek: Základy ekologie Cílová skupina: 1. ročník SŠ Anotace Kontrolní test navazuje na prezentaci, která seznámila žáky se základy buněčné teorie, s druhy buněk,
Experimentáln navozený radia ní syndrom u laboratorního zví ete
Experimentáln navozený radia ní syndrom u laboratorního zví ete Cíl praktika Základy radiobiologie Model akutní nemoci z ozá ení krevní forma Vyhodnocení dat získaných b hem praktika na modelu akutní nemoci
Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,...
Dělení buňky Biologie člení živé organizmy do dvou hlavních kategorií: prokaryotní a eukaryotní organizmy. Na základě srovnání 16S rrna se zjistilo, že na naší planetě jsou 3 hlavní nadříše buněčných forem:
Okruhy otázek ke zkoušce
Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.
Gymnázium Františka Palackého Valašské Meziříčí
1. Buňka základy buněčné teorie (R. Hooke, M. J. Schleiden, T. Schwann, J. E. Purkyně), chemické složení buňky, stavba prokaryotické a eukaryotické buňky, funkce buněčných organel, rozdíly ve stavbě buňky
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie. Mezipředmětové
Klonování gen a genové inženýrství
Klonování gen a genové inženýrství Genové inženýrství užite né termíny Rekombinantní DNA = DNA, ve které se nachází geny nejmén ze dvou zdroj, asto ze dvou zných druh organism Biotechnologie = manipulace
Otázky ke zkoušce z Biologie (MSP, FVHE, FVL) a ke zkoušce z Biologie a mol. biol. metod (BSP, FVHE), 2018/2019
1 Otázky ke zkoušce z Biologie (MSP, FVHE, FVL) a ke zkoušce z Biologie a mol. biol. metod (BSP, FVHE), 2018/2019 Okruh A 1. Definice a podstata života, princip hierarchických systémů živých soustav 2.
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
Endocytóza o regulovaný transport látek v buňce
. Endocytóza o regulovaný transport látek v buňce Exocytóza BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 KBB/ZGEN Základy genetiky Dana Šafářová KBB/ZGEN Základy genetiky Rozsah: 2+1
STRUKTURA A FUNKCE ORGANISMU
http://www.sszdra-karvina.cz/bunka/spol/bunka.gif STŘEDNÍ ZDRAVOTNICKÁ ŠKOLA A OBCHODNÍ AKADEMIE, RUMBURK, PŘÍSPĚVKOVÁ ORGANIZACE Františka Nohy 959/6, 408 30, RUMBURK, P.O.BOX 67 STRUKTURA A FUNKCE ORGANISMU
Sylabus kurzu: Biologie
Sylabus kurzu: Biologie Výchozí úroveň studentů: Vědomosti z biologie na gymnaziální úrovni Cílová úroveň studentů: Cílem je zopakovat a prohloubit vědomosti v oblasti biologie nabyté na gymnáziu, případně
Vazebné interakce protein s DNA
Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
DUM č. 2 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 2 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: meióza-redukční dělení jádra, význam, princip,
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura
Slovníček genetických pojmů
Slovníček genetických pojmů A Adenin 6-aminopurin; purinová báze, přítomná v DNA i RNA AIDS Acquired immunodeficiency syndrome syndrom získané imunodeficience, způsobený virem HIV (Human immunodeficiency
Název: Fotosyntéza, buněčné dýchání
Název: Fotosyntéza, buněčné dýchání Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie, chemie Ročník: 2. Tematický
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
Buňka. Kristýna Obhlídalová 7.A
Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou
Chemie - Septima, 3. ročník
- Septima, 3. ročník Chemie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Vitální barvení, rostlinná buňka, buněčné organely
Vitální barvení, rostlinná buňka, buněčné organely Vitální barvení používá se u nativních preparátů a rozumíme tím zvýšení kontrastu určitých buněčných složek v živých buňkách, nebo tkáních pomocí barvení
Biologie 11, 2014/2015, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE
Biologie 11, 2014/2015, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE BUNĚČNÝ CYKLUS PROGRAMOVANÁ BUNĚČNÁ SMRT KONTINUITA ŽIVOTA: R. R. Virchow: Virchow: buňka buňka z buňky, z buňky, živočich živočich z
- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím
Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Biologie 12, 2017/2018, Ivo Papoušek, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE
Biologie 12, 2017/2018, Ivo Papoušek, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE BUNĚČNÝ CYKLUS PROGRAMOVANÁ BUNĚČNÁ SMRT KONTINUITA ŽIVOTA: R. R. Virchow: Virchow: buňka buňka z buňky, z buňky, živočich
FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz
FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.
Buňka buňka je základní stavební a funkční jednotka živých organismů
Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a
Přijímací zkoušky BGI Mgr. 2016/2017. Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut. Varianta B
Přijímací zkoušky BGI Mgr. 2016/2017 Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut Varianta B A1. Čepička na 5' konci eukaryotické mrna je tvořena a. 7-methylguanosin trifosfátem
Systematická biologie,její minulý a současný vývoj
Systematická biologie,její minulý a současný vývoj Systematická biologie - věda o rozmanitosti organismů. Jejím úkolem je vytvořit informační soustavu, která poskytuje srovnatelné údaje o všech známých