Moderní technologie pro konstrukci elektronických systémů (2) TLV, TV, LTCC, Polymerní TLV,

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Moderní technologie pro konstrukci elektronických systémů (2) TLV, TV, LTCC, Polymerní TLV,"

Transkript

1 Moderní technologie pro konstrukci elektronických systémů (2) TLV, TV, LTCC, Polymerní TLV, MCM

2 Obsah 1 Úvod 2 Tlusté vrstvy (Thick Films) 3 Tenké vrstvy (Thin Films) 4 Polymerní struktury 5 LTCC 6 Závěr - prognózy vývoje

3 1 Úvod Miniaturizace hardware Mikroelektronika Konstrukční (assembly) substráty (DPS, keram.) Obvodová Funkční Diskrétní prvky Optoelektronika Konstrukční prvky Polovodičové IO Vrstvové IO Mikrovlnná Moduly MCM Monolitické TV Akustoelektronika Pouzdra Na izolačních podložkách TLV.. LTCC Bioelektronika COIC, BGA, CSP CMOS, BiCMOS, CCD, BiCMOS. polymerní Kvantová elektronika atd. MEMS, atd.

4 Moderní technologie Polovodičové struktury (čipy) SoC WLP THSV 3D Interconnection + Packaging Tlusté vrstvy Tenké vrstvy LTCC - sítotisk, dispenze nevak. - naprašování, napařování vak. - sítotisk, dispenze, lis, punch nevak. Polymerní vrstvy sítotisk nevak. HIO MCM pouzdřící technologie (CSP. SOP, SOC) SMT, embeded.

5 Prerekvizity HIO, PM

6 HIO Pouzdření HIO povrchově montované s holými čipy pájení vývodů kovová plastová keramická pájení vývodů pouzdření fluidizací pouzdření máčením pouzdření zaléváním

7 Důvody pro použití HIO Výkonové obvody (dobrý odvod tepla, oddolnost) Vysokofrekvenční obvody (MPV, rozložené parametry) Přesné a odolné pasivní prvky a sítě Vysoká spolehlivost Malá sériovost Nekonvenční aplikace (senzory, antény, stínění, topná tělesa, elektroluminescenční prvky, fotovoltaické články atd.)

8 1 Úvod 2 Tlusté vrstvy 3 Tenké vrstvy 4 Polymerní struktury 5 LTCC 6 Závěr - prognózy vývoje

9 2 Tlusté vrstvy Pojmem tlustá vrstva označujeme vrstvu, jejíž tloušťka je řádově desítky mikrometrů. Tlusté vrstvy jsou nehomogenní směsi několika materiálových složek a jejich struktura má amorfní charakter. Materiály (ve formě pasty) pro výrobu tlustých vrstev obsahují několik složek: Funkční složku, která zajišťuje žádané elektrické vlastnosti vrstvy Adhesní (tavivovou) složku, která drží pohromadě částice funkční složky (matrice) Technologickou (pojivovou) složku zajištující dostatečnou viskozitu pasty během nanášení

10 Povrchové napětí a pojivová složka Povrchové napětí je efekt, při kterém se povrch kapalin snaží dosáhnout s nejmenší energií tedy co možná nejhladšího stavu s minimálním rozpětím, uplatňující se na rozhraní kapaliny s pevnou látkou Pojivovou složku tvoří organická rozpouštědla, jež tvoří 1/3 1/4 objemu past Vytváří v pastě tekutou suspenzi vhodnou pro tisk Během výpalu dojde k jejímu odpaření

11 VISKOZITA Viskozita charakterizuje vlastnosti kapalin (vnitřní tření v kapalinách) Je dána přímou úměrou mezi smykovou rychlostí s a smykovým napětím F uvnitř kapaliny Newtonovská kapalina jedině u ní lze dobře definovat hodnotu viskozity (glycerin, voda) Nenewtonovská kapalina viskozita není látkovou konstantou, ale závisí na rychlosti deformace resp. napětí tečení - Pseudoplastické - zdánlivá viskozita se s rostoucím tlakem zmenšuje (tlustovrstvé pasty) - Dilatantní kapalina - zdánlivá viskozita roste s tlakem (šlehačka) - Binghamské kapaliny - dochází k toku až po překročení určitého prahového smykového napětí, tzv. meze toku (bažina)

12 Viskozita F S Viskozita = Převrácená hodnota viskozity je tekutost = 1 Základní jednotka viskozity je poise (P). 1P = 1.00 g.cm -1.s -1 1Pa.s = 1 kg.m -1.s -1 = 10 P Voda má viskozitu 0,00899 Poise při 25 C a tlaku 1 atmosféry. (0,00899 P= 0,899 cp= mpa s) Změna viskozity závisí na změně mechanického tlaku Chování pasty: 1 pasta po rozmíchání 2 počátek tisku 3 protlačení sítem 4 - vyrovnání

13 TLV pasty a rheologie (1) slavné zvolání starořeckého filozofa Herakleita Panta rhei!, neboli Vše plyne. Řecké slovo rhein znamená téci a rheologie je tedy nauka o toku a plynutí, přesněji řečeno, je to věda o časově závislých tokových a deformačních procesech v různých materiálech. Předmětem nauky o toku neboli rheologie jsou různé kapaliny, ale i mnoho dalších materiálů, které tvoří přechod mezi pevnými látkami a kapalinami. Za určitých okolností totiž všechny materiály tečou. Sem patří především čas. Ve starozákonním zpěvu prorokyně Debory se vyskytuje verš skály tekly před Hospodinem. Podle tohoto Debořina zpěvu bylo v rheologii zavedeno takzvané Debořino číslo t rel je relaxační doba daného materiálu, která charakterizuje rychlost molekulárních přeskupení. (je velice krátká pro tekutou vodu a velmi dlouhá pro tvrdou žulu) t obs je doba pozorování. Čím menší je Debořino číslo, tím tekutější se jeví daný materiál. (Pokud je pozorovací doba nekonečně dlouhá, tečou i skály. A také naopak, na samém počátku podmořské exploze se i voda může jevit jako velmi tvrdý a tuhý materiál).

14 TLV pasty a rheologie (2) Středoškolská fyzika zná dva zákony, které jsou základem veškeré mechaniky. Jsou to: Newtonův zákon viskózního toku, který definuje viskozitu Hookův zákon o deformaci tuhých těles.

15 TLV pasty a rheologie (3) Newtonův zákon: proudí-li kapalina trubkou nebo kanálem, není její rychlost stejná po celém průřezu. U stěny je kapalina klidnější, ale směrem ke středu je proud stále prudší. Pozorování toku řeky přivedlo Isaaka Newtona na myšlenku, že uvnitř kapaliny existuje tření, které přenáší pohyb od jedné její vrstvy ke druhé. Mírou tohoto tření a zároveň charakteristikou dané kapaliny je viskozita. V jednoduchém případě (Newtonovské kapaliny voda) existuje přímá úměra mezi smykovou rychlostí s = γ a smykovým napětím F = τ. Konstanta úměrnosti mezi těmito dvěma veličinami je právě viskozita η: Daleko běžnější jsou kapaliny ne-newtonovské, které mění viskozitu v závislosti na tlaku a čase. Ty se nazývají tixotropní (tlusté vrstvy).

16 TLV pasty a rheologie (4) Zatímco Newtonův zákon viskózního toku je základem mechaniky kapalin, na opačné straně mechaniky materiálů je Hookův zákon deformace tuhých těles. Když jej Robert Hooke experimentálně objevil, dlouho se trápil pochybnostmi a nejprve zveřejnil v roce 1676 tajuplný anagram ceiiinosssttuv, o němž prohlásil, že skrývá skutečnou teorii pružnosti. Teprve o tři roky později uveřejnil úplný článek, v němž prozradil, že záhadný nápis lze přepsat do latinského výroku Ut tesion sic vis neboli Jaké protažení, taková síla. Při tahovém zatížení je mechanické napětí σ přímo úměrné deformaci ε neboli Ϭ se nazývá prostě napětím, ε relativním prodloužením a konstanta E Youngovým modulem pružnosti (modulem pružnosti v tahu). Grafem takového vztahu je přímka a její směrnice je tentokrát Youngův modul pružnosti E (odpor ideálně hookeovského tělesa proti deformaci závisí na její velikosti, ale vůbec nezávisí na rychlosti).

17 VISKOZITA Hladký váleček, svisle ponořeného do zkoumané kapaliny, motorek otáčí válečkem. Otáčivý pohyb z motorku na váleček přenášen spirálovou pružinou. Rotační (Brookfield) viskozimetr Viskozita kapaliny vyvolává moment síly, jehož velikost se projevuje torzní deformací pružiny, odečitatelnou na stupnici viskozimetru.

18 VISKOZITA Systémem pro měření v soustavě koaxiálních válců nebo v systému kužel deska Velký rozsah smykové rychlosti Měření v úzké kónicky se zmenšující mezeře Haake - Rotovisko viskozimetr

19 Sítotiskové pasty Materiály ve formě sítotiskových past lze rozdělit do tří základních skupin: vodivé, odporové, dielektrické a izolační speciální. Pro vodivé pasty se používají jako funkční složka drahé kovy (Au, Pd, Pt, Ag), především pro svoji stálost a netečnost vůčí vlivům prostředí. Jako funkční složka odporových materiálů se používají různé směsi drahých kovů, které u některých systémů vytvářejí oxidy (např. RuO 2 ). Hodnota odporu je nastavována poměrem vodivé (kovové) části a tavivové (skelné) složky. U dielektrických past tvoří funkční složku materiály používané pro keramické kondenzátory (typ I nebo II ) a u izolačních past různé typy skelných frit. Jako tlusté vrstvy mohou být nanášeny i další předem připravené funkční směsii. Tyto materiály řadíme do skupiny speciálních past, jako jsou např. termistorové, magnetické, luminescenční, stínící a také pasty pro chemické senzory a další. Pasty jsou připravovány mícháním a roztíráním (rozpracováním) příslušných komponent připravených ve formě práškových frit (s co nejdefinovanějším tvarem jednotlivých částic o průměru 5 m).

20 Tlusté vrstvy

21 Dodavatelé past Electro Science Laboratory DuPont Heraeus Tanaka, Senju, Sumitomo Metal Japan CLEC Group, Jiangyin Mengyou Electric (490)

22 Test znalostí Příklad: Navrhněte a nakreslete v minimální rozměrové konfiguraci tlustovrstvový rezistor R = 2k2 pastou 1 k Ω na čtverec pro výkonové zatížení P = 1 W, je-li na substrátu tloušťky 0,635mm jmenovité zatížení odporu Po = 200 m W / mm 2. S P P o 1 0,2 5mm 2 S l. w 2 S 2,2w 2 2 5mm 2,2w Zkouška správnosti navrženého odporu:

23 Depozice tlustých vrstev Nanášení tlustých vrstev se v mikroelektronice provádí následujícími způsoby: sítotiskem šablonovým tiskem writing - popisem (jehlou, hrotem, dispenzerem) jetting

24 Princip sítotisku

25 Síťoviny pro sítotisk

26 Parametry sít Počet ok na Průměr vlákna Tloušťka síta Světlost oka Světlost síta Teoret. objem protlač. pasty (palec/cm) (cm 2 ) ( m) ( m) ( m) (%) ( m 3 /oko) 35/ ,2 197,5 60/ ,8 113,5 80/ ,5 75,5 100/ ,7 59,5 130/ , / , / / ,7 19,5 305/ ,9 16 P á j e c í p a s t y T l u s t é v r s t v y

27 Výběr síta a zhotovení šablony Pokřivení (warp) / útek (weft) Tažením drátu na délku vznikají deformace - pokřivení, tažením drátu napříč vzniká útek. To vykompenzují jen ušlechtilé ocelové dráty se zvláštními vyššími požadavky na průměrné tolerance, průtažnost (plastičnost) a povrch drátu. Rozměr oka (w), průměr drátu (d) Dva nejdůležitější funkční rozměry sítě jsou rozměr oka w a průměr drátu d. Např. SD 50/30 50 = w (v m) 30 = d (v m)

28 Jemnost a světlost síta Jemnost síta (hustota) Počet drátů na cm (n) nebo inch (Mesh). 10mm n w( mm) d( mm) 25,4mm Mesh w( mm) d( mm) Světlost síta (oka) a 0 Jako rozevření síta je definována procentuální část všech síťových otvorů veškeré plochy sítě. Větší rozevření plochy znamená větší propustnost pasty. 2 w a0 100% w d např: SD 50/30:39%

29 Tloušťka síta a teoretický objem pasty Tloušťka síta Tloušťku síta významně ovlivňuje průměr drátu a tkací technika. Měření tloušťky se uskutečňuje v uvolněném stavu se senzorovým snímačem, při tlaku 1,8N (proti nehybné, rovinné podložce). Teoretický objem pasty v th Teoretický objem pasty je objem otevřeného oka, nenanesený na plochu substrátu. To udává konečnou teoretickou tloušťku smáčené vrstvy sítotisku v m. Při nedostatečném nanesení se musí použít síť s vyšším v th. v th w,d,d je v m 2 w cm m 3 2 / D w d

30 Typy sít Koenen (www.koenen.de)

31 Vztah mezi velikostí rámu síta a tištěným motivem Volba rámu Ocelová síta jsou podstatně více napnuté než syntetické. Sítotiskový rám musí být schopný udržovat natažené síto. Musí zachovat stabilní tvar k dosažení reprodukovaných výsledků tisku. Rám se doporučuje s hliníkovým pokovením nebo ocelovým profilem. Velikosti rámu Příliš malý rám vzhledem k tisknutému obrazu vede k přetěžování tkaniny síta a kpředčasné únavě. Aby se mohlo plně využít výhod ocelové tkaniny, jsou doporučeny následující geometrické vztahy. Princip výpočtu pro rámy v technologii TLV R=šířka stěrky W=délka stěrky H=odskok K~ 2. R L~ 3. W H~ (0,002-0,005). K

32 Velikost rámu vs. odtrh Tisk (odskok a protlačení) Potřebný odskok závisí na celé řadě faktorů, jako např. napnutí síta, viskozitě pasty, rychlosti stěrky, ale dokonce i na provedení šablony. Proto se pro odskok nemohou stanovit žádné všeobecně platné podmínky, kromě podmínky začínat vždy s co nejmenším odskokem. (Musí dojít k dokonalému přenosu pasty přes síto - když se nedostatečně přenese pasta z šablony, odskok se trochu sníží). Závěr: Čím větší velikost rámu, tím dokonalejší přenos pasty.

33 Realizace šablony Na tkaninu se nanáší fotocitlivý materiál. Po vysušení se exponuje UV zářením. Jako předloha šablony slouží diapozitiv. Osvícené místo se vytvrdí, neosvícené místo zůstává rozpustné ve vodě. Jako vývojka na síto je použita voda. V technologii tlustých vrstev se využívá sítotisková šablona k tisku vodivé cesty, odporové, izolační, skelné pájky a pájecí pasty na keramický substrát. Struktury v sériové produkci jsou realizovány až do 100 m šířky, ve výzkumu až do 40 m. U požadavku na silnou vrstvu se pokrývá šablona vrstvou o tloušťce m. Tisk pájecí pasty je možný se sítem až do rozměru rastru 0,635mm. Při menším rozměru rastru by se měla použít kovová šablona. K dostání jsou materiály pro šablony (filmy) tloušťky od 80 do 400 m. S tkaninou 80 mesh s průměrem drátu od 0,065mm pro nanesení pájecí pasty, se dosahuje následující tloušťky vrstvy: tloušťka nanesené vrstvy = tloušťka filmu + 10% při 200 m filmu se tedy dosáhne tloušťky 220 m. V solární technologii se používají síta pro tisk kontaktů na křemík. Tím se dosahuje vyšší účinnosti solárních článků. Musí se nanášet extrémně jemná vodivá cesta, ale pokud je to možné, vysoká. Přitom se přibližuje až k hranicím možného rozlišení (realizována vodivá cesta je od 45 m).

34 Realizace šablony Jsou dva fotocitlivé systémy: Diazová sloučenina Chemické činidlo polyvinyl alkohol (PVA) je smíchán s fotocitlivou složkou. Rozklad se děje když jsou tyto složky nechráněné. Uvolní se nitrogen a volné radikály, které vedou kpřekřížení propojených molekul. Proto nebude exponovaná oblast rozpustná ve vodě. Reakce fotopolymerové sloučeniny při expozici Reakce diazové sloučeniny při expozici Fotopolymerová sloučenina Fotocitlivý komponent SBQ (Stil-Bazole-Quarternized) je smíchán s činidlem polyvinyl alkoholu. Exponovaná oblast se pospojuje, neozářená oblast zůstane vodorozpustná. Chemické sloučení (dvojné vazby) v molekulách probíhá velmi rychle, fotocitlivost je 5x větší než u Diazové sloučeniny. Skladovací stabilita je velmi vysoká; nanesené síto se může uchovávat až do 6 měsíců, patří to k výhodě fotopolymerového filmu, ten se používá v tloušťkách 10,15,20,25,30,40,50,80,100,150,200,250,300,350,400 m.

35 Tři metody nanášení: Přímé nanášení: Fotocitlivá emulse je aplikovaná přímo na tkaninu. Polopřímé nanášení: Sítotiskový film je vrstvený na tkaninu pomocí emulse. Kapilární nanášení: Sítotiskový film je přilnut ke tkanině smáčené vodním roztokem Je upřednostňována polopřímá metoda, protože zajišťuje optimální reprodukovatelnou nanášecí tloušťku a vysokou trvanlivost sítotiskové šablony. Pro sušení se používá teplota 40 C. Expozice K expozici je zapotřebí diapozitiv v měřítku 1:1. Uspořádání sítové a filmové předlohy při ozáření Vakuový rám na expozičním zařízení zaručuje optimální kontakt mezi Dia a emulzí a ještě více minimalizuje efekt zmenšení ozáření. Pro optimální výsledek musí být správně stanovena expoziční doba. (krátký čas = velké rozlišení, nízká mechanická stabilita; dlouhý čas = malé rozlišení-malá okrajová ostrost a nepružnost) Maximální spektrální citlivost filmu fotopolymeru a emulze je v oblasti UV od 340nm do 430nm, kdežto u Diazové sloučeniny leží v dlouhých vlnových délkách.

36 Zařízení pro sítotisk a šablonový tisk

37 Hlavní parametry tiskového procesu Operátor Stroj; Šablona Nespolehlivost! nutno omezit vliv Parametry tisku Upnutí DPS Klima typ Povrchová úprava rychlost tlak separace Úhel stěrky Tuhost X,Y Rovinnost Typ upnutí Stěrka Pasta Kvalita břitu Povrchové napětí Třída pasty Tixotropie

38 Faktory působící v průběhu tisku

39 Writing (dávkování popisem) PLOTTER DRIVE UNIT CONTROL UNIT DISPENSING UNIT X,Y,Z AXIS CAD data processing syringe and dispensing nozzle xy axis table + z axis holder Writing je nanášení tixotropních materiálů na podložky s pomocí dispenzeru, jehož hrot není v přímém dotyku se substrátem. Zařízení se skládá z: - řídící části generující data pro řízení procesu - depoziční jednotky s nanášecím hrotem - poziční jednotky s ovládáním pohybu ve směru os x, y, z

40 Writing (dávkování) Klíčovou částí zařízení je depoziční hlava se zásobníkem pasty a injekční jehlou, skrze kterou je pasta nanášena

41 Writing deponované vrstvy Příklad nanesené vodivé vrstvy ve tvaru cívky tlustovrstvá vodivá pasta AgPd

42 Jetting tryskání vs. dávkování Jetting (tryskání) je proces, ve kterém je kapalina v rychlé frekvenci vytlačována přes trysku. V každém cyklu tryskání je vytlačováno definované množství materiálu. Obvyklá frekvence tryskání je Hz, někdy až 1000 Hz. Při dávkování jehlou kapalina zůstává na špičce jehly a poté je teprve aplikována na substrát. Adheze a povrchové napětí substrátu způsobují uchycení pasty na substrát, ale předtím, než se jehla posune do další pozice, musí nastat pohyb vzhůru v ose z. Rozdíl mezi tryskáním a dávkováním jehlou je v tom, že při tryskání je kapalina vytlačena z trysky tak, že se oddělí od trysky před spojením se substrátem.

43 Výpal tlustých vrstev Tlustá vrstva heterogenní systém s amorfní strukturou

44 Justování (trimování) TLV Dostavování hodnot rezistorů po výpalu se provádí buď otryskáváním křemenným pískem nebo trimováním s pomocí laseru (YAG) pracujícího v impulsním režimu jak je patrné z obr. Po každém kroku, v němž je odpálena vrstva ve tvaru kruhového svazku, je prováděno měření jmenovité hodnoty rezistoru až do dosažení nastavené hodnoty, kdy se proces ukončí. Bočním zářezem do rezistoru se zvětšuje dráha proudových siločar, resp. celkový počet čtverců rezistoru, takže jeho jmenovitá hodnota se zvyšuje. Používá se I zářezů, nebo zářez ve tvaru L. Jeho výhodou je i ta skutečnost, že při podélném řezu je nárůst hodnoty odporu pozvolnější než při řezu příčném.

45 TLV vícevrstvové (multilayer)

46 1 Úvod 2 Tlusté vrstvy 3 Tenké vrstvy 4 Polymerní struktury 5 LTCC 6 Multičipové moduly 7 Závěr - prognózy vývoje

47 3 Tenké vrstvy Tenké vrstvy jsou amorfní, polykrystalické nebo monokrystalické struktury vytvářené řízeným nanášením materiálů v uzavřeném vakuovém prostoru, v elektronice nejčastěji fyzikálními metodami, napařováním nebo naprašováním. Tloušťka tenkých vrstev se pohybuje v rozmezí desetin až jednotek m, v důsledku čehož neplatí tytéž fyzikální konstanty a vlastnosti jako u běžných objemů materiálů. To předurčuje jejich mimořádné elektrické vlastnosti (vrstvový odpor, teplotní součinitel odporu a pod.), což je právě v elektronice při realizaci struktur využíváno.

48 Tenké vrstvy Parametr Tenké vrstvy Tlusté vrstvy Rozlišení čára/mezera m 10 (5) 100 (50) Vrstvový odpor vodičů m 1 30, (5) Předhodnota pro rezistory , 100, 1000, 10 4, 10 5, 10 6 TCR ppm. K (30) Stabilita, 70 C, 1000 h % 0,1 0,5 P ztrátový W cm 2 0,2 1,5 Proudový šum V/V 0,05 0,3 (100 ) 3 (100 k )

49 Způsoby nanášení tenkých vrstev Fyzikální vakuové nanášení Physical vapor deposition (PVD) představuje několik různých způsobů depozice tenkých vrstev na principu kondenzace materiálu na substrát. Odpařování materiálu může probíhat teplotně, laserem, bombardováním ionty apod. Tak lze nanášet kovy, slitiny i izolanty a to i ve více vrstvách. Fyzikální metody nanášení (PVD) : - Teplotní odpařování - Odpařování elektronovým paprskem - Naprašování - Laserové (pulzní) depozice Chemické vakuové nanášení (CVD) Chemical vapor deposition (CVD) využívá odpařování v průběhu chemických reakcí. CVD techniky: Plazmové odpařování (CVD) nebo smíšená fyzikálně-chemické vakuové nanášení

50 Vakuové napařování Počet částic Nv odpařený za jednotku času z jednotkové plochy je: Nv = 3, p/ (M.T) -1/2 kde p je rovnovážný tlak nasycených par M je molekulární hmotnost T je teplota p 1 d exp Vrstva vzniká vypařením materiálu ve vakuové komoře a jeho ulpěním na připravených substrátech Tlak Pa cm 0, , ,

51 Vytváření tenkých vrstev napařováním Zahřívání zdroje - napařovaného materiálu v uzavřeném vakuovém prostoru Tavení a odpařování kovů ( C) Kondenzace na chladnějším povrchu (substrát, stěny napařovací komory) Reakce s okolní atmosférou (Al Al 2 O 3 ) Vakuum vzniká čerpáním ve vzduchotěsné komoře 1Torr ~ 1mm rtuti (normální tlak 760 Torr) Vesmír asi Torr Člověk 740 Torr sáním (v malém objemu), Pro napařování je třeba asi 10-7 Torr (vysoké vakuum) Střední volná dráha je asi 45m (pro 10-6 Torr a molekulu velikosti m), vzdálenost zdroje od substrátu je 20 cm

52 Zařízení pro vakuové napařování -Tepelné odpařování -Odporové odpařování -Elektronovým paprskem -Pulsní (Flash)

53 Katodové naprašování Při naprašování je terč z vodivého materiálu umístěn ve vakuové komoře a je připojen na vysoký záporný potenciál řádově tisíce voltů. Do komory se vipouští pracovní plyn (obvykle argon) a tlak se udržuje na hodnotě řádově jednotky pascalu. Před terčem vzniká doutnavý výboj, přičemž kladné ionty bombardují záporný terč a záporné elektrony dopadají na uzemněnou kostru komory - anodu. Množství materiálu naprášené za jednotku času lze vyjádřit vztahem: Q = k. Ui / (p. d) kde k je konstanta úměrnosti Ui je pracovní napětí p je tlak d je vzdálenost mezi katodou a anodou

54 Systémy pro naprašování

55 Magnetronové naprašování Relative Sputtering Rates Table Ag 2.16 C 0.05 Mo 0.53 Ta 0.43 Al 0.73 Cr 0.60 Ni 0.65 Ti 0.38 Al Cu 1.00 Si 0.39 Zr 0.65 Au 1.76 Mg 0.26 SiO W 0.39 Před terčem je vytvořeno magnetické pole definovaného tvaru elektromagnetem nebo permanentními magnety. Takové zařízení se nazývá magnetron. Elektrony, které při klasickém naprašování unikají z prostoru před terčem, se v tomto případě v důsledku Lorentzovy síly pohybují po šroubovici podél siločar. Tak se výrazně prodlužuje jejich dráha, prodlužuje se i doba jejich setrvání v oblasti výboje a zvyšuje se pravděpodobnost ionizace dalších atomů pracovního plynu.

56 Čtyři stadia růstu tenké vrstvy: tvoření zárodků narůstání ostrůvků spojování center vyplňování mezer Na keramických substrátech jsou tenké vrstvy využívány pro realizaci především pasivních sítí (vodivé, odporové a dielektrické vrstvy), i když u některých materiálů lze pozorovat i polovodičové vlastnosti (byl realizován i tenkovrstvý tranzistor TFT). Typickými materiály pro nanášení tenkých vrstev napařováním jsou Au, Al, CrNi, Ta a další vodivé i nevodivé materiály pro naprašování.

57 Vytváření struktury obvodu Vytváření tenkých vrstev může probíhat dvěma způsoby: aditivním s následným odleptáváním selektivním s pomocí masek Glazování substrátu Depozice odporové vrstvy Depozice vodivé (dielektrické) vrstvy Teplotní stabilizace vrstev Selektivní leptání Trimování rezistorů

58 Sendvičová TV struktura a postup vytváření pasivní sítě

59 Topologie TV HIO Topologie osazeného obvodu [10 : 1]

60 Základní architektura matrice TV tranzistorů pro displej z kapalných krystalů. S každým obrazovým prvkem resp. pixlem displeje je spojen jeden TV tranzistor. TV tranzistory generují různá napětí jež způsobují různou orientaci molekul v kapalné suspenzi. To ovládá také rozdílné množství světla procházejícího TV matricí a barevným filtrem, a zajiš tuje tak tvorbu obrazu na displeji.

61 1 Úvod 2 Tlusté vrstvy 3 Tenké vrstvy 4 Polymerní struktury 5 LTCC 6 Závěr - prognózy vývoje

62 4 Polymerní struktury Polymerace je reakce, při níž se spojuje (řetězí) obrovský počet jednoduchých nenasycených nízkomolekulárních sloučenin (monomerů) ve velké molekuly (makromolekuly), aniž při této reakci vznikají vedlejší nízkomolekulární zplodiny. Polymerace jsou schopny jen takové monomery, které obsahují v molekule jednu nebo více dvojných vazeb.

63 Polymerní struktury Polymery, které mají uhlíkové atomy v řetězci střídavě propojeny jednoduchými a dvojitými vazbami označujeme jako konjugované. Nejjednodušší takovou látkou je polyen, který se označuje jako polyacetylén, protože jej lze připravit polymerací acetylénu. Ten normálně vzniká ve formě tmavého prášku nepatrné vodivosti, jestliže se však dopuje příměsí jodu, vodivost se o mnoho řádů zvýší a lze připravit kovově lesklé filmy s vodivostí blížící se mědi. Vodivost polyacetylénu je způsobena solitony. Solitony jsou nelineární poruchy, které mohou přenášet energii a šířit se rozptylujícím prostředím, aniž by přitom byly samy rozptylovány. CH n V polyacetylénu existují dva typy solitonů: neutrální (beznábojový) a nabitý (kladný nebo záporný), vznikající na polyacetylénovém řetězci účinkem dopantů.

64 Polymery pro elektroniku Vodivé se strukturou PANI a PEDOT N N O O (PANI polyanilyn je ušlechtilejší než Cu) H H n S n (PEDOT - konjugovaný polymer s pozitivním nábojem založený na bázi polythiophenu Polovodivé PENTACENE a Poly-3 Hexyl- Thiophene (PENTACENE polycyklický aromatický úhlovodík složený z pěti lineárně slitých benzenových jader) Poloizolační polymery PPV a PPP Polymery izolační PVP a PI

65 Polymerní struktury Vodivé polymery jsou tvořeny systémem konjugovaných dvojných vazeb. Kromě konjugace je dalším nezbytným předpokladem elektrické vodivosti přítomnost nositelů náboje, které zprostředkovávají jeho transport po řetězci. Ty vznikají procesem, který je v analogii s klasickými polovodiči nazýván dopování. Je však podstatný rozdíl mezi dopováním anorganických a organických polovodičů. U anorganických polovodičů výrazně ovlivňují elektrické vlastnosti již stopové koncentrace dopující látky, u polymerů je potřeba koncentrací řádově vyšších, jednotek až desítek procent.

66 Polymerní struktury Dopanty jsou látky schopné vytvořit s polyacetylénem sloučeniny spřenosem náboje (tzv. charge transfer). Jestliže dopant polyacetylénu poskytuje elektrony, jedná se o donor (např. alkalické kovy). Když dopant naopak elektrony z polyacetylénu odčerpává jedná se o akceptor. Patří sem halogenové prvky (chróm, bróm, jód), halogenidy polokovů a nekovů, a také kyseliny a jejich soli. Následkem dopování dochází k vytvoření elektronových děr ve valenčním pásu (p-dopování) nebo k přenesení elektronů do vodivostního pásu (n-dopování). Dochází i ke změně charakteru vazeb podél polymerního řetěze jak je vidět na obr.

67 Polymerní struktury Tlustovrstvé polymerní materiály tvoří: pigmenty (plniva): - vodivé - odporové - dielektrické polymery (organické materiály): - termosety (epoxydové a fenolové pryskyřice) - termoplasty (akrylové pryskyřice) - rozpouštědla

68 Polymerní tlusté vrstvy Pro PTF technologii se používají buď standardní nebo speciální pasty. Standardní pasty vodivé pasty odporové pasty dielektrické pasty se zásadně skládají z funkčního systému, polymeru a rozpouštědel. Funkčním systémem u vodivých past je stříbro a v poslední době měď, u odporových past grafit a čedič a u dielektrických past jsou používány horniny jako slída, oxid hlinitý nebo chromdioxid. Polymery po vypaření rozpouštědel drží části funkčního systému pohromadě (koheze) a zaručují také adhezi pojiv k substrátu. Polymery se dělí na dvě kategorie: - polymery, které zahřátím vytvoří pevné struktury a proto jsou využívány pro tisk na pevné podložky. Epoxidové a fenolové pryskyřice jsou příkladem teplotně neroztažných polymerů. - polymery, které po vytvrzení jsou měkké a podstatně ohebnější, a proto je jim dávána přednost jako materiálům pro flexibilní substráty.

69 Polymerní tlusté vrstvy PTF můžeme tisknout na různé typy substrátů (podložek) a to na flexibilní (polyamid, polyester,pvc) nebo na tuhé (keramika, epoxidové sklo nebo kov). Po natisknutí vrstvy metodou sítotisku na substrát musí být umožněno její usazení (tisk přes mřížku vede k přenášení motivu ok od sítě). Dále se vrstva před vypálením zasušuje. Tím se odstraní těkavé látky. Při nanášení na nestabilizovanou polyesterovou fólii se doporučuje nezatvrzovat pastu nad 100 C, poněvadž se v důsledku vyšších teplot mohou změnit rozměry fólie. Při použití stabilizovaných polyesterových fólií může být zasušováno až do teploty 150 C po dobu 5 až 15 minut.

70 Technologie výroby polymerních TLV Výrobní proces je podobný po sítotisku následuje vytvrzení - určuje finální vlastnosti. PFT jsou vypalovány nejen konvenčními metodami jako je průtahová tunelová pec a pec sinfračerveným ohřevem, ale také ohřev kondenzací plynné fáze a výpal za pomoci mikrovln. Průtahová tunelová pec Tato pec je sice oblíbená pro výpal PFT kvůli jednoduché a snadné manipulaci, ale vlastnosti vrstvy vytvrzené v tomto typu pece nejsou tak dobré, protože schopnost tepelného předu ze vzduchu do substrátu je nízká. Pasta je vytvrzená v peci při teplotě 120 až 160 C za dobu 30 až 60 minut. Pec s infračerveným ohřevem Tento typ pece je v praxi nepoužívanější. Má vysokou schopnost tepelného převodu, proto doba výpalu může být na rozdíl od tunelové pece snížena na jednu třetinu. Ohřev kondenzací plynné fáze Princip tohoto systému spočívá ve využití latentního tepla z kondenzace inertní kapaliny, jejíž teplota varu je relativně vysoká. Používané kapaliny jsou Fluorinert FC - 43 a FC - 70, jejichž teploty varu jsou 174 a 215 C. Pasta může být vytvrzená v plynné fázi za dobu 2 až 3 minut. Výpal s pomocí mikrovln Tento způsob výpalu není oblíben, ale je to ideální metoda pro PFT, která se výrazně liší od tří předchozích zmíněných metod. Absorbovaná mikrovlnná energie vyvolává rotaci dipolárních molekul, které v pastě vdůsledku tření produkují teplo. Rychlé vytvrzení je výsledkem působení vnitřního tepla. Pasta je dobře vytvrzená během pouhých 2 až 3 minut v mikrovlnách, jejichž frekvence je 2,45 GHz

71 Aplikace PTF Typickými aplikacemi technologie PTF jsou: Realizace vodivých cest a spojů na substrátech Realizace rezistorů a potenciometrů na substrátech Náhrada plátovaných kontaktů klávesnic Dodatečné vodivé vrstvy na obou stranách desek základní vrstva pro senzory u vstupů kreditních karet ochrana měděných drah a kontaktů ne desce plošných spojů místo zlacení tranzistory z polymerů tlustovrstvové senzory

72 Aplikace PTF membránová klávesnice

73 Aplikace PTF senzory Kapacitní senzor Teplotní (odporový) senzor

74 Aplikace PTF multifunkční senzor

75 Organické světloemitující diody OLED Organické světlo emitující diody OLED, jsou klasické světlo emitující diody (LED) na emisní elektroluminiscenšní vrstvě, která reaguje na elektrický proud. Tato vrstva organického polovodičového materiálu se nachází mezi dvěmi elektrodami, kde alespoň jedna z těchto elektrod je transparentní. OLED se používají napřiklad v televizních přijímačích na podsvícení obrazovek, u počítačových monitorů nebo u PDA či mobilních telefonů. Hlavní výhodou je nízká teplená vodivost a fungování bez podsvícení (jsou tenčí a lehčí než displeje z tekutých krystalů.

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Garant přípravného studia: Střední průmyslová škola elektrotechnická a ZDVPP, spol. s r. o. IČ: 25115138 Učební osnova: Základní

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Ústav fyziky a měřicí techniky Vysoká škola chemicko-technologická v Praze Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Výrobci, specializované technologie a aplikace Obsah

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Technologie FINE Technický dokument White Paper VYDÁNÍ 1.1. Květen 2004. Embargováno do 9. července 2004

Technologie FINE Technický dokument White Paper VYDÁNÍ 1.1. Květen 2004. Embargováno do 9. července 2004 Technický dokument White Paper VYDÁNÍ 1.1 Květen 2004 Embargováno do 9. července 2004 Canon Europe Ltd. Změna specifikací vyhrazena bez oznámení. OBSAH Úvod.........................................................3

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Úpravy povrchu Pozinkovaný materiál Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Aplikace žárově zinkovaných předmětů Běžnou metodou ochrany oceli proti korozi jsou ochranné povlaky,

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

Vláknové kompozitní materiály, jejich vlastnosti a výroba

Vláknové kompozitní materiály, jejich vlastnosti a výroba Kap. 1 Vláknové kompozitní materiály, jejich vlastnosti a výroba Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVUT v Praze 26. října 2007 1

Více

Semestrální práce z předmětu Kartografická polygrafie a reprografie

Semestrální práce z předmětu Kartografická polygrafie a reprografie Semestrální práce z předmětu Kartografická polygrafie a reprografie Digitální tisk princip a vývoj Pavel Stelšovský a Miroslav Těhle 2009 Obsah Jehličkové tiskárny Inkoustové tiskárny Tepelné tiskárny

Více

5. Materiály pro MAGNETICKÉ OBVODY

5. Materiály pro MAGNETICKÉ OBVODY 5. Materiály pro MAGNETICKÉ OBVODY Požadavky: získání vysokých magnetických kvalit, úspora drahých kovů a náhrada běžnými materiály. Podle magnetických vlastností dělíme na: 1. Diamagnetické látky 2. Paramagnetické

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Přenosová média KIV/PD Přenos dat Martin Šimek

Přenosová média KIV/PD Přenos dat Martin Šimek Přenosová média KIV/PD Přenos dat Martin Šimek O čem přednáška je? 2 Frekvence, připomenutí skutečností 3 Úvodní přehled 4 Úvodní přehled 5 6 Frekvenční spektrum elektromagnetických kanálů Základní klasifikace

Více

Teplotní profil průběžné pece

Teplotní profil průběžné pece Teplotní profil průběžné pece Zadání: 1) Seznamte se s měřením teplotního profilu průběžné pece a s jeho nastavením. 2) Osaďte desku plošného spoje SMD součástkami (viz úloha 2, kapitoly 1.6. a 2) 3) Změřte

Více

26-41-M/01 Elektrotechnika

26-41-M/01 Elektrotechnika Střední škola technická, Most, příspěvková organizace Dělnická 21, 434 01 Most PROFILOVÁ ČÁST MATURITNÍ ZKOUŠKY V JARNÍM I PODZIMNÍM OBDOBÍ ŠKOLNÍ ROK 2014/2015 Obor vzdělání 26-41-M/01 Elektrotechnika

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Diody a usměrňova ovače Přednáška č. 2 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Diody a usměrňova ovače 1 Voltampérová charakteristika

Více

Absorpční fotometrie

Absorpční fotometrie Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Přednáška č.11 Spoje nerozebíratelné

Přednáška č.11 Spoje nerozebíratelné Fakulta strojní VŠB-TUO Přednáška č.11 Spoje nerozebíratelné SVAŘOVÁNÍ je proces, který slouží k vytvoření trvalého, nerozebíratelného spoje dvou a více materiálů. Při svařování je nutné působit buď tlakem,

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07

Více

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide Metody tepelného dělení, problematika základních materiálů Tepelné dělení materiálů je lze v rámci strojírenské

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Uhlík a jeho alotropy

Uhlík a jeho alotropy Uhlík Uhlík a jeho alotropy V přírodě se uhlík nachází zejména v karbonátových usazeninách, naftě, uhlí, a to jako směs grafitu a amorfní formy C. Rozeznáváme dvě základní krystalické formy uhlíku: a)

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Keramická technologie

Keramická technologie Keramika Slovo označuje rozmanité výrobky vzniklé vypalováním z vhodných přírodních surovin jílů, hlíny, křemene aj. První nálezy keramických nádob pocházejí podle archeologů už ze 7. tisíciletí př.n.l.

Více

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA)

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA) Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

LCM - 05 Metakrylátové konstrukční lepidlo list technických údajů

LCM - 05 Metakrylátové konstrukční lepidlo list technických údajů LCM - 05 Metakrylátové konstrukční lepidlo list technických údajů Popis LCM - 05 je rychle tvrdnoucí dvousložkové akrylové lepidlo pro lepení kompozit, termoplastů a kovů. LCM - 05 je bezpodkladové lepidlo

Více

optické vlastnosti polymerů

optické vlastnosti polymerů optické vlastnosti polymerů V.Švorčík, vaclav.svorcik@vscht.cz Definice světelného paprsku světlo se šíří ze zdroje podél přímek (paprsky) Maxwell: světlo se šířív módech (videch) = = jediná možná cesta

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava 14. ELEKTRICKÉ TEPLO Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova přednp ednášky Úvod, výhody, zdroje Elektrické odporové a obloukové pece Indukční a dielektrický ohřev Elektrický

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

Elektrické vlastnosti. Základní pojmy Elektrická vodivost Elektrostatické chování polymerů

Elektrické vlastnosti. Základní pojmy Elektrická vodivost Elektrostatické chování polymerů Elektrické vlastnosti Základní pojmy Elektrická vodivost Elektrostatické chování polymerů Typy materiálů Látky umístěné v elektrickém poli: transport elektricky nabitých částic, tj. vzniká elektrický proud

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ 1. Mechanické vlastnosti materiálů 2. Technologické vlastnosti materiálů 3. Zjišťování

Více

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek Fyzika 6. ročník Očekávaný výstup Školní výstup Učivo Mezipředmětové vztahy, průřezová témata Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí.

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny.

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny. Psaní testu Pokyny k vypracování testu: Za nesprávné odpovědi se poměrově odečítají body. Pro splnění testu je možné využít možnosti neodpovědět maximálně u šesti o tázek. Doba trvání je 90 minut. Způsob

Více

Maturitní otázka č.19: Zpobrazovací prvky a monitory

Maturitní otázka č.19: Zpobrazovací prvky a monitory Střední průmyslová škola elektrotechnická a zařízení pro další vzdělávání pedagogických pracovníků v Žatci Maturitní otázka č.19: Zpobrazovací prvky a monitory Datum vypracování: 28.9. 2011 Vypracoval:

Více

DuPont Voltatex 4230 1K-Impregnační pryskyřice

DuPont Voltatex 4230 1K-Impregnační pryskyřice DuPont Voltatex 4230 1K-Impregnační pryskyřice Datový list Báze Nenasycená polyesterimidová pryskyřice Charakteristika S naší produktovou řadou Voltatex 4200 Vám dodáváme nízkoemisní, jednosložkové impregnační

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

changing the face Nová scéna Národního divadla

changing the face Nová scéna Národního divadla Produkty DuPont Corian DuPont Corian, exkluzivní produkt společnosti DuPont, je kompozitní materiál, který dokonale kombinuje funkčnost s estetickými vlastnostmi a je určen pro povrchové interiérové i

Více

Katedra obrábění a montáže, TU v Liberci při obrábění podklad pro výuku předmětu TECHNOLOGIE III - OBRÁBĚNÍ je při obrábění ovlivněna řadou parametrů řezného procesu, zejména řeznými podmínkami, geometrií

Více

DUM č. 18 v sadě. 31. Inf-7 Technické vybavení počítačů

DUM č. 18 v sadě. 31. Inf-7 Technické vybavení počítačů projekt GML Brno Docens DUM č. 18 v sadě 31. Inf-7 Technické vybavení počítačů Autor: Roman Hrdlička Datum: 24.02.2014 Ročník: 1A, 1B, 1C Anotace DUMu: monitory CRT a LCD - princip funkce, srovnání (výhody

Více

MATERIÁLY NA TVÁŘENÍ KOVŮ

MATERIÁLY NA TVÁŘENÍ KOVŮ MATERIÁLY NA TVÁŘENÍ KOVŮ Nejrozšířenější technické materiály železné kovy - OCELI V současné době nahrazení NEŽELEZNÉ KOVY Al, Mg, Ti PLASTY KOMPOZITNÍ MATERIÁLY Vysokopevnostní oceli Hlubokotažné oceli

Více

11 Manipulace s drobnými objekty

11 Manipulace s drobnými objekty 11 Manipulace s drobnými objekty Zpracování rozměrově malých drobných objektů je zpravidla spojeno s manipulací s velkým počtem objektů, které jsou volně shromažďovány na různém stupni uspořádanosti souboru.

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

Využití technologie inkoustového tisku pro přípravu mikro a nanostruktur I.

Využití technologie inkoustového tisku pro přípravu mikro a nanostruktur I. Ústav fyziky a měřicí techniky Vysoká škola chemicko-technologická v Praze Využití technologie inkoustového tisku pro přípravu mikro a nanostruktur I. Princip funkce, rozdělení a potenciál pro výzkum Obsah

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

1. Zdroje a detektory optického záření

1. Zdroje a detektory optického záření 1. Zdroje a detektory optického záření 1.1. Zdroje optického záření výkon a jeho časový průběh spektrální charakteristika a její stabilita v čase koherenční vlastnosti 1.1.1. Tepelné zdroje velmi malá

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

Vláknobetony. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz

Vláknobetony. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Vláknobetony Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Úvod Beton křehký materiál s nízkou pevností v tahu a deformační kapacitou Od konce 60.

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_19_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Plynové lasery pro průmyslové využití

Plynové lasery pro průmyslové využití Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne

Více

MĚŘENÍ A REGULACE TEPLOTY V LABORATORNÍ PRAXI

MĚŘENÍ A REGULACE TEPLOTY V LABORATORNÍ PRAXI MĚŘENÍ A REGULACE TEPLOTY V LABORATORNÍ PRAXI Jaromír Škuta a Lubomír Smutný b a) VŠB-Technická Univerzita Ostrava, 17. listopadu 15, 708 33 Ostrava - Poruba, ČR, jaromir.skuta@vsb.cz b) VŠB-Technická

Více

KATALOG LEPIDEL ZAJIŠŤOVÁNÍ ZÁVITŮ A 1042 THREAD LOCK ZAJIŠŤOVÁNÍ ZÁVITŮ HH 131 THREAD LOCK TĚSNĚNÍ ZÁVITŮ A 1044 PIPE SEALANT

KATALOG LEPIDEL ZAJIŠŤOVÁNÍ ZÁVITŮ A 1042 THREAD LOCK ZAJIŠŤOVÁNÍ ZÁVITŮ HH 131 THREAD LOCK TĚSNĚNÍ ZÁVITŮ A 1044 PIPE SEALANT KATALOG LEPIDEL ZAJIŠŤOVÁNÍ ZÁVITŮ A 1042 THREAD LOCK Rychlé vytvrzuje - manipulační pevnost 5 10 min. Zabraňuje mezikrystalické korozi v závitu Demontovatelný běžným nářadím Barva: modrá Možno použít

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více