POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH"

Transkript

1 POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH Obsah. ÚČEL 2 2. SOUVISEJÍCÍ PŘEDPISY 2 3. VYSVĚTLENÍ POJMU DEFINICE NEJISTOTA MĚŘENÍ 2 4. STANOVENÍ NEJISTOTY MĚŘENÍM 3 4. STANOVENÍ NEJISTOTY MĚŘENÍ TYPU A STANOVENÍ NEJISTOTY TYPU B STANOVENÍ KOMBINOVANÁ STANDARDNÍ NEJISTOTA U X NEJISTOTY MĚŘENÍ A A NEJISTOTY MĚŘENÍ B POSTUP PRO STANOVENÍ NEJISTOTY U VELIČIN, U NICHŽ JSOU PRO DANÉ MĚŘENÍ SPOJENÉ NEJISTOTY PŘEVZATÝ Z EXTERNÍCH ZDROJŮ STANOVENÍ ROZŠÍŘENÉ NEJISTOTY U POSTUP PŘI STANOVENÍ NEJISTOT MĚŘENÍ 7 5. UVÁDĚNÍ SHODY S POŽADAVKY 9 5. UVÁDĚNÍ SHODY SE SPECIFIKACÍ PRO JEDNOTLIVOU VELIČINU VYJÁDŘENÍ SHODY (NESHODY) PRO URČENOU MEZ SPECIFIKACE (HORNÍ, DOLNÍ): UVÁDĚNÍ SHODY POŽADAVKY NEBO SPECIFIKACÍ V PŘÍPADĚ NĚKOLIKA VELIČIN.. 6 PLATNOST..2 7 IMPLEMENTACE..2 PŘÍLOHA Pravidla stanovení počtu nul, zaokrouhlování a stanovení počtu desetinných míst výsledků měření..3

2 . ÚČEL Tento pokyn určuje instrukce pro uvádění shody nebo neshody s požadavky a vyjádření nejistot měření v protokolech o zkouškách ve Zkušebně nábytku, AZL V souladu s ČSN EN ISO/IEC 7025v Zkušebna nábytku poskytuje zákazníkům vyjádření o výsledcích měření, jejich nejistotě a posouzení shody se specifikací v souladu s tímto pokynem. 2. SOUVISEJÍCÍ PŘEDPISY ILAC-G8:03/2009 Pokyny pro uvádění shody se specifikací. Český institut pro akreditaci. Praha ČSN EN ISO/IEC 7025 Posuzování shody - Všeobecné požadavky na způsobilost zkušebních a kalibračních laboratoří. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Sborníky technické harmonizace, Svazek č. 8, Nejistoty měření. 3. VYSVĚTLENÍ POJMU DEFINICE NEJISTOTA MĚŘENÍ U kvantitativních akreditovaných i neakreditovaných zkoušek, u kterých je to možné, se vyžaduje stanovení nejistot měření, protože vyjádření výsledku je úplné pouze tehdy, obsahuje-li vlastní hodnotu měřené veličiny a nejistotu měření patřící k této hodnotě. Nejistota měření je parametr přidružený k výsledku měření, který charakterizuje rozptyl interval hodnot, o němž se (s určitou pravděpodobností) tvrdí, že uvnitř leží správná hodnota. Definice Nejistoty měření podle "Mezinárodního slovníku základních a všeobecných termínů v metrologii:" Nejistota měření je parametr přidružený k výsledku měření, který charakterizuje rozptyl hodnot, které by mohly být přisuzovány měřené veličině. Tímto parametrem může být směrodatná odchylka nebo jiná část intervalu, který vymezuje určitý konfidenční rozsah. Je důležité, aby se nebralo v úvahu pouze samostatné měření, ale rovněž celkový výsledek zkoušky. V tomto případě nejistota měření zahrnuje všechny složky zkoušky. Nejistoty měření se označují písmenem u. Rozeznáváme nejistoty měření typu A, typu B, kombinované nejistoty a rozšířené nejistoty U. Jednotlivé nejistoty jsou charakterizované následovně dle kap. 4. GUM ČSN ISO

3 4. STANOVENÍ NEJISTOTY MĚŘENÍM 4. STANOVENÍ NEJISTOTY MĚŘENÍ TYPU A Postup pro stanovení nejistoty typu A lze použít tehdy, pokud bylo za stejných podmínek provedeno minimálně 5 nezávislých měření s dostatečným rozlišením a pozorovatelným rozptýlení získaných hodnot. všechny složky nejistot určované statistickými rozborem série měření jsou charakterizovány odhady rozptylů a směrodatných odchylek stanovených z opakovaných měření Veličiny, u nichž byl odhad a s ním spojená nejistota přímo stanoven na základě provedeného měření, mohou být určeny např. na základě měření nebo odborného úsudku vycházejícího ze zkušeností. (což se týká následujících akreditovaných zkoušek Pro vyjádření míry rozptýlení hodnot náhodné veličiny se používá rozptyl jejího rozdělení, resp. jeho kladná druhá odmocnina, označovaná jako směrodatná odchylka. Standardní nejistotou měření u (y), vztahující se k odhadu hodnoty výsledné veličiny nebo výsledku y, je směrodatná odchylka měřené veličiny y. pro n > měření se při výpočtu nejistoty měření typu A vychází z výběrového rozptylu n x = x i n i = výběrový rozptyl průměru s 2 ( q ) = ( x x ) i n n a směrodatné odchylky této výsledné hodnoty u Ax = ( x i x ) 2 n( n ) i = 2 2 3

4 4.2 STANOVENÍ NEJISTOTY TYPU B Postup pro stanovení standardní nejistoty typu B je založen na stanovení nejistoty jiným způsobem než statistickými vyhodnoceními série pozorování. V tomto případě vychází stanovení nejistoty z nějaké jiné odborné znalosti a zkušenosti. Příslušná standardní nejistota u (x j ) je určena odborným úsudkem na základě všech dostupných informací o možné variabilitě veličiny X i. Nejistoty typu B jsou také odvozeny z dříve provedených měření, ze získaných zkušeností s chováním a vlastnostmi příslušných materiálů a zařízení nebo, z jejich obecných znalosti, z údajů výrobce, z údajů uváděných v kalibračních listech nebo jiných certifikátech, z nejistot referenčních údajů převzatých z příruček. všechny složky nejistot stanovené jinými metodami složky stanovené z funkce hustoty pravděpodobnosti Pro výslednou standardní nejistotu typu B platí (za předpokladu nekorelovatelnosti jednotlivých zdrojů nejistoty typu B v praxi). m 2 2 u Bx= u xzj j = Náležité stanovení nejistoty typu B vyžaduje důkladné pochopení problematiky vycházející ze zkušenosti a obecné znalosti, které lze dosáhnout jedině praxí. Při stanovení nejistoty měření typu B se využívá základních údajů od výrobce pro měřící zařízení o rozmezí hodnot, zaokrouhlovacích chybách nebo odhadech pouze horních a dolních limitů a + a a - zařízení. Příklad stanovení nejistoty typu B Nejistota měření typu B při známých horních a dolních limitech se stanoví následovně: 2 a u 2 (Bx i ) = ( ) 2 + a je-li rozdíl mezi limitními hodnotami 2a potom u 2 (Bxi) = a 3 2 4

5 4.3 STANOVENÍ KOMBINOVANÁ STANDARDNÍ NEJISTOTA U X NEJISTOTY MĚŘENÍ A A NEJISTOTY MĚŘENÍ B kombinovaná nejistota u x charakterizuje výsledek měření získaný z hodnot řady dalších vstupních veličin odhad směrodatné odchylky spojený s výsledkem měření získaný z rozptylů a kovariací spojených s hodnotami vstupních veličin umožňuje analyzovat jednotlivé příspěvky vstupních nejistot měření typu A a typu B kombinovanou nejistotu měření u x vypočteme podle následujícího vzorce u x = u Ax u Bx 4.4 POSTUP PRO STANOVENÍ NEJISTOTY U VELIČIN, U NICHŽ JSOU PRO DANÉ MĚŘENÍ SPOJENÉ NEJISTOTY PŘEVZATÝ Z EXTERNÍCH ZDROJŮ Druhý typ stanovení nejistot měření u veličin, u nichž byl pro dané měření s odhadem hodnoty a s ním spojené nejistoty převzatý z externích zdrojů, jak je tomu v případě veličin vztahujícím se ke kalibrovaným měřícím etalonům, certifikovaným referenčním materiálům nebo referenčním materiálům údajům převzatým z příruček, v našem případě se to týká stanovení nejistot měření u množství emitovaných organických látek do vnitřního prostředí U obou dvou typů měření se stanovuje rozšířená nejistota měření. 5

6 4.5 STANOVENÍ ROZŠÍŘENÉ NEJISTOTY U Rozšířená nejistota U definuje interval okolo výsledku měření, v němž se s určitou požadovanou úrovní konfidence nalézá výsledek měření. Rozšířenou nejistotu U vypočítáme vynásobením kombinované standardní nejistoty u x koeficientem rozšíření k. Rozšířená nejistota má poskytnout interval, o kterém se předpokládá, že zahrnuje značný podíl distribuce hodnot důvodně přisuzovaných měřené veličině, tedy hodnot vyšší úrovně konfidence. Hodnota koeficientu pokrytí závisí nejen na požadované úrovni konfidence, ale i na počtu stupňů volnosti, to je počtu nezávislých opakování. V případě, kdy lze usuzovat na normální rozdělení měřené veličiny a kdy standardní nejistota měření je stanovena s dostatečnou spolehlivostí, předpokládáme hladinu významnosti 95 % a standardní nejistota bude zpravidla rozšířená koeficientem k 0,95 = 2. Při některých měřeních se používá koeficient hodnoty 3 s úrovni konfidence, pokrytí 99. V případě, kde je N 3 odvozených z nezávislých veličin nejistot měření má rozdělení s běžným průběhem (např. normální nebo rovnoměrné rozdělení) a srovnatelně přispívá ke standardní nejistotě odhadu y výstupní veličiny, lze předpokládat, že rozdělení hodnot y je normální a současně žádný z příspěvků nejistoty, určený dle postupu pro nejistotu typu A, není stanoven z méně než deseti opakovaných měření. Pokud není splněna ani jedna z těchto podmínek pro normální rozdělení nemůže koeficient pokrytí snadno potvrzen a nelze použít kritérium standardní koeficient rozšíření k= 2 a musí se volit jiné postupy. Rozšířenou nejistotu měření U (y) vypočítáme vynásobením kombinované standardní nejistoty u c (y) koeficientem rozšíření k U (y) = k. u c (y) Vyjádření nejistoty měření při zápisu výsledku: y = y _ ± U(y) 6

7 4.6 POSTUP PŘI STANOVENÍ NEJISTOT MĚŘENÍ. Specifikovat požadavky, metody a prostředky. 2. Sestavit pokud možno seznam faktorů, které ovlivňují výsledky zkoušky a měření 3. Udělat si předběžný odhad nejistot jednotlivých složek a jejich vliv na výslednou nejistotu s eliminováním nevýznamných složek. 4. Provést odhad nejistot významných složek nejistoty měření a vyjádřit je ve formě směrodatných odchylek. 5. Zvážit možné závislosti mezi jednotlivými složkami a zjistit, které složky mají jednoznačně dominantní charakter. 6. Stanovit standardní nejistotu měřením a výpočtem. Konečný výsledek vypočtených hodnot nejistot měření zaokrouhlujeme vždy nahoru, tak aby měl fyzikální smysl. Nejistoty uvádíme maximálně na dvě platné číslice. 7. Výslednou kombinovanou standardní nejistotu vynásobit příslušným koeficientem rozšíření (není-li vyžadováno jinak a lze-li uplatnit předpoklad normálního rozdělení, pak zpravidla rozšíření k = 2) Pro možnou korelaci výsledku jsou také v tabulce uvedené koeficienty kovariace. Koeficienty kovariace pro dané stupně volnosti, tedy počtem měření jsou uvedeny v tabulce 2. Tabulka Hodnoty koeficientu k ua. kovariace n k ua 7,0 2,3,7,4,3,3,2,2 Pro vyjadřování a vyhodnocování výsledků a pro vyhodnocení splnění předepsaných požadavků na vlastnosti povrchových úprav je třeba uvádět s výsledky měření také nejistotu měření, která je jejich nedílnou součástí. Pro splnění předepsaných tolerančních parametrů a požadavků na vlastnosti povrchových úprav musí být výsledek i rozšířená nejistota uvnitř tolerančního pásma. 7

8 Podceňování nejistot měření může vést k neshodám, a tím i ke snížení jakosti výrobku. Matematický model měření, identifikace všech zdrojů nejistoty Identifikace zdrojů Určení vstupních veličin Stanovení výsledku Ohodnocení vstupních Určení případných korelací Typ A Typ Kombinovaná standardní nejistota Rozšířená Zápis výsledku Obrázek : Schéma stanovení nejistot měření Číselná hodnota nejistoty musí být uváděna na nejvýše dvě platné číslice. Uvádí-li se nejistota samostatně, nelze uvádět, že nejistota je ± 0,5 μg.m -3, ale jen ve spojitosti s výsledkem měření, např. (0,5 ± 0,5) μg.m -3. 8

9 5. UVÁDĚNÍ SHODY S POŽADAVKY 5. UVÁDĚNÍ SHODY SE SPECIFIKACÍ PRO JEDNOTLIVOU VELIČINU Je-li dosažena shoda se specifikací (normou, zákonem, vyhláškou apod.), mělo by být jasné, jaká pravděpodobnost překrytí pro rozšířenou nejistotu byla použita (obecně bude pravděpodobnost pokrytí 95%) a vyjádření bude obsahovat poznámku Vyjádření shody je založeno na pravděpodobnosti pokrytí 95% pro rozšířenou nejistotu. To znamená pravděpodobnost, že dané měření je pod horní mezí specifikace, je vyšší než 95% (pro symetrické rozdělení), obdobný závěr lze učinit pro dolní mez specifikace. Jiné hodnoty pravděpodobnosti pokrytí pro rozšířenou nejistotu musí být dohodnuty se zákazníkem a uvedeny ve smlouvě o vykonání zkoušek. Obrázek 2: Shoda se specifikací 9

10 5.2 VYJÁDŘENÍ SHODY (NESHODY) PRO URČENOU MEZ SPECIFIKACE (HORNÍ, DOLNÍ): Shoda: Shodu se specifikací lze vyjádřit, jestliže daná mez specifikace není překročena výsledkem měření zvětšeným o rozšířenou nejistotu s pravděpodobností pokrytí 95%. Vyjádření: Shoda výsledek měření je v rámci meze dané specifikací 2 (nebo pod mezí danou specifikací) bere-li se v úvahu nejistota měření. (Obrázek 2, případ ). Neshoda: Jestliže je mez daná specifikací (viz pozn. pod čarou) překročena výsledkem měření zmenšeným o nejistotu měření s pravděpodobností pokrytí 95%, pak se neshoda s danou specifikací vyjádří: Neshoda výsledek měření je mimo mez danou specifikací (nebo nad mezí danou specifikací), bere-li se v úvahu nejistota měření. (Obrázek 2, případ 4). Není možné vyjádřit shodu: Jestliže je výsledek měření zvětšený nebo zmenšený o rozšířenou nejistotu s pravděpodobností pokrytí 95% překrývat mezní hodnotu (Obrázek, případ 2 a 3), pak není možné vyjádřit shodu nebo neshodu. Vyjádření: Není možné vyjádřit shodu (s danou specifikací) V případě 2 obrázku : Není možné vyjádřit shodu za použití pravděpodobnosti pokrytí 95% pro rozšířenou nejistotu, přestože výsledek měření se nachází pod mezní hodnotou 2 Specifikací se rozumí předpis, obvykle zákon, vyhláška, norma apod., která určuje přípustné horní či dolní meze nebo limitní hodnoty pro předmět měření ve vyjádření se uvádí konkrétní předpis. 0

11 V případě, že se měření provádí na vzorku, který byl odebrán z celku, sestavy, celého produktu apod. (např. odebrání vzorku z nábytkové sestavy), vyjádří se tato skutečnost poznámkou: Výsledky zkoušek a vyjádření shody se specifikací se v tomto protokolu týkají pouze zkoušeného vzorku tak, jak byl zkoušen, nikoliv vzorku, ze které ho byl zkoušený vzorek odebrán. Pokud vnitrostátní předpis (zákon, vyhláška apod.) vyžaduje rozhodnutí ohledně odmítnutí či schválení, může být případ 2, obrázek 2 jako shoda a případ 3, obrázek 2 jako neshoda s mezní danou specifikací. 5.3 UVÁDĚNÍ SHODY POŽADAVKY NEBO SPECIFIKACÍ V PŘÍPADĚ NĚKOLIKA VELIČIN Jestliže vyhodnocení shody se specifikací obsahuje více veličin (naměřených výsledků), měla by být každá veličina vyhodnocována nezávisle a výsledek každého vyhodnocení se uvede jako v bodu 5.2. CELKOVÉ HODNOCENÍ SHODY S POŽADAVKY NEBO SPECIFIKACÍ SE POTÉ ZFORMULUJE: Všechny naměřené hodnoty jsou ve shodě s mezí (mezemi) danou specifikací nebo Vzorek je ve shodě s požadavky.. Pro některé (specifikované, které) z naměřených hodnot není možné učinit vyjádření o shodě se specifikací. Vztahuje se na situace, kdy některé z naměřených hodnot jsou dle případu 2 a 3, Obrázek 2. Vzorek (který) není ve shodě s požadavky. Toto nastane za situace dle případu 4, Obrázek 2 Při vypracování celkového hodnocení se zohlední vyjádření pravděpodobnosti pokrytí pro rozšířenou nejistotu: Vyjádření shody se specifikací (nebo požadavkem) je

12 založeno na pravděpodobnosti pokrytí 95% pro rozšířenou nejistotu výsledků měření, na nichž je založeno rozhodnutí o shodě. Pokud jsou ve smlouvě o vykonání zkoušek dohodnuty jiné hodnoty pravděpodobnosti pokrytí pro rozšířenou nejistotu: Vyjádření shody s požadavkem. je založeno na pravděpodobnosti pokrytí 97,5% pro rozšířenou nejistotu výsledků měření, která byla dohodnuta smlouvou se zákazníkem o vykonání zkoušek uvedených v tomto protokolu, na níž je založeno rozhodnutí o shodě. 6 PLATNOST Tento pokyn nabývá platnosti dne. dubna IMPLEMENTACE Tento pokyn bude zařazen jako příloha Příručky kvality od pravidelné dozorové návštěvy ČIA roku 20. Vypracoval: Ing. Zdeněk Holouš, vedoucí Zkušebny nábytku, AZL Doc. Ing. Daniela Tesařová, Ph.D., manager jakosti Zkušebny nábytku, AZL Rozdělovník: Všichni pracovníci Zkušebny nábytku, AZL URL: 2

13 Příloha Pokynu pro uvádění shody a nejistot měření v protokolech o zkouškách. Pravidla stanovení počtu nul, zaokrouhlování a stanovení počtu desetinných míst výsledků měření. Obsah. Pravidla pro stanovení počtu platných číslic výsledku měření Pravidla pro zaokrouhlování výsledků měření.4 3. Pravidla pro počítání s výsledky měření a pro stanovení počtu desetinných míst nebo pro stanovení počtu platných číslic takových výpočtů..4. Pravidla pro stanovení počtu platných číslic výsledku měření Pro stanovení počtu platných číslic v čísle je z matematického hlediska důležité, zda se jedná o číslo s desetinnou čárkou či nikoli. Obecný postup stanovení počtu platných číslic v čísle, které má desetinnou čárku, je následující:. poté, co jsme se ujistili, že číslo má desetinnou čárku, začneme se stanovením počtu platných číslic zleva příslušné číselné hodnoty a budeme postupovat tak dlouho, dokud nenarazíme na první nenulovou číslici, 2. takto nalezenou nenulovou číslici a jakékoli číslice vpravo od ní považujeme za číslice platné. Poznámka: Nuly, které jsou na konci čísla a nuly ležící za nebo před desetinnou čárkou jsou platnými číslicemi. Příklady:. Výsledek stanovení 4,030 µg.m -3 látky má 4 platné číslice. 2. Výsledek stanovení 4030, µg.m -3 látky má také 4 platné číslice (tento zápis nepoužívat). 3. Výsledek stanovení 4030 µg.m -3 látky má jen 2 platné číslice u čísel, která jsou uváděna bez desetinné čárky, nejsou nuly, které se vyskytují na okraji čísla ať již zleva, nebo zprava, považovány za platné číslice! Pravidla: a) Pravidlo : nenulové číslice jsou vždy číslicemi platnými, a to bez ohledu na to, zda číslo obsahuje nebo neobsahuje desetinnou čárku. Příklady: číslo 45 má dvě platné číslice; číslo,37 má tři platné číslice; číslo 4,5 má dvě platné číslice; číslo 37 má tři platné číslice. b) Pravidlo 2: nuly nacházející se v čísle mezi nenulovými číslicemi jsou vždy číslicemi platnými. Příklad: 00 má čtyři platné číslice;,0005 má pět platných číslic. c) Pravidlo 3 nuly za poslední platnou nenulovou číslicí jsou za předpokladu, že má číslo desetinnou čárku, číslicemi platnými. Příklady: 0,00400 má tři platné číslice (číslici 4 a dvě nulové číslice za číslicí 4); 000, má čtyři platné číslice. d) Pravidlo 4 nuly za poslední platnou nenulovou číslicí nejsou číslicemi platnými za předpokladu, že číslo nemá desetinnou čárku. Příklady: 400 má jednu platnou číslici (jedná se o číslici 4); má dvě platné číslice (jedná se o číslice a 2). Poznámka: Je doporučeno uvádět číselné hodnoty ve formě tzv. vědeckého zápisu čísel. 3

14 Příklad: Použijeme-li tzv. vědecký zápis čísla, pak je možno číslo 000 zapsat jako x 0 3 ( platná číslice) nebo jako,0 a číslo 000 lze zapsat jako,0 x 0 3 (4 platné číslice). 2. Pravidla pro zaokrouhlování výsledků měření Pro zaokrouhlování čísel používáme následující pravidla (u výsledků měření totiž zpravidla zaokrouhlujeme na poslední číslici, kterou chceme mít platnou, a pro takové zaokrouhlování respektujeme informace související s přesností měření nejde tedy o nějakou libovůli).. Je-li číslice, která má být odstraněna v důsledku zaokrouhlování, větší než 5, pak bude číslice jí bezprostředně předcházející zvětšena o. Příklad: Výsledek měření je 5,379 µg.m -3 a číselná hodnota se zaokrouhlí na 5,38 (pokud jsou ovšem tři platné číslice únosné) anebo i na 5,4 pokud jsou potřebné jen dvě platné číslice, ale to už je metrologicky méně spolehlivý závěr. 2. Je-li číslice, která má být odstraněna v důsledku zaokrouhlování, menší než 5, pak zůstane číslice jí bezprostředně předcházející nezměněna. Příklad: Výsledek měření je 2,443 µg.m -3 formaldehydu a číselná hodnota se zaokrouhlí na 2,44 (pokud jsou ovšem tři platné číslice únosné, a to v případě stanovení např. emisí VOC jistě jsou) anebo i na 2,4 pokud jsou potřebné jen dvě platné číslice. 3. Je-li číslice, která je zaokrouhlována, rovna právě 5, pak se jí bezprostředně předcházející číslice zvýší o, pokud je lichá, a zůstane nezměněna, pokud je sudá. To platí, pokud tato číslice 5 je poslední platnou číslicí, nebo pokud dalšími platnými číslicemi jsou již jen nuly. Příklad Výsledek měření 7,75 µg.m -3 se zaokrouhlí na 7,8, ale výsledek měření 7,65 µg.m -3, tedy číslo 7,65 se zaokrouhlí na 7,6. Je-li číslice 5 následována pouze nulami, pak se dodrží zásady formulované v bodě 3. Je-li číslice 5 následována nenulovými číslicemi, pak se použije zásad uvedených v bodě. Číselná hodnota 7,6500 se zaokrouhlí na 7,6, ale číslo 7,653 se zaokrouhlí na 7,7! Při několikastupňových výpočtech se vždy ponechá o dvě nebo více přídavných platných číslic více, než je potřeba, a podle výše uvedených pravidel se na potřebnou platnou číslici zaokrouhlí až výsledné číslo. 3. Pravidla pro počítání s výsledky měření a pro stanovení počtu desetinných míst nebo pro stanovení počtu platných číslic takových výpočtů Neméně důležitá jsou samozřejmě obecná pravidla pro stanovení buď počtu platných desetinných míst, nebo pro stanovení celkového počtu platných míst výsledné hodnoty, která jsou získána aritmetickými operacemi s výsledky měření. Tato pravidla můžeme rozdělit na pravidla týkající se sčítání a odčítání čísel a na pravidla týkající se násobení a dělení čísel (obdobou násobení a dělení je pak umocňování a odmocňování). a) Pravidlo pro počet platných desetinných míst výsledku sčítání nebo odečítání čísel: Výsledek sčítání nebo odečítání čísel má mít ten samý počet platných desetinných míst jako sčítanec (při odečítání má sčítanec zápornou hodnotu), který má nejmenší počet platných desetinných míst. 4

15 Příklad :. 83,5 + 23,28 = 06, Nejnižší počet platných desetinných míst má první sčítanec (jedno platné desetinné místo). 3. Výsledek tedy musí být zaokrouhlen na jedno platné desetinné místo. 4. Použitím pravidel pro zaokrouhlování tedy dostaneme výslednou hodnotu 06,8. Příklad 2:. 865,9 2,82 = 863, Nejnižší počet platných desetinných míst má první sčítanec (jedno platné desetinné místo). 3. Výsledek tedy musí být zaokrouhlen na jedno platné desetinné místo. 4. Použitím pravidel pro zaokrouhlování tedy dostaneme výslednou hodnotu 863,. b) Pravidlo pro počet platných číslic ve výsledku násobení nebo dělení: Výsledek násobení nebo dělení obsahuje ten samý počet platných číslic, jako má činitel vstupující do výpočtu, který má nejmenší počet platných číslic. Příklad :. 9,2 6,8 0,3744 = 23, Činitelé 9,2 a 6,8 mají shodně dvě platné číslice a činitel 0,3744 má pět platných číslic. 3. Výsledek tedy musí mít dvě platné číslice. 4. Použitím pravidel pro zaokrouhlování tedy dostaneme výslednou hodnotu 23. Příklad 2:. (9,2 : 6,8) 0, 3744 = 0, Činitelé 9,2 a 6,8 mají shodně dvě platné číslice a činitel 0,3744 má pět platných číslic. 3. Výsledek tedy musí mít dvě platné číslice. 4. Použitím pravidel pro zaokrouhlování tedy dostaneme výslednou hodnotu 0,5. Příklad 3:. 9,2 6, = Činitel 9,2 má dvě platné číslice, činitel 6,82 má tři platné číslice a činitel má sedm platných číslic. 3. Výsledek tedy musí mít dvě platné číslice. 4. Použitím pravidel pro zaokrouhlování tedy dostaneme výslednou hodnotu (výsledek uvedeme bez desetinné čárky, protože jinak by měl osm platných číslic). Příklad 4:. 9,2 6, = Činitel 9,2 má dvě platné číslice, činitel 6,82 má tři platné číslice a činitel má jednu platnou číslici. 3. Výsledek tedy musí mít jednu platnou číslici. 4. Použitím pravidel pro zaokrouhlování tedy dostaneme výslednou hodnotu (výsledek uvedeme bez desetinné čárky, protože jinak by měl osm platných číslic). Prameny: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Sborníky technické harmonizace, Svazek č. 8, Nejistoty měření. 5

Akreditace zkušebních laboratoří Školení pracovníků masného průmyslu Beroun

Akreditace zkušebních laboratoří Školení pracovníků masného průmyslu Beroun Akreditace zkušebních laboratoří Školení pracovníků masného průmyslu 8.10.2013 Beroun Ing. Milan Badal Accredo Dávám důvěru Obsah prezentace 1) Základní informace 2) Akreditace zkušebních laboratoří 3)

Více

ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Dokumenty ILAC. ILAC Mezinárodní spolupráce v akreditaci laboratoří

ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Dokumenty ILAC. ILAC Mezinárodní spolupráce v akreditaci laboratoří ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Opletalova 41, 110 00 Praha 1 Nové Město Dokumenty ILAC ILAC Mezinárodní spolupráce v akreditaci laboratoří Číslo publikace: ILAC - G17:2002 Zavádění koncepce stanovení

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3)

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Přesnost a správnost v metrologii V běžné řeči zaměnitelné pojmy. V metrologii a chemii ne! Anglický termín Measurement trueness Measurement

Více

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE NEJISTOTA MĚŘENÍ David MILDE, 014 DEFINICE Nejistota měření: nezáporný parametr charakterizující rozptýlení hodnot veličiny přiřazených k měřené veličině na základě použité informace. POZNÁMKA 1 Nejistota

Více

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ

8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ MANAGEMENT PROCESŮ Systémy managementu měření se obecně v podnicích používají ke kontrole vlastní produkce, ať už ve fázi vstupní, mezioperační nebo výstupní. Procesy měření v sobě zahrnují nemalé úsilí

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Počítání s neúplnými čísly 1

Počítání s neúplnými čísly 1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Kvalita v laboratorní a kontrolní praxi

Kvalita v laboratorní a kontrolní praxi Kvalita v laboratorní a kontrolní praxi Část: Rozhodování o shodě se specifikací (limitem) Vladimír Kocourek Praha, 2016 Shoda se specifikací / limitem Posuzování shody se specifikací / limitem Cílem měření

Více

Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu

Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu Obsah 1. Úvod 2. Oblast působnosti 3. Definice 3.1 Definice uvedené ve směrnici 3.2 Obecné definice 3.2.1 Nejistoty způsobené postupem

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Členění podle 505 o metrologii

Členění podle 505 o metrologii Členění podle 505 o metrologii a. etalony, b. pracovní měřidla stanovená (stanovená měřidla) c. pracovní měřidla nestanovená (pracovní měřidla) d. certifikované referenční materiály Etalon: je ztělesněná

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti STATISTICKÉ METODY V LABORATOŘÍCH Ing. Vratislav Horálek, DrSc. Ing. Jan Král 2 A.Základní a terminologické normy 1 ČSN 01 0115:1996 Mezinárodní slovník

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Detailní porozumění podstatě měření

Detailní porozumění podstatě měření Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval

Více

Vyjadřování nejistot

Vyjadřování nejistot ÚČEL Účelem stanovení nejistot při měření je zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny. Nejistota měření zjištěná při kalibraci je základem pro zjištění

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Česká metrologická společnost

Česká metrologická společnost Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 2.3.2/06/15 TVRDOMĚRNÉ DESTIČKY BRINELL Praha Říjen 2015

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

Metrologie v praxi. Eliška Cézová

Metrologie v praxi. Eliška Cézová Metrologie v praxi Eliška Cézová 1. Úvod Metrologie se zabývá jednotností a správností měření. Pro podnikovou metrologii bychom měli definovat měřidla, která v daném oboru používáme, řádně je rozčlenit

Více

METODICKÉ POKYNY PRO AKREDITACI

METODICKÉ POKYNY PRO AKREDITACI METODICKÉ POKYNY PRO AKREDITACI MPA 30-02 - 13 Politika ČIA pro metrologickou návaznost výsledků měření datum vydání: 1.12.2013 1 MPA 30-02-13 Obsah 1 ÚČEL... 2 2 TERMÍNY A DEFINICE... 2 3 ÚVOD... 2 4

Více

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

METROLOGIE ...JAKO SOUČÁST KAŽDODENNÍHO ŽIVOTA

METROLOGIE ...JAKO SOUČÁST KAŽDODENNÍHO ŽIVOTA METROLOGIE...JAKO SOUČÁST KAŽDODENNÍHO ŽIVOTA cena elektřiny odvíjí od spotřeby změřené elektroměrem zboží v obchodě se váží na vahách prodejce čas od času seřizujeme a tedy kalibrujeme své hodiny při

Více

Představení společnosti

Představení společnosti Představení společnosti KSQ spol. s r. o. Kubatova 1240/6 370 04 České Budějovice Tel/fax: +420 387 311 504 Hot-line: +420 602 470 009 E-mail: ksq@ksq.cz Alena Klůcová, jednatel KSQ spol. s r.o. Auditor

Více

Česká metrologická společnost, z.s. Novotného lávka 5, Praha 1 tel/fax:

Česká metrologická společnost, z.s. Novotného lávka 5, Praha 1 tel/fax: Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 1.1.5/01/16 KALIBRACE ETALONŮ DRSNOSTI POVRCHU Praha

Více

Tuhá alterna,vní paliva validace metody pro stanovení obsahu biomasy podle ČSN EN Ing. Šárka Klimešová, Výzkumný ústav maltovin Praha, s.r.o.

Tuhá alterna,vní paliva validace metody pro stanovení obsahu biomasy podle ČSN EN Ing. Šárka Klimešová, Výzkumný ústav maltovin Praha, s.r.o. Tuhá alterna,vní paliva validace metody pro stanovení obsahu biomasy podle ČSN EN 15 440 Ing. Šárka Klimešová, Výzkumný ústav maltovin Praha, s.r.o. Předchozí přednáška popsala laboratorní metodu jako

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:

Více

Metodika pro stanovení cílové hodnoty obsahu hotově balených výrobků

Metodika pro stanovení cílové hodnoty obsahu hotově balených výrobků ČESKÉ KALIBRAČNÍ SDRUŽENÍ, z.s Slovinská 47, 612 00 Brno Metodika pro stanovení cílové hodnoty obsahu hotově balených výrobků (plněných hmotnostně) Číslo úkolu: VII/12/16 Název úkolu: Zpracování metodiky

Více

Zásady zapisování a zaokrouhlování číslel. Zapisování čísel

Zásady zapisování a zaokrouhlování číslel. Zapisování čísel Zásady zapisování a zaokrouhlování číslel Zapisování čísel Platné číslice daného čísla - všechny číslice od první zleva, která není nulová, do poslední zapsané číslice vpravo. Přitom se nepočítajé nuly

Více

ZKUŠEBNÍ PROTOKOLY. B1M15PPE / část elektrické stroje cvičení 1

ZKUŠEBNÍ PROTOKOLY. B1M15PPE / část elektrické stroje cvičení 1 ZKUŠEBNÍ PROTOKOLY B1M15PPE / část elektrické stroje cvičení 1 1) Typy testů 2) Zkušební laboratoře 3) Dokumenty 4) Protokoly o školních měřeních 2/ N TYPY TESTŮ PROTOTYPOVÉ TESTY (TYPOVÁ ZKOUŠKA) KUSOVÉ

Více

Stavba slovníku VIM 3: Zásady terminologické práce

Stavba slovníku VIM 3: Zásady terminologické práce VIM 1 VIM 2:1993 ČSN 01 0115 Mezinárodní slovník základních a všeobecných termínů v metrologii VIM 3:2007 International Vocabulary of Metrology Basic and General Concepts and Associated Terms Mezinárodní

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 6.1.2/01/13 MECHANICKÉ STOPKY Praha říjen 2013 KP 6.1.2/01/13

Více

Zdravotnické laboratoře. MUDr. Marcela Šimečková

Zdravotnické laboratoře. MUDr. Marcela Šimečková Zdravotnické laboratoře MUDr. Marcela Šimečková Český institut pro akreditaci o.p.s. 14.2.2006 Obsah sdělení Zásady uvedené v ISO/TR 22869- připravené technickou komisí ISO/TC 212 Procesní uspořádání normy

Více

Vysoká škola báňská TU Ostrava Fakulta elektrotechniky a informatiky Katedra obecné elektrotechniky NORMALIZACE V ČR

Vysoká škola báňská TU Ostrava Fakulta elektrotechniky a informatiky Katedra obecné elektrotechniky NORMALIZACE V ČR Vysoká škola báňská TU Ostrava Fakulta elektrotechniky a informatiky Katedra obecné elektrotechniky NORMALIZACE V ČR 1. Obecná definice českých norem označených ČSN 2. Systém označování norem 3. Normalizační

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

Statistické zpracování výsledků

Statistické zpracování výsledků Statistické zpracování výsledků Výpočet se skládá ze dvou částí. Vztažná hodnota a také hodnota směrodatné odchylky jednotlivých porovnání se určuje z výsledků dodaných účastníky MPZ. V první části je

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

ZZ SČZL 4/2014. Zkouška rázem v ohybu metodou Charpy za okolní teploty. Ing. Jan Wozniak, CSc.

ZZ SČZL 4/2014. Zkouška rázem v ohybu metodou Charpy za okolní teploty. Ing. Jan Wozniak, CSc. ZZ SČZL 4/2014 Zkouška rázem v ohybu metodou Charpy za okolní teploty Ing. Jan Wozniak, CSc. CTN WOZNIAK Centrum technické normalizace Nr. 2009/0008/RS Základní úkoly organizátorů zkoušení způsobilosti

Více

Směrnice akreditovaných činností SAC 9. certifikační orgán dokument revize číslo platnost od: stránka stránek SMĚRNICE

Směrnice akreditovaných činností SAC 9. certifikační orgán dokument revize číslo platnost od: stránka stránek SMĚRNICE 0 1. 2. 2015 1 8 1 OBSAH 1 OBSAH... 1 2 SEZNAM POUŽITÝCH ZKRATEK... 2 3 TERMÍNY A DEFINICE... 3 4 ÚVOD... 4 5 SOUVISEJÍCÍ ZÁKONY, NORMY A VYHLÁŠKY... 4 6 POSTUP PODÁVÁNÍ A VYŘIZOVÁNÍ NÁMITEK/STÍŽNOSTÍ...

Více

b) obsah návrhu na prodloužení platnosti pověření

b) obsah návrhu na prodloužení platnosti pověření Strana 1832 Sbírka zákonů č. 94 / 2016 Částka 38 94 VYHLÁŠKA ze dne 23. března 2016 o hodnocení nebezpečných vlastností odpadů Ministerstvo životního prostředí a Ministerstvo zdravotnictví stanoví podle

Více

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

Statistické řízení jakosti - regulace procesu měřením a srovnáváním

Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistická regulace výrobního procesu (SPC) SPC = Statistical Process Control preventivní nástroj řízení jakosti, který na základě včasného

Více

Obecné zásady interpretace výsledků - chemické ukazatele

Obecné zásady interpretace výsledků - chemické ukazatele Obecné zásady interpretace výsledků - chemické ukazatele Ivana Pomykačová Konzultační den SZÚ Hodnocení rozborů vody Výsledek měření souvisí s: Vzorkování, odběr vzorku Pravdivost, přesnost, správnost

Více

Česká metrologická společnost, z.s.

Česká metrologická společnost, z.s. Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 1.1.7/02/16 ULTRAZVUKOVÉ TLOUŠŤKOMĚRY Praha Říjen

Více

SPRÁVNÁ LABORATORNÍ PRAXE V BIOCHEMICKÉ LABORATOŘI

SPRÁVNÁ LABORATORNÍ PRAXE V BIOCHEMICKÉ LABORATOŘI SPRÁVNÁ LABORATORNÍ PRAXE V BIOCHEMICKÉ LABORATOŘI ZÁSADY SPRÁVNÉ LABORATORNÍ PRAXE Správná laboratorní praxe soubor opatření, které je nutné dodržovat pojišťuje kvalitu získaných analytických dat obor

Více

1 Postupy pro certifikaci a dozor

1 Postupy pro certifikaci a dozor Poslední aktualizace 16.3.2015 1 Postupy pro certifikaci a dozor 1.1 Doručení a zaregistrování žádosti o certifikaci Žádost o certifikaci je přijímána pouze v písemné formě, doručena poštou nebo e-mailem.

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Nejistota měření. Thomas Hesse HBM Darmstadt

Nejistota měření. Thomas Hesse HBM Darmstadt Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 03.120.30 2004 Statistické metody - Směrnice pro hodnocení shody se specifikovanými požadavky - Část 1: Obecné principy ČSN ISO 10576-1 01 0241 Leden Statistical methods - Guidelines

Více

Kalkulace nákladů řízení/akreditačního procesu

Kalkulace nákladů řízení/akreditačního procesu Kalkulace nákladů řízení/akreditačního procesu SDĚLENÍ Českého institutu pro akreditaci, o.p.s. o vyhlášení Kalkulace nákladů řízení/akreditačního procesu ČIA V návaznosti na změny v akreditačním systému

Více

KALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ. Ing. Václav Duchoň ČMI OI Brno

KALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ. Ing. Václav Duchoň ČMI OI Brno KALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ Ing. Václav Duchoň ČMI OI Brno Skupiny měřidel úkol technického rozvoje PRM 2012 č. VII/4/12 velké množství jednotlivých měřidel délky 11 skupin,

Více

Stavební materiály. Zkušební laboratoře. Ing. Alexander Trinner

Stavební materiály. Zkušební laboratoře. Ing. Alexander Trinner Stavební materiály Zkušební laboratoře Ing. Alexander Trinner Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.cz 1 Program Příručka jakosti

Více

Certifikační postup NBÚ aktualizace 2016

Certifikační postup NBÚ aktualizace 2016 1.1 Účel postupu Certifikační postup NBÚ aktualizace 2016 Předkládaný Certifikační postup Národního bezpečnostního úřad (dále jen NBÚ) stanovuje proces certifikace technických prostředků, které jsou používány

Více

Obecné zásady interpretace výsledků - mikrobiologie vody

Obecné zásady interpretace výsledků - mikrobiologie vody Obecné zásady interpretace výsledků - mikrobiologie vody Hodnocení rozborů vody Konzultační den RNDr. Jaroslav Šašek ČSN P ENV ISO 13843: 2002 Jakost vod - Pokyny pro validaci mikrobiologických metod Mez

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Kontrolní list Systém řízení výroby

Kontrolní list Systém řízení výroby Výrobek: Malty k injektáži Zatřídění dle př. 2 NV 312 Tabulka Skupina Techn. specif.: 1 8 Výrobce: IČ: Adresa: Datum prověrky: Výrobna: 1 Systém řízení výroby dokumentace a obecné požadavky 1.1 1.2 1.3

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

Statistické regulační diagramy

Statistické regulační diagramy Statistické regulační diagramy Statistickou regulací procesu měření rozumíme jeho udržení ve statisticky zvládnutém stavu. Jen tak se zabezpečí shoda výsledků měření se specifickými požadavky na měření.

Více

N á v r h. NAŘÍZENÍ VLÁDY ze dne 2016 o lodní výstroji

N á v r h. NAŘÍZENÍ VLÁDY ze dne 2016 o lodní výstroji III. N á v r h NAŘÍZENÍ VLÁDY ze dne 2016 o lodní výstroji Vláda nařizuje podle 4, 5 odst. 1 a 2, 6 odst. 2 a 3, 7, 8 odst. 2 a 4, 11, 12 odst. 1, 15 odst. 2, 23 odst. 3, 41 odst. 1 a 50 odst. 5 zákona

Více

Metrologický řád (1) Metrologický řád. Co je a k čemu je metrologie? Definování jednotek v ČR

Metrologický řád (1) Metrologický řád. Co je a k čemu je metrologie? Definování jednotek v ČR Metrologický řád (1) Metrologický řád Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Resolution, Accuracy, Precision, Trueness

Resolution, Accuracy, Precision, Trueness Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

Česká metrologická společnost

Česká metrologická společnost Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 2.3.2/05/15 TVRDOMĚRNÉ DESTIČKY VICKERS Praha Říjen 2015

Více

Doplňuje vnitřní kontrolu kvality. Principem je provádění mezilaboratorních porovnávacích zkoušek (srovnatelnost výsledků)

Doplňuje vnitřní kontrolu kvality. Principem je provádění mezilaboratorních porovnávacích zkoušek (srovnatelnost výsledků) Externí hodnocení kvality (EHK) Petr Breinek BC_EHK_N2011 1 Externí hodnocení kvality (EHK) také: Zkoušení způsobilosti nepoužívat: Externí kontrola kvality (od 07/2011) norma ISO 17043 Doplňuje vnitřní

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

Kalibrace analytických metod

Kalibrace analytických metod Kalibrace analytických metod Petr Breinek BC_Kalibrace_2010 Měřící zařízení (zjednodušeně přístroje) pro měření fyzikálních veličin musí být výrobci kalibrovaná Objem: pipety Teplota (+37 C definovaná

Více

PŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU),

PŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU), EVROPSKÁ KOMISE V Bruselu dne 5.5.2015 C(2015) 2874 final ANNEXES 5 to 10 PŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU), kterým se doplňuje směrnice Evropského parlamentu a Rady 2010/30/EU, pokud

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při

Více

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny Fyzikální praktikum III 15 3. PROTOKOL O MĚŘENÍ V této kapitole se dozvíte: jak má vypadat a jaké náležitosti má splňovat protokol o měření; jak stanovit chybu měřené veličiny; jak vyhodnotit úspěšnost

Více

Řízení kvality a bezpečnosti potravin

Řízení kvality a bezpečnosti potravin Řízení kvality a bezpečnosti potravin Přednáška 5 Doc. MVDr. Bohuslava Tremlová, Ph.D. Téma přednášky Metrologie v potravinářství Metrologie = věda o měření Metrologie je souhrn všech znalostí a činností

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 2.p-1a.mt 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

ISO 9001 a ISO 13485 aplikace na pracovištích sterilizace stručný přehled. Ing. Lenka Žďárská

ISO 9001 a ISO 13485 aplikace na pracovištích sterilizace stručný přehled. Ing. Lenka Žďárská ISO 9001 a ISO 13485 aplikace na pracovištích sterilizace stručný přehled Ing. Lenka Žďárská Proč systém kvality? Vyhláška 306/2012 Sb., příloha IV, článek IV.I., odstavec 2 Pro sterilizování zdravotnických

Více

AUTORIZAČNÍ NÁVOD AN 13/03 Požadavky na systém managementu jakosti laboratoře a zajišťování kvality výsledků

AUTORIZAČNÍ NÁVOD AN 13/03 Požadavky na systém managementu jakosti laboratoře a zajišťování kvality výsledků AUTORIZAČNÍ NÁVOD AN 13/03 Požadavky na systém managementu jakosti laboratoře a zajišťování kvality výsledků Jakost = kvalita Požadavek Znak (charakteristika) Znak (charakteristika) jakosti Management

Více

Skrytá tvář laboratorních metod? J. Havlasová, Interimun s.r.o.

Skrytá tvář laboratorních metod? J. Havlasová, Interimun s.r.o. Skrytá tvář laboratorních metod? J. Havlasová, Interimun s.r.o. Vlastnosti charakterizující laboratorní metodu: 1. z hlediska analytického přesnost/ správnost ( nejistota měření ) analytická citlivost

Více

Kontrolní list Systém řízení výroby

Kontrolní list Systém řízení výroby Výrobek: Konstrukční těsněné systémy zasklení s mechanickými prostředky pro přenos vlastní váhy tabulí do Zatřídění dle př. 2 NV-163 těsněného úložného rámu a odtud do nosné konstrukce pro vnější stěny

Více

Literatura Elektrická měření - Přístroje a metody, Metrologie Elektrotechnická měření - měřící přístroje

Literatura Elektrická měření - Přístroje a metody, Metrologie Elektrotechnická měření - měřící přístroje Měření Literatura Haasz Vladimír, Sedláček Miloš: Elektrická měření - Přístroje a metody, nakladatelství ČVUT, 2005, ISBN 80-01-02731-7 Boháček Jaroslav: Metrologie, nakladatelství ČVUT, 2013, ISBN 978-80-01-04839-9

Více

ŘÍZENÍ MONITOROVACÍHO A MĚŘICÍHO ZAŘÍZENÍ

ŘÍZENÍ MONITOROVACÍHO A MĚŘICÍHO ZAŘÍZENÍ ŘÍZENÍ MONITOROVACÍHO A MĚŘICÍHO ZAŘÍZENÍ Doc.Ing. Alois Fiala, CSc. VUT v Brně, fakulta strojního inženýrství Ústav výrobních strojů, systémů a robotiky odbor metrologie a řízení jakosti Technická 2896/2,

Více