Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Rozměr: px
Začít zobrazení ze stránky:

Download "Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )"

Transkript

1 Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího pásma jmenovité délky min. 20 m, min. třídy přesnosti III, s nulovou ryskou a hodnotou dílku max. 1 cm (dále jen pásma ) za předpokladu, že: - na dráze jsou ryskami nebo jiným vhodným způsobem (např. drážkami) jednoznačně vyznačeny měřicí body 0 m, 20 m, 40 m; - povrch dráhy je vodorovný a ucelený, tj. bez výmolů či výtluků. Pásmo se rozvine do požadované délky a ryska 0 m se umístí tak, aby její osa byla pokračováním osy počáteční (nulové) rysky dráhy. Pásmo se napne pomocí siloměru silou odpovídající 50 N. Pokud není siloměr k dispozici, pásmo se napne pouze zlehka tak, aby se eliminovala vlnovitost pásku v příčném i podélném směru. Porovnáním vzájemné polohy os obou rysek, tj. 20 m na pásmu i na dráze se určí odchylka od jmenovité délky 20 m. Pro určení odchylky od jmenovité délky 40 m se pásmo přesune tak, aby osa rysky 0 m na pásmu byla pokračováním osy rysky 20 m na dráze. Poznámka 1: Poznámka 2: Poznámka 3: Poznámka 4: Bude-li pro kalibraci použito pásmo jmenovité délky 50 m, nulová ryska pásma se nepřesouvá na jmenovitou délku 20 m, ale ponechá se ve stejné poloze, tj. na počáteční rysce dráhy. Odečet se provede vizuálně, se zaokrouhlením na celé milimetry. Provedou se tři opakovaná měření, přičemž pásmo se mezi jednotlivými měřeními zvedne nad povrch dráhy. Doporučená teplota okolí při kalibraci: 16 C až 24 C. Příklad výpočtu chyby měření: Odchylka zjištěná při 1. měření: 1 mm Naměřené odchylky: Naměřená odchylka (aritmetický průměr): Hodnota z kalibračního listu pásma (20 m) *) : Chyba měření (aritm. průměr minus hodnota z kal. listu): 1 mm; 0 mm; 2 mm 1 mm -1,9 mm 1 - (-1,9) = +2,9 +3 mm

2 *) Tabulka z kalibračního listu pásma: Referenční hodnota [mm] Chyba měření [mm] Referenční hodnota [mm] Chyba měření [mm] 0,0 (počátek měření) ,0 +0, ,0-0, ,0 +0, ,0-1, ,0-1,9 *) Zjednodušený příklad výpočtu rozšířené nejistoty měření při použití měřicího pásma 20 m: (Pozn.: Nutno upřesnit dle podmínek v AMS a použitého etalonu.) Tabulka I.: Nepřesnost odečtu hodnoty (odhad): 4 mm u = 2 = 1,15 mm Nepřesnost nastavení nulové polohy (odhad): 4 mm u = 2 = 1,15 mm Nejistota měření etalon (měřicí pásmo 20 m): (z kalibračního listu, např. ve tvaru: U = (0,2 + 0,03 L) mm, kde L je měřená délka v [m]) 0,8 mm (L = 20) u = 0,8 2 = 0,40 mm Rozlišitelnost použitého etalonu: 1 mm u = 0,5 = 0,29 mm Chyba z důvodu nerovnosti povrchu (odhad): 6 mm u = 3 = 1,73 mm Vliv teplotní roztažnosti pásku při dodržení teploty okolí ve výše uvedeném rozmezí (odhad): 2 mm u = 1 = 0,58 mm Vliv napínací síly (odhad): 3 mm u = 1,5 = 0,87 mm u = 1,15 + 1,15 + 0,40 + 0,29 + 1,73 + 0,58 + 0,87 = 2,64 mm U = u k = 2,64 2 = 5,28 6 mm k... koeficient rozšíření (k = 2 pro 95% pravděpodobnost výskytu pravé hodnoty veličiny v intervalu daném nejistotou měření) u c... kombinovaná standardní nejistota měření U... rozšířená nejistota měření Poznámka 5: Rozšířená nejistota měření stanovená pro jmenovitou délku 40 m bude, při měření dvacetimetrovým (případně třicetimetrovým) měřicím pásmem, dvojnásobná.

3 Zjednodušený příklad výpočtu rozšířené nejistoty měření při použití měřicího pásma 50 m: (Pozn.: Nutno upřesnit dle podmínek v AMS a použitého etalonu.) Tabulka II.: Nepřesnost odečtu hodnoty (odhad): 4 mm u = 2 = 1,15 mm Nepřesnost nastavení nulové polohy (odhad): 4 mm u = 2 = 1,15 mm Nejistota měření etalon (měřicí pásmo 50 m): (z kalibračního listu, např. ve tvaru: U = (0,2 + 0,03 L) mm, kde L je měřená délka v [m]) 1,4 mm (L = 40) u = 1,4 2 = 0,70 mm Rozlišitelnost použitého etalonu: 1 mm u = 0,5 = 0,29 mm Chyba z důvodu nerovnosti povrchu (odhad): 9 mm u = 4,5 = 2,59 mm Vliv teplotní roztažnosti pásku při dodržení teploty okolí ve výše uvedeném rozmezí (odhad): 4 mm u = 2 = 1,15 mm Vliv napínací síly (odhad): 6 mm u = 3 = 1,73 mm u = (výpočet viz Tabulku I. ) = 2,64 mm u = 1,15 + 1,15 + 0,70 + 0,29 + 2,59 + 1,15 + 1,73 = 3,77 mm U = u k = 2,64 2 = 5,28 6 mm U = u k = 3,77 2 = 7,54 8 mm k... koeficient rozšíření (k = 2 pro 95% pravděpodobnost výskytu pravé hodnoty veličiny v intervalu daném nejistotou měření) u c... kombinovaná standardní nejistota měření U... rozšířená nejistota měření

4 Příloha 1: Definice a způsob výpočtu jednotlivých příspěvků DEFINICE: Pravá hodnota veličiny je prakticky nezjistitelná z důvodu: - neexistence absolutně přesného měřidla. - nemožnost realizovat naprosto ideální podmínky měření. Nejistota měření (U) (TNI , VIM 3; 2.26) nezáporný parametr charakterizující rozptýlení hodnot veličiny přiřazených k měřené veličině na základě použité informace Nejistota měření (U) (ČSN , VIM 2; 3.9) parametr přidružený k výsledku měření, který charakterizuje rozptyl hodnot, které by mohly být důvodně přisuzovány k měřené veličině Nejistota měření interpretace: Máme-li výsledek měření y (aritm. průměr), výslednou rozšířenou nejistotu měření U, pak se hledaná pravá (skutečná) hodnota měřené veličiny bude nacházet v intervalu <y U ; y + U> s pravděpodobností danou jednotlivými intervaly pokrytí (většinou 95 %). VÝPOČET: Hodnota z kalibračního listu etalonu: u = Hodnota z KL 2 = XX mm Normální (Gaussovo) rozdělení pravděpodobnosti (jmenovatel zlomku; κ = 2) zvolíme, pokud předpokládáme největší pravděpodobnost výskytu hodnot v okolí středu intervalu. f( z) zmax = a = 3 zmax = b = 2 z z b b Spousta jevů v reálném světě se řídí právě tímto rozdělením. Objev je připisována německému matematikovi Carlu Friedrichu Gaussovi, nicméně na zákonitost, že nashromáždí-li se mnoho nezávislých náhodných faktorů, tak vytvoří křivku zvonovitého tvaru, přišel již o století dříve anglický matematik Abraham de Moivre. Vysvětlivka použití tohoto rozdělení: Jestliže se rozložení výšky dospělých mužů v nějaké skupině řídí normálním rozdělením s aritmetickým průměrem (střední hodnotou; Δz) 175 cm a směrodatnou odchylkou (σ) 10 cm, pak s použitím výše uvedeného dostáváme: Pravděpodobnost, že výška muže náhodně vybraného z celé této skupiny se bude nacházet v intervalu ± 1 směrodatná odchylka, tj. ±10 cm, tj. v rozmezí 165 až 185 cm, je přibližně 68 %. Pravděpodobnost, že výška muže náhodně vybraného z celé této skupiny se bude nacháztet v intervalu ± 2 směrodatné odchylky, tj. ±20 cm, tj. v rozmezí 155 až 195 cm, je přibližně 95 %. Pravděpodobnost, že výška muže náhodně vybraného z celé této skupiny se bude nacháztet v intervalu ± 3 směrodatné odchylky, tj. ±30 cm, tj. v rozmezí 145 až 205 cm, je přibližně 99,7 %.

5 Ostatní příspěvky ovlivňující měření: Odhad 0,5 u = = XX mm Rovnoměrné rozdělení pravděpodobnosti (jmenovatel zlomku; κ = ) zvolíme v případě, předpokládáme-li přibližně stejnou (rovnoměrnou) pravděpodobnost výskytu hodnot v celém intervalu z, případně není-li možné jednoznačně rozložení hodnot v odhadnutém intervalu určit. f( z) zmax = a = 3 ~ 1,73 1/2a z z Hodnota ovlivňující veličiny může ležet kdekoli mezi oběma mezními hodnotami. Typickým příkladem je hod kostkou, kdy pravděpodobnost padnutí každého z čísel je 1/6.

6 Příloha 2: Vzor kalibračního listu zkušební dráhy při použití měřicího pásma 20 m Kalibrační list č. X/XXXX Uživatel/Zhotovitel: Měřidlo: Evidenční číslo: Název a adresa AMS Zkušební dráha pro stanovení konstanty vozidla W a účinného obvodu pneumatik I X Etalon: Měřicí pásmo ocelové, Richter, ev.č. XXX, měřicí rozsah: 0 m až 20 m, Kalibrační list XXXX Kalibrační postup: ŘD/AMS/XX (Příloha XX Příručky kvality) Podmínky prostředí: Teplota okolí: (20 ± 4) C Výsledky kalibrace: Referenční hodnota: 20 m 40 m Chyba měření: +3 mm -2 mm Výsledky kalibrace byly získány za podmínek a s použitím postupu uvedených v tomto kalibračním listě a vztahují se pouze k době a místu provedení kalibrace. Nejistota měření: U 20 = 6 mm; U 40 = 12 mm (při použití pásma 20 m) Uvedená rozšířená nejistota měření je vyjádřena jako standardní nejistota měření vynásobená koeficientem rozšíření k = 2, což pro normální rozdělení odpovídá pravděpodobnosti pokrytí přibližně 95 %. Datum kalibrace: Datum vystavení KL: Kalibraci provedli: XXXXXXXXXXXXXX, XXXXXXXXXXXXXX Schválil: XXXXXXXXXXXXXX

7 Příloha 3: Vzor kalibračního listu zkušební dráhy při použití měřicího pásma 50 m Kalibrační list č. X/XXXX Uživatel/Zhotovitel: Měřidlo: Evidenční číslo: Název a adresa AMS Zkušební dráha pro stanovení konstanty vozidla W a účinného obvodu pneumatik I X Etalon: Měřicí pásmo ocelové, Richter, ev.č. XXX, měřicí rozsah: 0 m až 50 m, Kalibrační list XXXX Kalibrační postup: ŘD/AMS/XX (Příloha XX Příručky kvality) Podmínky prostředí: Teplota okolí: (20 ± 4) C Výsledky kalibrace: Referenční hodnota: 20 m 40 m Chyba měření: +3 mm -2 mm Výsledky kalibrace byly získány za podmínek a s použitím postupu uvedených v tomto kalibračním listě a vztahují se pouze k době a místu provedení kalibrace. Nejistota měření: U 20 = 6 mm; U 40 = 8 mm (při použití pásma 50 m) Uvedená rozšířená nejistota měření je vyjádřena jako standardní nejistota měření vynásobená koeficientem rozšíření k = 2, což pro normální rozdělení odpovídá pravděpodobnosti pokrytí přibližně 95 %. Datum kalibrace: Datum vystavení KL: Kalibraci provedli: XXXXXXXXXXXXXX, XXXXXXXXXXXXXX Schválil: XXXXXXXXXXXXXX

Detailní porozumění podstatě měření

Detailní porozumění podstatě měření Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

Vyjadřování nejistot

Vyjadřování nejistot ÚČEL Účelem stanovení nejistot při měření je zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny. Nejistota měření zjištěná při kalibraci je základem pro zjištění

Více

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D. Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při

Více

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3)

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Přesnost a správnost v metrologii V běžné řeči zaměnitelné pojmy. V metrologii a chemii ne! Anglický termín Measurement trueness Measurement

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při

Více

POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH

POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH Obsah. ÚČEL 2 2. SOUVISEJÍCÍ PŘEDPISY 2 3. VYSVĚTLENÍ POJMU DEFINICE NEJISTOTA MĚŘENÍ 2 4. STANOVENÍ NEJISTOTY MĚŘENÍM 3 4. STANOVENÍ

Více

Resolution, Accuracy, Precision, Trueness

Resolution, Accuracy, Precision, Trueness Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba

Více

Stavba slovníku VIM 3: Zásady terminologické práce

Stavba slovníku VIM 3: Zásady terminologické práce VIM 1 VIM 2:1993 ČSN 01 0115 Mezinárodní slovník základních a všeobecných termínů v metrologii VIM 3:2007 International Vocabulary of Metrology Basic and General Concepts and Associated Terms Mezinárodní

Více

Nejistota měření. Thomas Hesse HBM Darmstadt

Nejistota měření. Thomas Hesse HBM Darmstadt Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo

Více

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE NEJISTOTA MĚŘENÍ David MILDE, 014 DEFINICE Nejistota měření: nezáporný parametr charakterizující rozptýlení hodnot veličiny přiřazených k měřené veličině na základě použité informace. POZNÁMKA 1 Nejistota

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Česká metrologická společnost, z.s. Novotného lávka 5, Praha 1 tel/fax:

Česká metrologická společnost, z.s. Novotného lávka 5, Praha 1 tel/fax: Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 1.1.5/01/16 KALIBRACE ETALONŮ DRSNOSTI POVRCHU Praha

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání H/190-4 název úlohy Hloubkové

Více

Chyby a neurčitosti měření

Chyby a neurčitosti měření Radioelektronická měření (MREM) Chyby a neurčitosti měření 10. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Základní pojmy Měření je souhrn činností s cílem určit hodnotu měřené veličiny

Více

Literatura Elektrická měření - Přístroje a metody, Metrologie Elektrotechnická měření - měřící přístroje

Literatura Elektrická měření - Přístroje a metody, Metrologie Elektrotechnická měření - měřící přístroje Měření Literatura Haasz Vladimír, Sedláček Miloš: Elektrická měření - Přístroje a metody, nakladatelství ČVUT, 2005, ISBN 80-01-02731-7 Boháček Jaroslav: Metrologie, nakladatelství ČVUT, 2013, ISBN 978-80-01-04839-9

Více

Způsobilost systému měření podle normy ČSN ISO doc. Ing. Eva Jarošová, CSc.

Způsobilost systému měření podle normy ČSN ISO doc. Ing. Eva Jarošová, CSc. Způsobilost systému měření podle normy ČSN ISO 22514-7 doc. Ing. Eva Jarošová, CSc. Předmět normy Postup validace měřicího systému a procesu měření (ověření, zda daný proces měření vyhovuje požadavkům

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projekt ázev projekt Číslo a název šablony Ator Tematická oblast Číslo a název materiál Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

VYJADŘOVÁNÍ PŘESNOSTI MĚŘIDEL A MĚŘENÍ

VYJADŘOVÁNÍ PŘESNOSTI MĚŘIDEL A MĚŘENÍ VYJADŘOVÁNÍ PŘESNOSTI MĚŘIDEL A MĚŘENÍ THE EXPRESSION OF THE ACCURACY OF THE GAUGE AND MEASUREMENT BAKALÁŘSKÁ PRÁCE BACHELOR THESIS AUTOR PRÁCE AUTHOR HELENA SVOBODOVÁ VEDOUCÍ PRÁCE SUPERVISOR doc. Ing.

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

"Zajisté, odvětí strážce." (Str. 110)

Zajisté, odvětí strážce. (Str. 110) "Zajisté, odvětí strážce." (Str. 110) Kapitola 17 Normální rozdělení Nejdůležitější pravděpodobnostní rozdělení se nazývá normální či Gaussovo. Má zajímavou historii. To druhé jméno dostalo na počest slavného

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 2.p-1a.mt 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Členění podle 505 o metrologii

Členění podle 505 o metrologii Členění podle 505 o metrologii a. etalony, b. pracovní měřidla stanovená (stanovená měřidla) c. pracovní měřidla nestanovená (pracovní měřidla) d. certifikované referenční materiály Etalon: je ztělesněná

Více

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina

Více

Vytyčení polohy bodu polární metodou

Vytyčení polohy bodu polární metodou Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5

Více

Česká metrologická společnost

Česká metrologická společnost Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 3.1.3/08/13 BIMETALOVÉ TEPLOMĚRY s měřicím prvkem umístěným

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

Některé úřední značky, značky shody a jiné značky používané pro označování výsledků metrologických činností. značka schválení typu

Některé úřední značky, značky shody a jiné značky používané pro označování výsledků metrologických činností. značka schválení typu Některé úřední značky, značky shody a jiné značky používané pro označování výsledků metrologických činností značka schválení typu 0 TCM XXX/YY - ZZZZ 1 značka schválení typu značka se danému typu měřidla

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

ŘÍZENÍ MONITOROVACÍHO A MĚŘICÍHO ZAŘÍZENÍ

ŘÍZENÍ MONITOROVACÍHO A MĚŘICÍHO ZAŘÍZENÍ ŘÍZENÍ MONITOROVACÍHO A MĚŘICÍHO ZAŘÍZENÍ Doc.Ing. Alois Fiala, CSc. VUT v Brně, fakulta strojního inženýrství Ústav výrobních strojů, systémů a robotiky odbor metrologie a řízení jakosti Technická 2896/2,

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Výsledky kalibrace a jak s nimi pracovat

Výsledky kalibrace a jak s nimi pracovat Výsledky kalibrace a jak s nimi pracovat Ing. Miroslav Netopil, Ing. Pavel Trávníček Akreditovaná kalibrační laboratoř Institut pro testování a certifikaci, a.s, 1 Základní pojmy I Kalibrace (slovník VIM

Více

Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu

Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a. ročník čtyřletého studia Laboratorní práce č. : Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně

Více

HODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ

HODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ HODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ DOC.ING. JIŘÍ PERNIKÁŘ, CSC Požadavky na přesnost měření se neustále zvyšují a současně s tím i požadavky na vyhodnocení kvantifikovatelných charakteristik

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

Ceský metrologický institut Okružní 31,63800 Brno. Kalibracní laborator c. 2202 akreditovaná Ceským institutem pro akreditaci, o.p.s.

Ceský metrologický institut Okružní 31,63800 Brno. Kalibracní laborator c. 2202 akreditovaná Ceským institutem pro akreditaci, o.p.s. v Okružní 31,63800 Brno tel. +420 545 555 III, fax +420 545 222 728, www.cmi.cz K 2202 Pracovište: Kalibracní laborator c. 2202 akreditovaná Ceským institutem pro akreditaci, o.p.s. Oblastní inspektorát

Více

Česká metrologická společnost Novotného lávka 5, Praha 1 tel/fax:

Česká metrologická společnost Novotného lávka 5, Praha 1 tel/fax: Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 1.1.1/12/15 SPECIÁLNÍ KALIBRY (operační měřidla) Praha

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. GUM: Vyjádření nejistot měření

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. GUM: Vyjádření nejistot měření KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE GUM: Vyjádření nejistot měření Chyby a nejistoty měření - V praxi nejsou žádná měření, žádné měřicí metody ani žádné přístroje absolutně přesné. - Výsledek měření

Více

Stochastické signály (opáčko)

Stochastické signály (opáčko) Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

Česká metrologická společnost

Česká metrologická společnost Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 2.3.2/06/15 TVRDOMĚRNÉ DESTIČKY BRINELL Praha Říjen 2015

Více

Kalibrace odporového teploměru a termočlánku

Kalibrace odporového teploměru a termočlánku Kalibrace odporového teploměru a termočlánku Jakub Michálek 10. dubna 2009 Teorie Pro označení veličin viz text [1] s výjimkou, že teplotní rozdíl značím T, protože značku t už mám vyhrazenu pro čas. Ze

Více

Česká metrologická společnost Novotného lávka 5, Praha 1 tel/fax:

Česká metrologická společnost Novotného lávka 5, Praha 1 tel/fax: Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 3.1.3/03/13 SKLENĚNÉ TEPLOMĚRY PRO VISKOZIMETRII Praha

Více

ZMĚNY V ŘD 1. AŽ 3. ÚROVEŇ

ZMĚNY V ŘD 1. AŽ 3. ÚROVEŇ ZMĚNY V ŘD 1. AŽ 3. ÚROVEŇ OHLEDNĚ NAVÁZÁNÍ SVINOVACÍHO PÁSMA NA DOMĚŘOVÁNÍ OBVODU PNEUMATIKY Pavel Souček společnost KAR-mobil s.r.o., Ostrava 1. Úvod V přednášce zástupce ČMI OI Brno, paní Heleny Svobodové,

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Jaké měřidlo je vhodné zvolit? Pravidla: Přesnost měřidla má být pětkrát až desetkrát vyšší, než je požadovaná přesnost měření. Např. chceme-li

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

ZKUŠEBNÍ PROTOKOLY. B1M15PPE / část elektrické stroje cvičení 1

ZKUŠEBNÍ PROTOKOLY. B1M15PPE / část elektrické stroje cvičení 1 ZKUŠEBNÍ PROTOKOLY B1M15PPE / část elektrické stroje cvičení 1 1) Typy testů 2) Zkušební laboratoře 3) Dokumenty 4) Protokoly o školních měřeních 2/ N TYPY TESTŮ PROTOTYPOVÉ TESTY (TYPOVÁ ZKOUŠKA) KUSOVÉ

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

Česká metrologická společnost, z.s.

Česká metrologická společnost, z.s. Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Metodika provozního měření MPM 1.1.2/01/16 METODIKA PROVOZNÍHO MĚŘENÍ

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 (Měření délek) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2015 1 Geodézie 1 přednáška č.5 MĚŘENÍ DÉLEK Podle

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 6.1.2/01/13 MECHANICKÉ STOPKY Praha říjen 2013 KP 6.1.2/01/13

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

ČESKÉ KALIBRAČNÍ SDRUŽENÍ 46. konference 9.4. a 10.4. 2013 Hotel Skalský Dvůr Lísek u Bystřice nad Perštýnem

ČESKÉ KALIBRAČNÍ SDRUŽENÍ 46. konference 9.4. a 10.4. 2013 Hotel Skalský Dvůr Lísek u Bystřice nad Perštýnem Kalibrace etalonů pro ověřování tachografů a interpretace výsledků kalibrace. --- Ing. Zdeněk Vyhlídka, Český metrologický institut, oblastní inspektorát Brno ČESKÉ KALIBRAČNÍ SDRUŽENÍ 46. konference 9.4.

Více

Konstrukční kancelář. Ing. Luboš Skopal.

Konstrukční kancelář. Ing. Luboš Skopal. TECHNICKÝ PROTOKOL č. Ověření shody zařízení pro vnější osvětlení a světelnou signalizaci zvláštního vozidla kategorie SS Objednavatel: PEKASS, a. s. Přátelství 987, Praha 10 Výrobce: HORSCH LEEB AS, GmbH,

Více

terminologii dle VIM 3, který nahradí VIM 2 (u nás zaveden v ČSN 01 0115).

terminologii dle VIM 3, který nahradí VIM 2 (u nás zaveden v ČSN 01 0115). Skopal, M. J. Návaznost měřidel a strojů v oboru délka v systému kvality. Fakulta strojního inženýrství VUT v Brně Mobilní Zkušebna Délkoměrů a výrobních Strojů. Anotace: Cílem přednášky je souhrnná informace

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Abstrakt. Abstract. Klíčová slova. Keywords. Strana 5

Abstrakt. Abstract. Klíčová slova. Keywords. Strana 5 [Zadejte text.] [Zadejte text.] Strana 5 Abstrakt Diplomová práce se zabývá problematikou vyjadřování nejistot měření, zejména pak u měření nepřímých. Tato problematika je zde ukázána na několika jednoduchých

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Protokol měření Tolerování závitů Kontrola a měření závitů Řetězec norem, které se zabývají závity, zahrnuje

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára

Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti STATISTICKÉ METODY V LABORATOŘÍCH Ing. Vratislav Horálek, DrSc. Ing. Jan Král 2 A.Základní a terminologické normy 1 ČSN 01 0115:1996 Mezinárodní slovník

Více

Česká metrologická společnost, z.s.

Česká metrologická společnost, z.s. Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 1.1.7/02/16 ULTRAZVUKOVÉ TLOUŠŤKOMĚRY Praha Říjen

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Viz oskenovaný text ze skript Sprušil, Zieleniecová: Úvod do teorie fyzikálních měření http://physics.ujep.cz/~ehejnova/utm/materialy_studium/chyby_meridel.pdf

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘÍCÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Česká metrologická společnost

Česká metrologická společnost Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postup KP 1.2.2/04/15 RÁMOVÁ VODOVÁHA Praha Říjen 2015 KP 1.2.2/04/15

Více

Protokol o měření hluku vyvolaného leteckým provozem číslo zakázky 0109, číslo protokolu 52LKPR09

Protokol o měření hluku vyvolaného leteckým provozem číslo zakázky 0109, číslo protokolu 52LKPR09 MaREXCOM zkušební laboratoř, akreditovaná ČIA Sosnovecká 578/2, 18100 Praha 8 - Troja Protokol o měření hluku vyvolaného leteckým provozem číslo zakázky 0109, číslo protokolu 52LKPR09 K Horoměřicům 1112/27,

Více

8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ

8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ MANAGEMENT PROCESŮ Systémy managementu měření se obecně v podnicích používají ke kontrole vlastní produkce, ať už ve fázi vstupní, mezioperační nebo výstupní. Procesy měření v sobě zahrnují nemalé úsilí

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Bezpečnost práce, měření fyzikálních veličin, chyby měření

Bezpečnost práce, měření fyzikálních veličin, chyby měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních

Více

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami S připojením napájecího napětí Měření efektivní hodnoty Pouzdro P13/70 pro montáž na lištu Použití Převodník SINEAX U 554 (obr. 1) převádí sinusové nebo zkreslené střídavé napětí na vnucený stejnosměrný

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více