Počítání s neúplnými čísly 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Počítání s neúplnými čísly 1"

Transkript

1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b + β) Pravidlo: a + b ( +β) A + B a + b + ( + β) Při sčítání dvou neúplných čísel se sčítají jejich absolutní chyby. α + β relativní chyba součtu dvou veličin δ (A + B) = a + b Rozdíl neúplných čísel?? A B??

2 Počítání s neúplnými čísly 2 Rozdíl neúplných čísel - odvození a b + β A B a+ (b β) Pravidlo a b +β A B a b + ( + β) Při odečítání dvou neúplných čísel se sčítají jejich absolutní chyby. Důsledek!!: Při nepřímém měření veličiny, která je dána rozdílem dvou veličin, se absolutní chyby sčítají a rozdíl veličin tak může být zatížen velkou relativní chybou. relativní chyba rozdílu α + β δ (A B) = a b

3 Počítání s neúplnými čísly 3 Úloha Určete absolutní a relativní chyby součtu a rozdílu veličin: A = (8,0 ± 0,2) cm, B = (6,0 ± 0,3) cm

4 Úloha - řešení Počítání s neúplnými čísly 4 A + B = (14,0 ± 0,5) cm, δ A + B = 3,57 % A B = (2,0 ± 0,5) cm, δ A B = 25,00 %

5 Počítání s neúplnými čísly 5 Součin dvou neúplných čísel - odvození: a. b β A. B a+. (b + β).

6 Počítání s neúplnými čísly 6 Součin dvou neúplných čísel Pravidlo: A. B = a. b ± (a β + b ) Při násobení dvou neúplných čísel se sčítají jejich relativní chyby. relativní chyba součinu dvou veličin δ (A. B) = δ (A) + δ (B)

7 Podíl dvou neúplných čísel - odvození a b + β A a + B b β a. b β A a+. b+β b+β b β B b β b+β Počítání s neúplnými čísly 7 Levá strana: ab bα aβ+αβ b 2 β 2 zanedbáme členy αβ a β 2 Po úpravě je levá strana a b pravá strana analogicky a b aβ+ bα b 2. + aβ+ bα b 2 Relativní chyba aβ+ bα b 2 Pravidlo: A B = a aβ + b ± b b 2 : a b = = α a + β b Při dělení dvou neúplných čísel se sčítají jejich relativní chyby. relativní chyba podílu dvou veličin δ (A/B) = δ (A) + δ (B)

8 Počítání s neúplnými čísly 8 Úloha Určete absolutní a relativní chyby součinu a podílu veličin: A = (8,0 ± 0,2) cm, B = (6,0 ± 0,3) cm

9 Počítání s neúplnými čísly 9 Úloha Určete absolutní a relativní chybu hustoty kužele: m = (153 ± 4) g, r = 1,60 ± 0,08 cm, v = (6,39 ± 0,45) cm Navrhněte způsoby, jakými lze zmenšit chybu měření.

10 Počet platných číslic (míst) 1 Pravidla 1. První nenulová číslice (zleva) v zápisu daného čísla zaujímá nejvyšší platné místo. Příklad V následujících číslech je číslice zaujímající nejvyšší platné místo podtržena: 130,05; 0920; 0, U čísel s desetinnou čárkou zaujímá poslední udaná číslice (včetně nuly!) nejnižší platné místo. Příklad 123,05; 0,0035;123,00

11 Počet platných číslic (míst) 2 Pravidla 3. U čísel bez desetinné čárky zaujímá nejnižší platné místo poslední nenulová číslice. Příklad 0120; 13; Počet platných míst nějakého čísla je počet číslic mezi nejvyšším a nejnižším platným místem včetně. Příklad Následující čísla mají čtyři platná místa: 1 234; ; 123,4; 1,001; 1,000; 10,10; 0, ; 100,0.

12 1. Určete nejvyšší a nejnižší platné místo čísel. 0,013 1,00 0, Úlohy platná místa 2. Kolik platných míst mají následující čísla? ,01 13, ,0 100,100 0,000 50

13 Zaokrouhlování 1 Pravidla 1. Chybu výsledku zaokrouhlujeme na jedno, nejvýše na dvě platná místa. Zaokrouhlujeme ji obvykle směrem nahoru (zaokrouhlováním bychom ji neměli zmenšovat). Pokud výsledek nepoužíváme k dalším výpočtům, stačí se omezit na jedno platné místo. Pokud s výsledkem provádíme další výpočty, je lepší uvést dvě platná místa, abychom snížili chyby ze zaokrouhlování. 2. Aritmetický průměr zaokrouhlíme na číslici téhož řádu, jako je nejnižší platné místo chyby. Příklad Správně zapsané výsledky měření: a = (23,5 0,6) mm nebo a = (2,35 0,06).10-2 m P = ( ) W nebo P = (9,6 0,1) kw a = (23,49 0,56) mm P = ( ) W

14 Opravte nesprávně zapsaný výsledek měření (měření v cm): r = 0, , Úloha - zaokrouhlování

15 Opravte nesprávně zapsaný výsledek měření: r = 0, , Úloha zaokrouhlování (řešení) Oprava: není zaokrouhlena chyba není zaokrouhlen aritmetický průměr není uvedena jednotka není vyznačena závorka, označující, že se jednotka vztahuje i k aritmetickému průměru. Správně má být: r (0,59 0,01) cm nebo r (5,9 0,1) mm nebo r (5,9 0,1).10-3 m.

16 Zaokrouhlování 2 Pravidla 1. Při sčítání a odečítání čísel se výsledek zaokrouhluje a poslední platné místo toho řádu, který je u všech sčítanců platný. Příklad 15,6 + 2,35 + 0,3 = 18,25 18,3 2. Při násobení a dělení čísel je možno u výsledku zapsat nanejvýš tolik platných cifer, kolik jich má číslo s nejmenším počtem platných cifer. Příklad 24,152. 3,46 = 83, ,6

17 Cvičení 1 Svinovacím metrem měříme šířku knihy a šířku stolu. Které měření má větší absolutní a které větší relativní chybu (nejistotu)?

18 Cvičení 2 Naměřený proud 425mA byl změřen s relativní chybou (nejistotou) Jaká byla absolutní chyba ( nejistota)?

19 Cvičení 3 Opravte nesprávně zapsaný výsledek měření: J = 32893,4 275 kg.m 2

20 Cvičení 4 Zaokrouhlete výsledky na správný počet platných míst. 3,06 + 2,30 + 7,34 10,23 8,2 10,28. 5, : 5,21

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku. 5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1 2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Záznamový arch. Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: VY_42_INOVACE_01_ČP

Záznamový arch. Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: VY_42_INOVACE_01_ČP Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: IV/2 Inovace

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

ARITMETIKA - PRIMA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - PRIMA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - PRIMA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně Výuka Matematiky je postavena na rozvíjení vlastních zkušeností žáků a na jejich přirozeném zájmu, přirozené schopnosti vnímat, pozorovat a experimentovat. Žáci se matematiku učí řešením úloh a činnostmi,

Více

Bezpečnost práce, měření fyzikálních veličin, chyby měření

Bezpečnost práce, měření fyzikálních veličin, chyby měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

Už známe datové typy pro representaci celých čísel i typy pro representaci

Už známe datové typy pro representaci celých čísel i typy pro representaci Dlouhá čísla Tomáš Holan, dlouha.txt, Verse: 19. února 2006. Už známe datové typy pro representaci celých čísel i typy pro representaci desetinných čísel. Co ale dělat, když nám žádný z dostupných datových

Více

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí. Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná

Více

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

ARITMETICKÉ OPERACE V BINÁRNÍ SOUSTAVĚ

ARITMETICKÉ OPERACE V BINÁRNÍ SOUSTAVĚ Sčítání binárních čísel Binární čísla je možné sčítat stejným způsobem, jakým sčítáme čísla desítková. Příklad je uveden v tabulce níže. K přenosu jedničky do vyššího řádu dojde tehdy, jeli výsledkem součtu

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

OPAKOVACÍ TEST: NÁSOBENÍ A DĚLENÍ V OBORU NÁSOBILKY, PÍSEMNÉ SČÍTÁNÍ A ODČÍTÁNÍ DVOJCIFERNÝCH ČÍSEL

OPAKOVACÍ TEST: NÁSOBENÍ A DĚLENÍ V OBORU NÁSOBILKY, PÍSEMNÉ SČÍTÁNÍ A ODČÍTÁNÍ DVOJCIFERNÝCH ČÍSEL VY_32_INOVACE_M_186 OPAKOVACÍ TEST: NÁSOBENÍ A DĚLENÍ V OBORU NÁSOBILKY, PÍSEMNÉ SČÍTÁNÍ A ODČÍTÁNÍ DVOJCIFERNÝCH ČÍSEL Autor: Mgr. Irena Štěpánová Použití: 3. třída Datum vypracování: 29. 9. 2012 Datum

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata,

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, 5.1.2.2 Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, Zná číslice 1 až 20, umí je napsat a

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel: počítání do dvaceti - číslice

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

BIUS 2 BIUS 3. Bohemius k.s.

BIUS 2 BIUS 3. Bohemius k.s. Máš chybu na pojistném? Jak ale zjistit vyměřovací základ, když zaokrouhlujeme na Kč nahoru, nebo třeba na stokoruny? Jak zjistit výši původní chyby? Bohemius k.s. BIUS 2 BIUS 3 www.bohemius.cz O PRODUKTU

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků METODICKÝ LIST DA Název tématu: Autor: Předmět: Zlomky smíšené číslo, složené zlomky a převod na desetinná čísla Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

Počítání ve sluneční soustavě

Počítání ve sluneční soustavě Číslo klíčové aktivity III/2, Matematika ZŠ Nepomuk Počítání ve sluneční soustavě Znáš naše nejbližší vesmírné sousedy? Co o nich víš? Láká tě vesmír? Každý kosmonaut i astronom musí umět mnoho věcí. Bez

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Číslo materiálu. Datum tvorby Srpen 2012

Číslo materiálu. Datum tvorby Srpen 2012 Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_03_Převod čísel mezi jednotlivými číselnými soustavami Střední odborná škola a Střední

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Měření zrychlení na nakloněné rovině

Měření zrychlení na nakloněné rovině Měření zrychlení na nakloněné rovině Online: http://www.sclpx.eu/lab1r.php?exp=5 Při návrhu tohoto experimentu jsme vyšli z jeho klasického pojetí uvedeného v [4]. Protože jsme se snažili optimalizovat

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Mikroprocesorová technika (BMPT)

Mikroprocesorová technika (BMPT) Mikroprocesorová technika (BMPT) Přednáška č. 10 Číselné soustavy v mikroprocesorové technice Ing. Tomáš Frýza, Ph.D. Obsah přednášky Číselné soustavy v mikroprocesorové technice Dekadická, binární, hexadecimální

Více

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1. 6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla

Více

2.7 Binární sčítačka. 2.7.1 Úkol měření:

2.7 Binární sčítačka. 2.7.1 Úkol měření: 2.7 Binární sčítačka 2.7.1 Úkol měření: 1. Navrhněte a realizujte 3-bitovou sčítačku. Pro řešení využijte dílčích kroků: pomocí pravdivostní tabulky navrhněte a realizujte polosčítačku pomocí pravdivostní

Více

Nápovědy k numerickému myšlení TSP MU

Nápovědy k numerickému myšlení TSP MU Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné

Více

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka 4. Desetinná čísla 4.1. Řád desetinného čísla V praktickém životě nehovoříme jen o 5 kg jablek, 8 metrů, 7 0 C, ale můžeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých čísel existují

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.7. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ..07/.5.00/34.0205 Šablona: III/2 Informační technologie

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

Dělení celku na části v poměru

Dělení celku na části v poměru Dělení celku na části v poměru Příklad : Rozděl číslo 12 v poměru 2 : 3. Řešení : Celek musíme rozdělit na 2 + 3 = 5 dílů. Jeden díl má velikost 12 : 5 = 2,4 První člen poměru představuje dva díly a proto

Více

Jak zpracovávat data

Jak zpracovávat data Domácí úkol Zpracování měření a části protokolu: elektronické zpracování graficky upraveno vytištěno jednostranně A4, obsah hlavička: jméno, datum, nadpis... statisticky zpracovaná data: tabulka, výsledky

Více

Fyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost

Fyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost www.projektsako.cz Fyzika Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti Lektor: Projekt: Reg. číslo: Mgr. Libor Lepík Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075

Více

9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include

9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include <stdio.h> 9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include int main(void) { int dcislo, kolikbcislic = 0, mezivysledek = 0, i; int vysledek[1000]; printf("zadejte

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

5 čitatel zlomková čára 13 jmenovatel

5 čitatel zlomková čára 13 jmenovatel Aritmetika sekunda 1 Zlomky Celek a jeho část Zlomek je speciální zápis čísla v podílovém tvaru. Zlomek obsahuje čitatele a jmenovatele, kteří jsou od sebe odděleni zlomkovou čarou. Zlomek pět třináctin

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

Text na str. 65, počínaje druhým odstavcem podkapitoly a na str. 66 do poloviny strany se nahrazuje takto:

Text na str. 65, počínaje druhým odstavcem podkapitoly a na str. 66 do poloviny strany se nahrazuje takto: Bořivoj ŠUBRT EXEKUČNÍ A OSTATNÍ SRÁŽKY ZE MZDY A Z JINÝCH PŘÍJMŮ PRO ROKY 2013 A 2014 AKTUALIZACE VÝPOČTŮ PRO ROK 2014 V PODKAPITOLE 9.2 Nezabavitelná částka: Text na str. 65, počínaje druhým odstavcem

Více

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

Základy zpracování kalkulačních tabulek

Základy zpracování kalkulačních tabulek Radek Maca Makovského 436 Nové Město na Moravě 592 31 tel. 0776 / 274 152 e-mail: rama@inforama.cz http://www.inforama.cz Základy zpracování kalkulačních tabulek Mgr. Radek Maca Excel I 1 slide ZÁKLADNÍ

Více

Matematika. název materiálu

Matematika. název materiálu Seznam "DUMŮ" V případě zájmu kontaktujte naši školu na e-mailu: zsdll.lk@seznam.cz Matematika 32101 Celá čísla, čísla kladná a záporná, opačná čísla 32102 Celá čísla - Absolutní hodnota 32103 Celá čísla

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje

Více

1.1.24 Skaláry a vektory

1.1.24 Skaláry a vektory 1.1.4 Skaláry a vektory Předpoklady: 113 Př. 1: Vyřeš následující příklady: a) Na stole je položeno závaží o hmotnosti kg. Na závaží působí gravitační síla Země o velikosti 0 N a tlaková síla od stolu

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více