Povrchové plazmony v integrované optice

Rozměr: px
Začít zobrazení ze stránky:

Download "Povrchové plazmony v integrované optice"

Transkript

1 Povrchové plazmony v integrované optice Typické aplikace:. vlnovodné polarizátory. SPR senzory 3. vlnovodné struktury využívající povrchové plazmony (plazmonika)

2 Permitivita kovu (Drudeho model) volný elektronový plyn v elektromagnetickém poli m E Pohybová rovnice: -mx -mgx - ee = e Polarizace: Permitivita: Pro harmonické pole E = E ( ) exp -iwt -ee získáme ustálené řešení: x = m w + im gw -ene =- e = = ec mew + imegw P n ex E E e m Plazmová frequence e ( me ) e / e wp en = + c = - = - w + igw w + igw w p = e ne m e e e e e Disperze kovu (Drudeho model) wp wpg i em = em + iem = - + w + g w( w + g ) Re{ε m }, ε m '' = Im{ε m } ε' m ω p /γ ε'' m ω p /ω Frequency ω ω p ' = [ω p - γ ] / ω p

3 Disperze kovu (experimentální data) Re{ε m } Re{ε m } Au Au Ag Ag Drude Im{ε m } -8 Im{ε m },6,8,, Wavelength λ (µm) Odraz optického záření od rozhraní s kovem e d q i R TE = e e d d em N em N -N N + - e m Pro reálná e m <, R TM = m em N ed - N - - em e ed - N - + e e d em N N = e sin q i d d e m - N = i N - e m Pro komplexní e m, TE TE and R = R =. R TE TE <, R <. 3

4 Povrchová plazmová vlna (povrchový plazmon-polariton, povrchový plazmon) Vzájemně vázaná elektromagnetická a nábojová povrchová vlna localizovaná na rozhraní mezi dielectrikem a kovem Pól RN ( ) N povrchové vlny TE: em ed - N + - N = neexistuje řešení TM: m d d m N e e - N + e e - = povrchový plazmon N SP = ee e ed d m d + em em ed < e m Rozložení pole povrchového plazmonu H (, x z) H e y ìï -k N -ed x e, x > iknz = í ï ï k N -em x e, x < ï ïî ìï -k N -ed x e e, x > ik d Nz = ï í ï k N -em x e e, x < m E (,) x z Z NH e x x y ï ïî Pro g =, Im{ N} = e d z e m Hy E x tok výkonu S e d e m Pro g >, Im{ N} > k N - e d = 65 nm k N - e m = 6 nm tok výkonu 4

5 Disperzní vlastnosti povrchového plazmonu Pro g =, w < wp / ( ed + ) w ksp = N c SP = light line light line p - p - d + wnd w w c w w ( e ) faktor < ω p (ε d + ) / Re{ N } > n SP d Frequency ω surface plasmon PP je pomalá vlna nemůže být excitována zářením z dielektrika Wave number k SP Povrchové plazmony na kovové vrstvě nevázané PP Re {N } 4, 3,5 3,,5, n d Au N'.478 antisymm symmetric structure, n d =.478 asymmetric structure, n d =.3,5 vázané PP N' symm, 5 5 Metal thickness (nm) symetrický (vůči H x ) antisymetrický PP Loss b (db/µm) 3 N'' asym asymmetric structure, n d =.3 symmetric structure, n d =.478 long-range plasmon N'' sym 5 5 Metal thickness (nm) 5

6 Vlnovodný polarizátor založený na rezonanční excitaci PP MgF buffer layer Al SP TM BK7 glass substrate TM K + Na + ion-exchanged waveguide Attenuation b (db) TE TM -5,5,6,7,8,9, Wavelength λ (µm) Metal (Al, Ag) Low-n buffer layer Core of a fiber Cladding Silica block Plazmonika ( fotonika využívající povrchových plazmonů) D vedení povrchového plazmonu SP umožňuje lokalizovat optické záření ve velmi 9 ohyb malém objemu, Silný útlum v důsledku ohmických ztrát v kovovém materiálu umožňuje šíření jen na vzdálenosti řádu - µm 6

7 Koncept plazmonového polovodičového laseru (M. Hill, ECIO 7) Rozměry aktivní oblasti laseru nm air TE Si HYBRID DIELECTRIC-PLASMONIC SLOT WAVEGUIDE (HDPSW) SOI slot waveguide SiO 4 nm C. Koos & al., Nat. Photonics 3(4), 6 9 (9) nonlinear polymer 6 nm PIROW plasmonic inverted rib optical waveguide?? H. Benisty and M. Besbes, J. Appl. Phys. 8(6), 638 (). H.-S. Chu & al., J. Opt. Soc. Am. B 8(), 895 () (others, too) Hybrid dielectric-plasmonic slot waveguide (HDPSW) SiO Au (Ag) w Si R. F. Oulton & al., Nat. Photonics, 496 (8); R. F. Oulton & al., New J. Phys., 58 (8) d h TE E y TM E x Re{N eff } HDPSW convergence test Boundary conditions em mm Number of expansion terms (M x = M y ) 5 5 Propagation length (µm) E x P z 7

8 HDPSW PROPERTIES Influence of basic geometric parameters Re{N eff } 3 5 h = 3 nm w = 3 nm w = 5 nm 5 A B C D Si bar height d (nm) L prop (µm) Re {N eff } TM TM h = 3 nm d = nm 5 5 Si bar width w (nm) L prop (µm) SiO w = 5 nm l = 55. µm w E x A: d = nm B: d = nm C: d = 3 nm D: d = 4 nm Ex Ex Ex Au Si d h HDPSW DEVICES HDPSW sharp S bend d = nm w = 5 nm HDPSW smooth S bend d = nm w = 3 nm S S»-5. db»- db E x S S»-65. db»-9. db H y 8

9 DIRECTIONAL COUPLER d = nm w = 3 nm Re {N eff } N eff,s N eff h = 3 nm d = nm w = 3 nm l = 55. µm, S3 = -48. db 4.5 N eff,a E x 3 n SiO Gap g (µm) coupling region SiO nm 3 nm Au Si nm 3 nm nm l = 55. µm, S3 = -94. db 4 3 RING MICRORESONATOR H.S. Chu et al., JOSA B 8, 895 () Present work Off-resonance: l =. 55 µm, S = - db 3 µm E x??» On-resonance: l =. 57 µm, S = -4 db coupling region SiO nm 5 nm Au Si nm 3 nm nm E x 9

10 MULTIMODE INTERFERENCE COUPLER x MMI simple configuration x MMI improved configuration 3 E x 3 S S =-4 db, =-6 db S S =-5 db, =-55. db MACH-ZEHNDER INTERFEROMETER SiO w Si Si d h Au D n» 5. D n»-5. On state Off state S S =-37 db =-6 db S S =-5 db =- db

11 Optické vláknové senzory Základní typy vláknových senzorů:. Extrinsické: optické vlákno slouží k přenosu informace (signálu). Intrinsické (vlastní): vlákno slouží jako čidlo 3. Smíšené (nelze jednoznačně odlišit obě funkce) Příklady extrinsického senzoru: Optická závora s vláknovým vstupem a výstupem; Senzor chemických veličin založený na fotoluminiscenci Příklady intrinsického senzoru: Vlákno s Braggovou mřížkou; vláknový gyroskop Příklady smíšeného senzoru: Čidlo polohy založené na vazbě mezi vlákny; Biochemický senzor využívající rezonanční excitace povrchových plazmonů

12 Vlnovodný senzor na bázi Machova Zehnderova interferometru Vlnovodný Machův Zehnderův interferometr s vazebním členem 3 3

13 Vláknový optický gyroskop Sagnakův fázový posuv optického záření relativistický efekt SLD W PIN Rotuje-li smyčka vůči inerciální soustavě úhlovou rychlostí W, vzniká mezi vlnami šířícími se v opačných směrech fázový posuv D p 8p j = LD R N, S lc W= lc W D je průměr cívky, R poloměr, N počet závitů, L celková délka vlákna, l vlnová délka optického záření (ve vakuu) Aproximativní odvození Sagnakova posuvu s pomocí speciální teorie relativity Označme t + resp. t dobu průchodu optického záření smyčkou ve směru úhlové rotace a v protisměru. Fázový posuv je pak dán výrazem D j = w S ( t + -t - ), v němž w = pc / l je kruhová frekvence záření. Označme podobně v + resp. v fázovou rychlost optického signálu šířícího se ve směru rotace a v protisměru. Pak æ L L ö pclæ ö D j = w S ç - = - è v v ø l çèv v ø ( ) ( ) Podle pravidla pro relativistické skládání rychlostí v = v + v + vv / c c RW platí v = n, kde c/n je fázová rychlost šíření vidu ve vlákně, RW nc RW je postupná obvodová rychlost bodu na obvodu smyčky. Za dobu t ± se smyčka pootočí o úhel Wt ±, dráha se tedy prodlouží (zkrátí) o RWt Pak t prn WRt = v, neboli t prn æ WRö prn æ nwrö =. v ç» è v ø v çè c ø : 3

14 RW nc næ RWöæ nrwö Poněvadž = c», v R c ç nc ç è øè c ø platí v prvém řádu W W n t p RNn æ n W Röæ R W öæ nr W ö prn æn R W» ö. c ç c ç» nc ç è øè øè c ø èç c c ø Pro Sagnakův posuv pak dostaneme + - RW 8p p D j = w( t - t ) = 4 wprn = R NW= LDW. S c lc lc Pro aplikaci v gyroskopech je zásadní, že Sagnakův posuv nezávisí na indexu lomu vlákna. Nemhou se proto uplatnit ani jeho fluktuace (např. vlivem teploty aj.) Řádový odhad velikosti Sagnakova posuvu: pro l = µm, L = km, D = cm a W = 5 /hod. (rychlost úhlové rotace Země) je Dj S =.5-4 rad = Aplikace v inerciální navigaci vyžadují měřt úhlovou rotaci v rozmezí cca, /h až po 7 /s, tj. v rozmezí téměř 8 řádů (!!!) Technická realizace vláknového optického gyroskopu superluminiscenční vláknový zdroj PIN vidový filtr vláknový dělič : Synchronní detektor Integrátor nereciprocitní fázová modulace polarizační filtr APE LiNbO 3 serrodynní (pilovitá) fázová modulace Pilový cívka s PM vláknem generátor W 4

15 Popis funkce Nereciprocitní modulace (obdélníková nebo sinusová) s periodou T nastavuje pracovní bod do inflexního bodu fázové charakteristiky umožňuje tak rozlišit směr rotace a zvýšit citlivost» t Serodynní modulace se zdvihem p posouvá kmitočet optické vlny o opakovací frekvenci modulátoru f. Tím dochází k fázovému posuvu Dj =pft, jímž se kompenzuje Sagnakův posuv. Výstupem je pak frekvence úměrná Sagnakovu posuvu. Aplikace Vojenství (navigace letadel, navádění raket,... ) Inerciální navigace dopravních letadel (3 gyroskop pro 3 osy + 3 akcelerometr) Levné gyroskopy automobilový průmysl (regulace tuhosti nápravy podle kmitání poloosy detekované vláknovým gyroskopem)... Braggovské mřížky v optickém vlákně - L K p k = N l eff B k p = L l = K L = B Neff Braggovské mřížky zpětně odrážejí optické záření v úzkém pásmu vlnových délek Vytváření: holografický záznam UV expozici (excimerový KrF laser) Aplikace: měření deformací, namáhání, pnutí, teploty 5

16 Braggovské mřížky v optickém vlákně - Zápis mřížek UV zářením do jádra vlákna Excimer laser 6

17 7

18 Vlnovodný senzor založený na excitaci vlnovodu mřížkou j n analyt kn analyt j K b i L b i b = kn = kn sinj+ K i i analyt = sinj +, i analyt kn kn K N -l L i n =, analyt sinj cosj N -l L i dn =- analyt ( N -l L i ) dj =- dj sin j sinjtanj Měřením malých změn synchronního úhlu j můžeme určovat změnu indexu lomu analytu. 8

19 Vlnovodné senzory využívající rezonanční excitace povrchových plazmonů TM Analyte Glass substrate Ta O 5 layer SP 4 nm Au K + Na + TM TM ion-exchanged waveguide Integrated-optic sensor Fibre-optic sensor Analyte Gold thin film Core of a fiber Cladding Silica block Průchod optického záření senzorem s PP. závislost na indexu lomu analytu (zkoumaného prostředí) Relative output power (db) D (planární) model λ = 8 nm λ = 85 nm λ = 85 nm -6,34,36,38,4,4 Refractive index of analyte Relative ouput power [db] nm Ta O 5 nm 5 nm without Ta O 5-8,3,34,36,38,4,4 Refractive index of analyte měření laditelným Ti:safírovým laserem 9

20 Relative transmitted power [db]. spektrální závislost Průchod optického záření IO senzorem s PP D (planární) model n=.33 n= Wavelength [nm] Relative transmitted power [db] n =.33 n =.34-6,7,75,8,85,9 Wavelength [µm] měřeno s širokopásmovou SLD a spektrálním analyzátorem Rozložení optického záření ve vlnovodu s úsekem, na němž se může šířit PP "analyte" n a = nm Au.5 mm SiO "substrate" 5.6 µm doped SiO guide H y field (a.u.),5,,5 λ = 9 nm 3 z (mm) 4,5 λ = 8 nm x (µm) H y field (a.u.),,9,6, z (mm) 3 y (µm)

21 Experimentální uspořádání integrovaně-optického senzoru s PP Resonant wavelength [nm] Time [min] Refractive index Rozlišení změn indexu lomu menších než. -6 Miniaturised surface plasmon resonanace fibre-optic sensor Fiber jacket Single-mode fiber Gold film Analyte TaO 5 overlayer Mirror End face PCS supporting fiber 56 mμ Laser diode Polarization controller Optical fiber Fiber to fiber adjuster Detector coupler Beveled tip Sample Analyte Refractive index resolution better than -5

22 Objemové senzory s PP Input light Photodetector Rozlišení změn indexu lomu menších než 5-7 prism metal analyte θ ` optical power φ,λ

23 Fotonické krystaly D, D nebo 3D periodické struktury s velkým kontrastem permitivity E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., vol. 58, pp. 59 6, 987 J. D. Joannopoulos et al.: Photonic Crystals: molding the flow of light, Princeton University Press 995 S. G. Johnson, J. D. Joannopoulos: Photonic Crystals, The road from theory to practice, Kluwer Academic Publishers 3 J.-M. Lourtioz et al.: Photonic Crystals : Towards Nanoscale Photonic Devices, Springer 5 Fotony se v periodickém dielektrickém prostředí pohybují podobně jako elektrony v periodickém potenciálovém poli Za jistých podmínek existuje zakázaný pás energií fotonů. Fotony s energií uvnitř zakázaného pásu se v periodickém prostředí nemohou šířit, záření se tudíž totálně odráží zpět Z pohledu vlnové optiky jde o braggovský odraz vlny od periodického prostředí. Totální odraz je možno využít k vytvoření optických vlnovodů ve fotonických krystalech Vytvořit trojrozměrné periodické prostředí je však technologicky obtížné. 3

24 Pohybové rovnice pro elektrony a fotony v krystalech Schrödingerova rovnice pro elektron v periodickém potenciálu: é ù p - () () () e * D+ V y = Ey ê m r ú r r V ( r+ a) = V ( r) K = a ë û y() u () im Kr r = å m r e periodický potenciál vlnová funkce energie fotonu Aproximativní (jednočásticové) přiblížení m (Floquetova)-Blochova vlna, Vlnová rovnice pro fotony v periodické permitivitě E = iwm H H = -iwe e r E æ ö æwö () =ç () ç H r è e() ø èç c ø H r r ( ),, Rovnice pro vlastní hodnoty energie fotonů a F-B funkce Přesná ( mnohočásticová ) teorie Tento přístup je jednoduchý a průzračný, ale standardně nebere v úvahu disperzi permitivity e(r,w) Periodická vrstevnatá struktura jako jednorozměrný fotonický krystal 4

25 Jednorozměrný fotonický krystal Existence zakázaného pásu odvozená metodou přenosové matice (fotonická analogie Kronigova - Penneyova modelu krystalu) L L L x Normalizace souřadnic a vln. vektorů x = kx, z = kz, k = p/ l TME x H k = k ( gx + N z ), l =,,, L y E l l z ìï z n g N e ï g příčná konst. E + = y l l =í H ïïî n šíření stejná H z n TE n konst. šíření x Elektromagnetické pole je popsáno komplexními amplitudami p ( z), q ( z) l l TE TM igx igx m E (,) x z = k Z / N p() z e, H (,) x z = ky e / N p() z e, Z =, yl, l l yl, l l l e igx igx H (,) x z =- ky N q () z e, E (,) x z = k Z N / e q () z e, xl, l l xl, l l l e igx igx Y = H (,) x z = ky / N gp() z e, E (,) x z =- ky /( en ) gp() z e, zl, l l zl, l l l m Elektromagnetické Floquetovy Blochovy vidy Průchod l-tou vrstvou je popsán přenosovou maticí A l æp ( z z) ö æp ( z) ö +D æcosndz isin NDzö l l l l,, l l q ( z z) = A q ( z) A = ç isinn z cos N z è +D ç D D l ø çè l ø è l l ø průchod rozhraním l l + a l + l je popsán maticemi ær ö l+, l A =, / r r = N ç è ø N l+ l æ/ r ö ll, + A = r = N e / N e ç è r l+ l l l+ ø pro TE polarizaci a pro TM polarizaci. Přenosová matice jedné celé periody je L A = A A A A. Floquetův-Blochův vid (vlna) je definován pomocí vlastní funkce matice, æ F F p ö æp ö L F F F A s =, s = exp ( ij ), j = k L, F F q q k F je konstanta šíření F-B vidu. çè ø çè ø k F je určen až na aditivní konstantu / : exp( F F K ik ) exp i( k K) L A = p L L = é + Lù êë úû Proto stačí určit k F v intervalu - K/ < k F K/ první Brillouinova zóna. 5

26 matice L A Vlastní hodnoty a fotonický zakázaný pás Označme L= L + L, j = k N L, j = k N L, má pak vlastní čísla æ ö é æ ö ù ç ê ç ú s = cos j cos j - r + sin j sin j cos j cos j - r + sin j sin j - çè r ø ê çè r ø ú. ë û FB vid se šíří, jen pokud s =, t.j., pokud cos cos æ ö j j - r + sin j sin j ç è r ø. Normovaná konstanta šíření je pak F F k é w w æ ö w w ù k æ ö æ ö æ ö æ ö = = arccos cos N L cos N L - r + sin N L sin N L. K/ p ê ç è c ø çè c ø ç è r ø çèc ø çèc øú ë û æw ö æw ö æ Pokud ö æw ö æw ö cos NL cos NL r sin NL sin NL - + >, ç c c c c è ø çè ø çè r ø çè ø ç è ø k F je komplexní, a vlna se nemůže šířit podél nekonečně dlouhého krystalu. Tak vzniká fotonický zakázaný pás. Pásová struktura jednorozměrného krystalu n = n = 35. q = º n = n = 5. q = º vodivostní pás valenční TE q = 74º TM q = 74º vzduchový pás dielektrický 6

27 Elektromagnetické Floquetovy Blochovy vidy B n = n = 35. l / l = 6. l / l =. B dielektr. pás uvnitř zakázaného pásu l / l = 5. B l / l = 75. B vzduch. pás blízko okraje Brillouinovy zóny Spektrální reflektance n = n = 5. n = 5 per nízký kontrast, málo period n = n = 5. n = per nízký kontrast, víc period n = n = 35. n = 5 per velký kontrast, málo period n = n = 35. n = per velký kontrast, více period Fotonické krystaly odpovídají často spíše nanokrystalům 7

28 Dvojrozměrné fotonické krystaly a a b b a d e e Periodické uspořádání otvorů; Blochův Floquetův teorém E z üï ik r ig r ý = u ( r ), k e e Hz ï ïþ u ( r ) = u ( r + a) = u ( r + a) k k k G = mb + nb ; m, n celé Elementární vektory prostorové mřížky a = (, a ); a = ( a/, 3a/ ) Elementární vektory reciproké mřížky (, ), b (, ) b = = a a 3 a 3 Pásový diagram energií fotonů D krystalu s trojúhelníkovou mřížkou první Brillouinova zóna prostoru vlnových vektorů k y M zakázaný pás Γ K k x 8

29 a k y Γ Pásový diagram energií fotonů D krystalu se čtvercovou mřížkou M X k x frequency ω (πc/a) = a / λ Photonic Band Gap TE band TM bands Γ X M Γ Příklady trojdimenzionálních fotonických krystalů 9

30 .5-dimenzionální fotonické krystaly Fotonické krystaly vlnovody. D fotonický krystal + vertikální vlnovod Vysoký kontrast indexu lomu Nízký kontrast indexu lomu Oxide Silicon. Čárový D dielektrický vlnovod s D fotonickým krystalem otvory Al. Ga.8 As GaAs Al.8 Ga. As 5 µm 3

31 Vazba s vlnovodem ve fotonickém krystalu CNRS LPN, Anne Talneau, Ph. Lalanne CNRS French patent () Vlnovodné aplikace: polarizačně nezávislý mřížkový vazební člen Ghent University, 3

32 Grating Fibre Couplers Polarisation maintaining single-mode fibres under degrees angle for incoupling and outcoupling 5nm wide photonic wire acts as a mode filter mm long linear taper linear taper μm ridge waveguide to match width of fibre mode Shallow-etched fibre coupler grating for coupling to single-mode fibre Oxide bottom cladding Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT 3

Fotonické nanostruktury (nanofotonika)

Fotonické nanostruktury (nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

FTTX - pasivní infrastruktura. František Tejkl 17.09.2014

FTTX - pasivní infrastruktura. František Tejkl 17.09.2014 FTTX - pasivní infrastruktura František Tejkl 17.09.2014 Náplň prezentace Optické vlákno - teorie, struktura a druhy vláken (SM,MM), šíření světla vláknem, přenos opt. signálů Vložný útlum a zpětný odraz

Více

Chemické senzory Principy senzorů Elektrochemické senzory Gravimetrické senzory Teplotní senzory Optické senzory Fluorescenční senzory Gravimetrické chemické senzory senzory - ovlivňov ování tuhosti pevného

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Optika. Nobelovy ceny za fyziku 2005 a 2009. Petr Malý Katedra chemické fyziky a optiky Matematicko fyzikální fakulta UK

Optika. Nobelovy ceny za fyziku 2005 a 2009. Petr Malý Katedra chemické fyziky a optiky Matematicko fyzikální fakulta UK Optika Nobelovy ceny za fyziku 2005 a 2009 Petr Malý Katedra chemické fyziky a optiky Matematicko fyzikální fakulta UK Optika zobrazování aplikace základní fyzikální otázky např. test kvantové teorie

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

OTDR Optical time domain reflection

OTDR Optical time domain reflection OTDR Optical time domain reflection Úvod Co je OTDR Jak měří trasu OTDR Události na trase Nastavení parametrů OTDR Jak vybrat OTDR Co je OTDR? Netopýr vysílá krátké akustické signály a na základě jejich

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FOTONICKÁ KRYSTALICKÁ VLÁKNA DIPLOMOVÁ PRÁCE FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FOTONICKÁ KRYSTALICKÁ VLÁKNA DIPLOMOVÁ PRÁCE FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Mikrorezonátory v integrované fotonice

Mikrorezonátory v integrované fotonice Mikrorezonátory v integrované fotonice Vlnovodné struktury s mikrorezonátory ( 99, B. E. Little et al., MIT, Cambridge, USA) in through V rezonanci out in through Mimo rezonanci mikrorezonátor out Spektrální

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Úloha č. 8 Vlastnosti optických vláken a optické senzory

Úloha č. 8 Vlastnosti optických vláken a optické senzory Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před

Více

Otázka č. 14 Světlovodné přenosové cesty

Otázka č. 14 Světlovodné přenosové cesty Fresnelův odraz: Otázka č. 4 Světlovodné přenosové cesty Princip šíření světla v optickém vlákně Odraz a lom světla: β α lom ke kolmici n n β α lom od kolmice n n Zákon lomu n sinα = n sin β Definice indexu

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND Analogové modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace Co je to modulace?

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod Kapacitní senzory a) b) c) ε r1 Změna kapacity důsledkem změny a) aktivní plochy elektrod d) ε r2 ε r1 e) ε r2 b)vzdálenosti elektrod c)plochy dvou dielektrik s různou permitivitou d) tloušťky dvou dielektrik

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Lasery optické rezonátory

Lasery optické rezonátory Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů

Více

Moderní měřicí technika v optických komunikacích,

Moderní měřicí technika v optických komunikacích, Moderní měřicí technika v optických komunikacích, aneb vše, co jste chtěli vědět o měření optiky, ale dosud jste se nezeptali Ing. Miroslav Švrček Ing. Martin Hájek Košice 21. 4. 2009 Bratislava 23. 4.

Více

Optická vlákna a práce s nimi

Optická vlákna a práce s nimi Optická vlákna a práce s nimi Ing. Pavel Schlitter místnost č. 619, 605 tel.: 2435 2102, 2095 Výhody komunikace s použitím optického vlákna Enormní šířka pásma Malé rozměry a hmotnost Elektrická izolace

Více

Vlnovodn{ optika. 2 Vlnovodn{ optika. 2.1 Úvod. 2.2 Princip přenosu v optickém vl{kně

Vlnovodn{ optika. 2 Vlnovodn{ optika. 2.1 Úvod. 2.2 Princip přenosu v optickém vl{kně Vlnovodn{ optika Cíl kapitoly Cílem kapitoly je sezn{mit se s principem vedení optikého sign{lu v optických kan{lech, jejich buzení a detekci. Poskytuje podklady pro studenty umožňující objasnění těchto

Více

Spektrometr pro měření Ramanovy optické aktivity: proč a jak. Optická sestava a využití motorizovaných jednotek.

Spektrometr pro měření Ramanovy optické aktivity: proč a jak. Optická sestava a využití motorizovaných jednotek. Spektrometr pro měření Ramanovy optické aktivity: proč a jak. Optická sestava a využití motorizovaných jednotek. Josef Kapitán Centrum digitální optiky Digitální Ramanova spektroskopie a Ramanova optická

Více

Strukturovaná kabeláž počítačových sítí

Strukturovaná kabeláž počítačových sítí Strukturovaná kabeláž počítačových sítí druhy kabelů (koaxiální kabel, TWIST, optický kabel) přenosové rychlosti ztráty na přenosové cestě Koaxiální kabel Původní, první, počítačové rozvody byly postaveny

Více

SNÍMAČE OPTICKÉ, ULTRAZVUKOVÉ A RÁDIOVÉ

SNÍMAČE OPTICKÉ, ULTRAZVUKOVÉ A RÁDIOVÉ SNÍMAČE OPTICKÉ, ULTRAZVUKOVÉ A RÁDIOVÉ (2.5, 2.6 a 2.7) Ing. Pavel VYLEGALA 2014 Optické snímače Optiky umožňuje konstrukci miniaturních snímačů polohy s vysokou rozlišovací schopností (řádově jednotky

Více

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Úvod, optické záření Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Materiál je pouze grafickým podkladem k přednášce a nenahrazuje výklad na vlastní

Více

Historie vláknové optiky

Historie vláknové optiky Historie vláknové optiky datuje se zpět 200 let, kde postupně: 1790 - franc. inženýr Claude Chappe vynalezl optický telegraf 1840 - Daniel Collodon a Jacque Babinet prokázali, že světlo může být vedeno

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

Přenosová média. rek. Petr Grygárek. 2005 Petr Grygárek, FEI VŠB-TU Ostrava, Počítačové sítě (Bc.) 1

Přenosová média. rek. Petr Grygárek. 2005 Petr Grygárek, FEI VŠB-TU Ostrava, Počítačové sítě (Bc.) 1 Přenosová média Petr Grygárek rek 1 Přenosová média pro počítačové sítě Využíván sériový přenos úspora vedení Metalická Nesymatrické - koaxiální kabel Symetrické - kroucená dvojlinka Optická stíněná, nestíněná

Více

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

Modelování světla v mikro- či nanostrukturách

Modelování světla v mikro- či nanostrukturách Modelování světla v mikro- či nanostrukturách Jiří Beran, Miroslav Hanzelka, David Roesel VOŠ a SPŠE Olomouc, Gymnázium Česká Lípa, PORG Libeň mr.beba@gmail.com, mirdahanzelka@seznam.cz, roesel@gmail.com

Více

Maturitní témata profilová část

Maturitní témata profilová část SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Novinky pro výuku vláknové optiky a optoelektroniky

Novinky pro výuku vláknové optiky a optoelektroniky Novinky pro výuku vláknové optiky a optoelektroniky Moderní výukové soubory Praha 20. dubna 2006 MIKROKOM Praha Martin Hájek, Jan Brouček, Miroslav Švrček, Ondřej Hanzálek Výukové soubory 1. krok do vláknové

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

Elektrické vlastnosti pevných látek

Elektrické vlastnosti pevných látek Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č.8 Laserové zpracování materiálu Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Lasery pro průmyslové zpracování materiálu E (ev) 0,12 1,17 1,17 1,2 1,5 4,17

Více

FTTX - Měření v optických sítích. František Tejkl 17.9.2014

FTTX - Měření v optických sítích. František Tejkl 17.9.2014 FTTX - Měření v optických sítích František Tejkl 17.9.2014 Náplň prezentace Co lze měřit v optických sítích Vizuální kontrola povrchu ferule konektoru Vizuální hledání chyb Optický rozpočet Přímá metoda

Více

Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času

Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času Ondřej Číp, Šimon Řeřucha, Radek Šmíd, Martin Čížek, Břetislav Mikel (ÚPT AV ČR) Josef Vojtěch a Vladimír

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika 336 28 NELINEÁRNÍ OPTIKA Nelineární optické jevy Holografie a optoelektronika Světelná vlna (jako každá jiná vlna) vyjádřená ve tvaru y=y o sin (út - ) je charakterizována základními charakteristikami:

Více

ednáška Ing. Bc. Ivan Pravda

ednáška Ing. Bc. Ivan Pravda 4.předn ednáška Optické přenosové prostředky (WDM) Ing. Bc. Ivan Pravda Optické přenosové prostředky - Viditelné světlo frekvence okolo 10 8 Hz, oblast frekvencí využitelná pro přenos dat - Přenášená data

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

2. Zdroje a detektory světla

2. Zdroje a detektory světla 2. Zdroje a detektory světla transmitance (%) Spektrální rozsah Krátkovlné limity: Absorpce vzduchu (O 2,N 2,vodní pára) - 190 nm Propustnost optiky Spektrální rozsah zdroje vlnová délka (nm) http://www.hellma-analytics.com/text/283/en/material-and-technical-information.html

Více

2. kapitola: Přenosová cesta optická (rozšířená osnova)

2. kapitola: Přenosová cesta optická (rozšířená osnova) Punčochář, J: AEO; 2. kapitola 1 2. kapitola: Přenosová cesta optická (rozšířená osnova) Čas ke studiu: 4 hodiny Cíl: Po prostudování této kapitoly budete umět identifikovat prvky optického přenosového

Více

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9.

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9. 1 Transport světla Pro popis šíření světla se může použít více metod v závislosti na okolnostech. Pokud je vlnová délka zanedbatelně malá nebo překážky, které klademe světlu do cesty, jsou mnohem větší

Více

Fabry Perotův interferometr

Fabry Perotův interferometr Fabry Perotův interferometr Princip Dvě zrcadla jsou sestavena tak aby tvořila tzv. Fabry Perotův interferometr, s jehož pomocí je vyšetřován svazek paprsků vycházejících z laseru. Při experimentu se pohybuje

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Světlo v multimódových optických vláknech

Světlo v multimódových optických vláknech Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý

Více

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace

Více

PSK1-11. Komunikace pomocí optických vláken II. Mnohavidová optická vlákna a vidová disperze. 60μm 80μm. ϕ = 250μm

PSK1-11. Komunikace pomocí optických vláken II. Mnohavidová optická vlákna a vidová disperze. 60μm 80μm. ϕ = 250μm PSK1-11 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma. Základní charakteristika a demonstrování základních principů měření veličin

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma. Základní charakteristika a demonstrování základních principů měření veličin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Základní charakteristika a demonstrování základních principů měření veličin Autor: Doc. Ing. Josef Formánek, Ph.D. Základní charakteristika a

Více

Měření vlastností optických vláken a WDM přenos

Měření vlastností optických vláken a WDM přenos Obecný úvod Měření vlastností optických vláken a WDM přenos Úloha se věnuje měření optických vláken, jejich vlastností a rušivých jevů souvisejících s vzájemným nedokonalým navázáním v konektorech. Je

Více

Optické vláknové ph senzory. Optical fiber ph sensors

Optické vláknové ph senzory. Optical fiber ph sensors ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra teorie obvodů Optické vláknové ph senzory Optical fiber ph sensors Diplomová práce Studijní program: Biomedicínské inženýrství a informatika

Více

4.7 Planární širokopásmové antény

4.7 Planární širokopásmové antény 4.7 Planární širokopásmové antény Základní teorie Širokopásmová technologie Systémy s extrémní šířkou pásma patří k perspektivním systémům moderní rádiové vysokokapacitní komunikace. Původně byla tato

Více

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektrometrické metody. Reflexní a fotoakustická spektroskopie Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření

Více

1. Millerovy indexy, reciproká mřížka

1. Millerovy indexy, reciproká mřížka Obsah 1. Millerovy indexy, reciproká mřížka 2. Krystalografické soustavy, Bravaisovy mřížky 3. Poruchy v pevných látkách 4. Difrakční metody určování struktury pevných látek 5. Mechanické vlastnosti pevných

Více

Integrovaná optoelektronika pro informatiku

Integrovaná optoelektronika pro informatiku Integrovaná optoelektronika pro informatiku Vítězslav JEŘÁBEK 1. Úvod Výzkum a realizace stále dokonalejších integrovaných hybridních a monolitických struktur a součástek integrované optoelektroniky probíhá

Více

Úloha č.9 Měření optických kabelů metodou OTDR (Optical Time Domain Reflectometry)

Úloha č.9 Měření optických kabelů metodou OTDR (Optical Time Domain Reflectometry) Úloha č.9 Měření optických kabelů metodou OTDR (Optical Time Domain Reflectometry) 1 Teoretický úvod Měření parametrů optických vláken metodou zpětného rozptylu představuje v současnosti velmi důležitý

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

Spektrální interferometrie v bílém světle využitá k disperzní charakterizaci vysoce dvojlomných optických vláken

Spektrální interferometrie v bílém světle využitá k disperzní charakterizaci vysoce dvojlomných optických vláken Spektrální interferometrie v bílém světle využitá k disperzní charakterizaci vysoce dvojlomných optických vláken Petr Hlubina 1, Tadeusz Martynkien 2, Waclaw Urbańczyk 2. petr.hlubina@fpf.slu.cz http://www.fpf.slu.cz/

Více

Maturitní otázky z předmětu FYZIKA

Maturitní otázky z předmětu FYZIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákon Relativnost klidu a pohybu, klasifikace pohybů z hlediska

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Příprava a využití optických vláken

Příprava a využití optických vláken Příprava a využití optických vláken Oddělení technologie optických vláken Ústav Fotoniky a Elektroniky, Akademie vědčr, v.v.i. Jan Mrázek Obsah Představení ústavu Stručná historie optických vláken Příprava

Více

Historie sledování EOP (rotace)

Historie sledování EOP (rotace) Historie sledování EOP (rotace) 1895 IAG > ILS, 7 ZT na 39 s.š., stejné hvězdy, stejné přístroje. 1962 IPMS (Mizusawa, JPN), až 80 přístrojů. FK4, různé metody, různé přístroje, i jižní polokoule. 1921

Více

8. Senzory a převodníky pro měření otáček, rychlosti a zrychlení. Měření vibrací.

8. Senzory a převodníky pro měření otáček, rychlosti a zrychlení. Měření vibrací. 8. Senzory a převodníky pro měření otáček, rychlosti a zrychlení. Měření vibrací. přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček:

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

ABSTRAKT KLÍČOVÁ SLOVA ABSTRACT KEYWORDS

ABSTRAKT KLÍČOVÁ SLOVA ABSTRACT KEYWORDS ABSTRAKT Práce je zaměřena na integraci antén do helmy. Jsou preferovány planární antény s různou polarizací a s různými možnostmi napájení. Jsou zkoumány možná umístění zářičů na helmě, případně uvnitř

Více

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2014 Zuzana Březovská UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA OPTIKY BAKALÁŘSKÁ PRÁCE OPTICKÉ VLÁKNOVÉ SENZORY

Více

MĚŘENÍ PLANCKOVY KONSTANTY

MĚŘENÍ PLANCKOVY KONSTANTY Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

Přehled základních vztahů pro předmět Vysokofrekvenční a mikrovlnná technika

Přehled základních vztahů pro předmět Vysokofrekvenční a mikrovlnná technika Přehled základních vztahů pro předmět Vysokofrekvenční a mikrovlnná technika 1. KOVOVÝ VLNOVOD OBECNÉHO PRŮŘEZU Elektromagnetickou vlnu šířící se ve vlnovodu ve směru osy z můžeme popsat pomocí funkce

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE (c) Lenka Veverková, 2013 Atomová spektrometrie valenčních e - 1. OES (AES) 2. AAS 3. AFS ATOMOVÁ SPEKTRA ČÁROVÁ SPEKTRA Tok záření P - množství zářivé energie (Q E ) přenesené od

Více

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii Speciální spektrometrické metody Zpracování signálu ve spektroskopii detekce slabých signálů synchronní detekce (Lock-in) čítaní fotonů měření časového průběhu signálů metoda fázového posuvu časově korelované

Více

100G konečně realitou. Co a proč měřit na úrovni 100G

100G konečně realitou. Co a proč měřit na úrovni 100G 100G konečně realitou Co a proč měřit na úrovni 100G Nárůst objemu přenášených dat Jak jsme dosud zvyšovali kapacitu - SDM více vláken, stejná rychlost (ale vyšší celkové náklady na instalaci a správu

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více