13. Lineární programování

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "13. Lineární programování"

Transkript

1 Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 13. Lineární programování Formulace Prostor řešení a simplexová metoda Celočíselné lineární programování

2 Terminologie Programování : čti programování výrobní linky Lineární : čti při omezujících podmínkách a optimalizačním kritériu vyjádřených lineárními výrazy (také kvadratické, hyperbolické programování) Dynamické programování : programování výpočtu kombinatorického problému 2

3 Formulace Dána reálná čísla a a mn, b 1... b m, c 1... c n Nalezněte reálná x 1, x 2,..., x n tak, aby c 1 x 1 + c 2 x c n x n max. c T x max. za podmínky a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 Ax b a m1 x 1 + a m2 x a mn x n b m x 1 0, x 2 0,..., x n 0 x 0 3

4 Příklady Výrobní problémy nechť a ij je spotřeba materiálu i pro výrobek j nechť b i jsou dostupné zdroje materiálu i nechť c j je zisk z výroby jednotkového množství výrobku j maximalizace zisku z využití daných zdrojů Směšovací problémy minimalizace nákladů na dosažení stanoveného cíle 4

5 Příklad Moret & Shapiro x výroba světlého piva, hl y výroba tmavého piva, hl 21x + 31y max. 2x + 3y 25 4x + y 32 2x + 9y 54 x 0, y 0 Pivovar vaří světlé a tmavé pivo. Na 1hl světlého piva je potřebí 2 jednotky sladu, 4 jednotky chmele a 2 jednotky kvasnic. Na 1hl tmavého piva jsou potřebí 3 jednotky sladu, 1 jednotka chmele a 9 jednotek kvasnic. Zisk z prodeje světlého a tmavého piva je v poměru 21:31. Je k dispozici 25 jednotek sladu, 32 jednotek chmele a 54 jednotek kvasnic. Jaký má být výrobní program pro maximální zisk? 5

6 Lineární programování a kombinatorické problémy x A, b, c Ax b x 0 konfigurační a výstupní proměnné vstupní proměnné omezující podmínky c T x max. optimalizační kritérium a přece se netočí není to kombinatorický problém 6

7 Tvary lineárního programování c T x max. c T x max. Ax b x 0 c T x max. Ax = b x 0 Ax = b x 0 kanonický tvar standardní tvar obecný tvar formulace základních úloh metody řešení praxe 7

8 Ekvivalence zvláštní případ standardní tvar ukážeme zvláštní případ obecný tvar ukážeme kanonický tvar 8

9 Ekvivalence obecný x j 0 původní rovnice obecný kanonický x j = x j+ - x j - x j + 0 x j - 0 standardní nová rovnice nové proměnné nechť a (i) je i-tý řádek matice A a (i) x b i a (i) x = b i -a (i) x -b i původní rovnice nové rovnice a (i) x + s i = b i a (i) x s i = b i a (i) x b i a (i) x b i s i 0 s i 0 9

10 Jak vypadá prostor řešení? Příklad x 1 x 2 x 3 x 4 x 5 x 6 x 7 max. x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 x 1, x 2, x 3, x 4, x 5, x 6, x 7 0 m=4 rovnic pro n=7 proměnných n-m=3 proměnné volné nějaký útvar v E 3 10

11 Prostor řešení x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 x 1, x 2, x 3, x 4, x 5, x 6, x 7 0 x 4, x 5, x 6, x 7 0 x 1 + x 2 + x 3 4 x 1 2 x 3 3 3x 2 + x 3 6 x 1 0 x 2 0 x

12 0,1,3 0,0,3 x 3 1,0,3 Geometrický názor 2,0,2 x 2 0,0,0 x 1 2,0,0 0,2,0 2,2,0 dva průsečíky splynuly v jeden 12

13 Prostor řešení Konvexní těleso y 1, y 2,... y k řešení 1 y y k y k je řešení, pokud k =1 13

14 Optimalizační kritérium x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 x 1 x 2 x 3 x 4 x 5 x 6 x 7 max x 1 + 3x 2 + 2x 3 15 x 1 + 3x 2 + 2x 3 15 = z max geometrická reprezentace? 14

15 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 2,0,0 x 1 x 2 0,2,0 2,2,0 z = 15 15

16 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 x 1 2,0,0 x 2 0,2,0 2,2,0 z = 13 16

17 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 2,0,0 x 1 x 2 0,2,0 2,2,0 z = 9 17

18 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 x 1 2,0,0 x 2 0,2,0 2,2,0 z = 6 18

19 Počet řešení Prostor řešení je konvexní těleso Dotyk svazku (nad-)rovin s prostorem řešení je bod (vrchol) úsečka (hrana) (nad-)rovina (stěna) Pokud nežádáme všechna řešení, stačí se zabývat jen vrcholy Nejsou žádná lokální minima Stačí aplikovat lokální prohledávání (například pouze nejlepší ) na množinu vrcholů Ale kde najdeme vrcholy? 19

20 0,1,3 6 0,0,3 9 8 x 3 1,0,3 9 2,0,2 0,0,0 x 1 2,0, x 2 0,2,0 2,2,

21 Báze a bázová řešení a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 nechť a (i) je i-tý sloupec matice A Nejméně n-m sloupců lineárně závislých Volbou m lineárně nezávislých sloupců volíme bázi Všechny proměnné, které neodpovídají sloupcům báze, položíme rovny nule a řešíme zbylou soustavu Dostaneme bázové řešení 21

22 Báze a bázová řešení a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 B = (a (4) a (5) a (6) a (7) ) x 1 =x 2 =x 3 =0 ( ) B = (a (1) a (2) a (3) a (6) ) x 4 =x 5 =x 7 =0 ( ) B = (a (1) a (2) a (4) a (6) ) x 3 =x 5 =x 7 =0 ( ) dvojitý bod (více než 3 nuly) B = (a (2) a (5) a (6) a (7) ) x 1 =x 3 =x 4 =0 ( ) tato báze neodpovídá žádnému řešení 22

23 Přechod mezi bázemi Každému vrcholu odpovídá nějaká báze Máme bázi B = (a (B1), a (B2),..., a (Bm) ) a odpovídající bázové řešení x Vybereme si sloupec a (j), který v bázi není a chceme jej tam mít Který sloupec vypadne? 23

24 Přechod mezi bázemi B = (a (B1), a (B2),..., a (Bm) ), odpovídající bázové řešení x Sloupec a (j) musí být lineární kombinací sloupců báze (s nějakými koeficienty t ij ) a (j) = m i=1 t ij a (Bi) protože x je řešení a protože proměnné, které neodpovídají sloupcům báze, jsou nulové. > 0 m i=1 m i=1 x i a (Bi) = b rovnice pohybu z původního vrcholu do nového (x i t ij ) a (Bi) + a (j) = b 24

25 Přechod mezi bázemi B = (a (1) a (3) a (6) a (7) ) ( ) a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 +x 6 = 3 3x 2 + x 3 +x 7 = 6 chci a (5) do báze a (5) = a (1) - a (3) + a (6) + a (7) t 15 =1 t 25 = 1 t 35 =1 t 45 =1 Jestliže (vhodně uspořádané) sloupce báze tvoří jednotkovou matici, můžeme koeficienty t ij číst přímo budeme v tomto tvaru matici udržovat Gaussovou eliminací 25

26 Přechod mezi bázemi B = (a (1) a (3) a (6) a (7) ) ( ) a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 +x 6 = 3 3x 2 + x 3 +x 7 = 6 a (5) = a (1) - a (3) + a (6) + a (7) t 15 =1 t 25 = 1 t 35 =1 t 45 =1 (2 1. ) a (1) +(2+1. ) a (3) + (1 1. ) a (6) + (4 1. ) a (7) + a (5) = b s rostoucím se tento člen vynuluje nejdříve max=1 a(6) opouští bázi ( ) 26

27 6 0,1,3,0,2,0, ,0,3,1,2,0,3 x 3 1,0,3,0,1,0,3 9 =1 2,0,2,0,0,1,4 = ,0,0,4,2,3,6 x 1 2,0,0,2,0,3,6 x 2 0,2,0,2,2,3,0 2,2,0,0,0,3,

28 Který sloupec? B = (a (B1), a (B2),..., a (Bm) ), odpovídající bázové z= a (j) = m i=1 m i=1 x i c Bi t ij a (Bi) cena řešení x (proměnné, které nepřísluší sloupci báze, jsou nulové) proměnné ve sloupcích, příslušejících bázi, redukovány o t ij z = j max (c j m i=1 t ij c Bi ) změna ceny při zavedení sloupce j do báze Zavést sloupec, pro který je z nejlepší nebo aspoň kladné. Neexistuje-li, konec (globální optimum) 28

29 Tabulky simplexové metody hodnota optimalizačního kritéria c řádek A b myšlený sloupec pro proměnnou z 29

30 Řešení příkladu simplexovou metodou 1 na j-té pozici dostaneme m i=1 t ij c Bi Gaussovou eliminací přivedeme 0 ve sloupcích báze jednotková podmatice báze (nemusíme hledat) 30

31 Co dál? 2 do báze max z báze c j t ij c i z z a (1) 2 a (5) a (2) 2 a (7) a (3) 3 a (6) Nejrychlejší vzestup dostaneme pro a (2) a a (3) Klasická simplexová metoda rozhoduje jen podle t ij c i, není tedy metodou pouze nejlepší Dostaneme a (2) do báze 31

32 a (2) v bázi 3 báze a (2) a (4) a (5) a (6), bázové řešení: / / / / vybereme a (3) do báze, bázi opouští a (6), bázové řešení výběr a (1) do báze vede k

33 a (3) v bázi 4 báze a (2) a (3) a (4) a (5), bázové řešení: / / 1 3 / Toto by mělo být optimum, avšak kladný koeficient 1. členu 0. řádku nás navádí k přivedení a (1) do báze 33

34 a (1) v bázi 5 báze a (1) a (2) a (3) a (5), bázové řešení: / / / 1 3 / Tato báze odpovídá stejnému bodu jako předchozí (je dvojitý). V 0. řádku není žádný kladný koeficient, víme, že jsme v optimu 34

35 Simplexová metoda - složitost možných bází je m n existují instance, na kterých simplexová metoda tyto báze skutečně prohledá existují polynomiální metody řešení 35

36 Celočíselné lineární programování A, b, c celočíselné x celočíselné x {0, 1}: 0/1 lineární programování (zvl. případ) Problém batohu je zvláštním případem 0/1 lineárního programování Problém batohu je NP-těžký Problém celočíselného lineárního programování je NP-těžký Řešení celočíselné úlohy má vždy horší optimalizační kritérium než řešení relaxované úlohy v oboru reálných čísel 36

37 Příklad Moret & Shapiro x výroba světlého piva, hl y výroba tmavého piva, hl 21x + 31y max. 2x + 3y 25 4x + y 32 2x + 9y 54 x 0, y 0 Pivovar vaří světlé a tmavé pivo. Na 1hl světlého piva je potřebí 2 jednotky sladu, 4 jednotky chmele a 2 jednotky kvasnic. Na 1hl tmavého piva jsou potřebí 3 jednotky sladu, 1 jednotka chmele a 9 jednotek kvasnic. Zisk z prodeje světlého a tmavého piva je v poměru 21:31. Je k dispozici 25 jednotek sladu, 32 jednotek chmele a 54 jednotek kvasnic. Jaký má být výrobní program pro maximální zisk? 37

38 Příklad hl 2x+3y=25 4x+y=32 21x+31y = z (7,1 3,6) 2x+9y= hl 38

39 Příklad, pokračování Moret & Shapiro x výroba světlého piva, sudů y výroba tmavého piva, sudů 21x + 31y max. 2x + 3y 25 4x + y 32 2x + 9y 54 Pivo se prodává ve 100l sudech. x 0, y 0 x, y celé 39

40 2x+3y=25 4x+y= ,7 2x+9y=

41 Metoda sečných nadrovin ,7 přídavná omezení, volená tak, aby některé neceločíselné vrcholy byly vyloučeny

42 Metoda větví a hranic (7,25 3) 245,25 y 3 máme lepší původní úloha y 4 (6,5 4) 260,5 (7,1 3,6) 260,7; x 7 x 8 x 6 x 7 (4 6) nemá není třeba zkoumat, 250 řešení budou horší než 245,25 prohledávat prostor úloh tak, aby prořezávání eliminovalo co nejvíce větví 42

43 Duální úloha otoč co můžeš c T x max. b T y min. Ax b A T y c x 0 y 0 Věty: x,y řešení c T x b T y x,y optimální řešení c T x = b T y 43

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Nástroje pro analýzu dat

Nástroje pro analýzu dat 7 Nástroje pro analýzu dat V té to ka pi to le: Ověřování vstupních dat Hledání řešení Řešitel Scénáře Citlivostní analýza Rychlá analýza Kapitola 7 Nástroje pro analýzu dat Součástí Excelu jsou nástroje

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Automatizované řešení úloh s omezeními

Automatizované řešení úloh s omezeními Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 25. října 2012 M. Kot

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Robust 2014, 19. - 24. ledna 2014, Jetřichovice

Robust 2014, 19. - 24. ledna 2014, Jetřichovice K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

4.Řešení optimalizačních úloh v tabulkových kalkulátorech

4.Řešení optimalizačních úloh v tabulkových kalkulátorech 4.Řešení optimalizačních úloh v tabulkových kalkulátorech Tabulkové kalkulátory patří mezi nejpoužívanější a pro běžného uživatele nejdostupnější programové systémy. Kromě základních a jim vlastních funkcí

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Když vyjde desetinné číslo, není to reálný výsledek, nemůžu říct šéfovi, vyrábět 700,988 židlí.

Když vyjde desetinné číslo, není to reálný výsledek, nemůžu říct šéfovi, vyrábět 700,988 židlí. Úvod do operačního výzkumu Operační výzkum = Výzkum operací. OV je výzkum systémů samostatných disciplín. Vojenské, strategické a taktické opce. Po skončení války přesun do ekonomie, řešení stavebních

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011

MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011 MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011 Didaktickým testem z matematiky budou ověřovány matematické dovednosti, které nepřesahují rámec dřívějších osnov ZŠ a jsou definované v Rámcovém

Více