13. Lineární programování

Rozměr: px
Začít zobrazení ze stránky:

Download "13. Lineární programování"

Transkript

1 Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 13. Lineární programování Formulace Prostor řešení a simplexová metoda Celočíselné lineární programování

2 Terminologie Programování : čti programování výrobní linky Lineární : čti při omezujících podmínkách a optimalizačním kritériu vyjádřených lineárními výrazy (také kvadratické, hyperbolické programování) Dynamické programování : programování výpočtu kombinatorického problému 2

3 Formulace Dána reálná čísla a a mn, b 1... b m, c 1... c n Nalezněte reálná x 1, x 2,..., x n tak, aby c 1 x 1 + c 2 x c n x n max. c T x max. za podmínky a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 Ax b a m1 x 1 + a m2 x a mn x n b m x 1 0, x 2 0,..., x n 0 x 0 3

4 Příklady Výrobní problémy nechť a ij je spotřeba materiálu i pro výrobek j nechť b i jsou dostupné zdroje materiálu i nechť c j je zisk z výroby jednotkového množství výrobku j maximalizace zisku z využití daných zdrojů Směšovací problémy minimalizace nákladů na dosažení stanoveného cíle 4

5 Příklad Moret & Shapiro x výroba světlého piva, hl y výroba tmavého piva, hl 21x + 31y max. 2x + 3y 25 4x + y 32 2x + 9y 54 x 0, y 0 Pivovar vaří světlé a tmavé pivo. Na 1hl světlého piva je potřebí 2 jednotky sladu, 4 jednotky chmele a 2 jednotky kvasnic. Na 1hl tmavého piva jsou potřebí 3 jednotky sladu, 1 jednotka chmele a 9 jednotek kvasnic. Zisk z prodeje světlého a tmavého piva je v poměru 21:31. Je k dispozici 25 jednotek sladu, 32 jednotek chmele a 54 jednotek kvasnic. Jaký má být výrobní program pro maximální zisk? 5

6 Lineární programování a kombinatorické problémy x A, b, c Ax b x 0 konfigurační a výstupní proměnné vstupní proměnné omezující podmínky c T x max. optimalizační kritérium a přece se netočí není to kombinatorický problém 6

7 Tvary lineárního programování c T x max. c T x max. Ax b x 0 c T x max. Ax = b x 0 Ax = b x 0 kanonický tvar standardní tvar obecný tvar formulace základních úloh metody řešení praxe 7

8 Ekvivalence zvláštní případ standardní tvar ukážeme zvláštní případ obecný tvar ukážeme kanonický tvar 8

9 Ekvivalence obecný x j 0 původní rovnice obecný kanonický x j = x j+ - x j - x j + 0 x j - 0 standardní nová rovnice nové proměnné nechť a (i) je i-tý řádek matice A a (i) x b i a (i) x = b i -a (i) x -b i původní rovnice nové rovnice a (i) x + s i = b i a (i) x s i = b i a (i) x b i a (i) x b i s i 0 s i 0 9

10 Jak vypadá prostor řešení? Příklad x 1 x 2 x 3 x 4 x 5 x 6 x 7 max. x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 x 1, x 2, x 3, x 4, x 5, x 6, x 7 0 m=4 rovnic pro n=7 proměnných n-m=3 proměnné volné nějaký útvar v E 3 10

11 Prostor řešení x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 x 1, x 2, x 3, x 4, x 5, x 6, x 7 0 x 4, x 5, x 6, x 7 0 x 1 + x 2 + x 3 4 x 1 2 x 3 3 3x 2 + x 3 6 x 1 0 x 2 0 x

12 0,1,3 0,0,3 x 3 1,0,3 Geometrický názor 2,0,2 x 2 0,0,0 x 1 2,0,0 0,2,0 2,2,0 dva průsečíky splynuly v jeden 12

13 Prostor řešení Konvexní těleso y 1, y 2,... y k řešení 1 y y k y k je řešení, pokud k =1 13

14 Optimalizační kritérium x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 x 1 x 2 x 3 x 4 x 5 x 6 x 7 max x 1 + 3x 2 + 2x 3 15 x 1 + 3x 2 + 2x 3 15 = z max geometrická reprezentace? 14

15 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 2,0,0 x 1 x 2 0,2,0 2,2,0 z = 15 15

16 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 x 1 2,0,0 x 2 0,2,0 2,2,0 z = 13 16

17 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 2,0,0 x 1 x 2 0,2,0 2,2,0 z = 9 17

18 0,1,3 0,0,3 1,0,3 x 1 + 3x 2 + 2x 3 15 = z x 3 2,0,2 0,0,0 x 1 2,0,0 x 2 0,2,0 2,2,0 z = 6 18

19 Počet řešení Prostor řešení je konvexní těleso Dotyk svazku (nad-)rovin s prostorem řešení je bod (vrchol) úsečka (hrana) (nad-)rovina (stěna) Pokud nežádáme všechna řešení, stačí se zabývat jen vrcholy Nejsou žádná lokální minima Stačí aplikovat lokální prohledávání (například pouze nejlepší ) na množinu vrcholů Ale kde najdeme vrcholy? 19

20 0,1,3 6 0,0,3 9 8 x 3 1,0,3 9 2,0,2 0,0,0 x 1 2,0, x 2 0,2,0 2,2,

21 Báze a bázová řešení a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 nechť a (i) je i-tý sloupec matice A Nejméně n-m sloupců lineárně závislých Volbou m lineárně nezávislých sloupců volíme bázi Všechny proměnné, které neodpovídají sloupcům báze, položíme rovny nule a řešíme zbylou soustavu Dostaneme bázové řešení 21

22 Báze a bázová řešení a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 + x 6 = 3 3x 2 + x 3 + x 7 = 6 B = (a (4) a (5) a (6) a (7) ) x 1 =x 2 =x 3 =0 ( ) B = (a (1) a (2) a (3) a (6) ) x 4 =x 5 =x 7 =0 ( ) B = (a (1) a (2) a (4) a (6) ) x 3 =x 5 =x 7 =0 ( ) dvojitý bod (více než 3 nuly) B = (a (2) a (5) a (6) a (7) ) x 1 =x 3 =x 4 =0 ( ) tato báze neodpovídá žádnému řešení 22

23 Přechod mezi bázemi Každému vrcholu odpovídá nějaká báze Máme bázi B = (a (B1), a (B2),..., a (Bm) ) a odpovídající bázové řešení x Vybereme si sloupec a (j), který v bázi není a chceme jej tam mít Který sloupec vypadne? 23

24 Přechod mezi bázemi B = (a (B1), a (B2),..., a (Bm) ), odpovídající bázové řešení x Sloupec a (j) musí být lineární kombinací sloupců báze (s nějakými koeficienty t ij ) a (j) = m i=1 t ij a (Bi) protože x je řešení a protože proměnné, které neodpovídají sloupcům báze, jsou nulové. > 0 m i=1 m i=1 x i a (Bi) = b rovnice pohybu z původního vrcholu do nového (x i t ij ) a (Bi) + a (j) = b 24

25 Přechod mezi bázemi B = (a (1) a (3) a (6) a (7) ) ( ) a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 +x 6 = 3 3x 2 + x 3 +x 7 = 6 chci a (5) do báze a (5) = a (1) - a (3) + a (6) + a (7) t 15 =1 t 25 = 1 t 35 =1 t 45 =1 Jestliže (vhodně uspořádané) sloupce báze tvoří jednotkovou matici, můžeme koeficienty t ij číst přímo budeme v tomto tvaru matici udržovat Gaussovou eliminací 25

26 Přechod mezi bázemi B = (a (1) a (3) a (6) a (7) ) ( ) a (1) a (2) a (3) a (4) a (5) a (6) a (7) x 1 + x 2 + x 3 + x 4 = 4 x 1 + x 5 = 2 x 3 +x 6 = 3 3x 2 + x 3 +x 7 = 6 a (5) = a (1) - a (3) + a (6) + a (7) t 15 =1 t 25 = 1 t 35 =1 t 45 =1 (2 1. ) a (1) +(2+1. ) a (3) + (1 1. ) a (6) + (4 1. ) a (7) + a (5) = b s rostoucím se tento člen vynuluje nejdříve max=1 a(6) opouští bázi ( ) 26

27 6 0,1,3,0,2,0, ,0,3,1,2,0,3 x 3 1,0,3,0,1,0,3 9 =1 2,0,2,0,0,1,4 = ,0,0,4,2,3,6 x 1 2,0,0,2,0,3,6 x 2 0,2,0,2,2,3,0 2,2,0,0,0,3,

28 Který sloupec? B = (a (B1), a (B2),..., a (Bm) ), odpovídající bázové z= a (j) = m i=1 m i=1 x i c Bi t ij a (Bi) cena řešení x (proměnné, které nepřísluší sloupci báze, jsou nulové) proměnné ve sloupcích, příslušejících bázi, redukovány o t ij z = j max (c j m i=1 t ij c Bi ) změna ceny při zavedení sloupce j do báze Zavést sloupec, pro který je z nejlepší nebo aspoň kladné. Neexistuje-li, konec (globální optimum) 28

29 Tabulky simplexové metody hodnota optimalizačního kritéria c řádek A b myšlený sloupec pro proměnnou z 29

30 Řešení příkladu simplexovou metodou 1 na j-té pozici dostaneme m i=1 t ij c Bi Gaussovou eliminací přivedeme 0 ve sloupcích báze jednotková podmatice báze (nemusíme hledat) 30

31 Co dál? 2 do báze max z báze c j t ij c i z z a (1) 2 a (5) a (2) 2 a (7) a (3) 3 a (6) Nejrychlejší vzestup dostaneme pro a (2) a a (3) Klasická simplexová metoda rozhoduje jen podle t ij c i, není tedy metodou pouze nejlepší Dostaneme a (2) do báze 31

32 a (2) v bázi 3 báze a (2) a (4) a (5) a (6), bázové řešení: / / / / vybereme a (3) do báze, bázi opouští a (6), bázové řešení výběr a (1) do báze vede k

33 a (3) v bázi 4 báze a (2) a (3) a (4) a (5), bázové řešení: / / 1 3 / Toto by mělo být optimum, avšak kladný koeficient 1. členu 0. řádku nás navádí k přivedení a (1) do báze 33

34 a (1) v bázi 5 báze a (1) a (2) a (3) a (5), bázové řešení: / / / 1 3 / Tato báze odpovídá stejnému bodu jako předchozí (je dvojitý). V 0. řádku není žádný kladný koeficient, víme, že jsme v optimu 34

35 Simplexová metoda - složitost možných bází je m n existují instance, na kterých simplexová metoda tyto báze skutečně prohledá existují polynomiální metody řešení 35

36 Celočíselné lineární programování A, b, c celočíselné x celočíselné x {0, 1}: 0/1 lineární programování (zvl. případ) Problém batohu je zvláštním případem 0/1 lineárního programování Problém batohu je NP-těžký Problém celočíselného lineárního programování je NP-těžký Řešení celočíselné úlohy má vždy horší optimalizační kritérium než řešení relaxované úlohy v oboru reálných čísel 36

37 Příklad Moret & Shapiro x výroba světlého piva, hl y výroba tmavého piva, hl 21x + 31y max. 2x + 3y 25 4x + y 32 2x + 9y 54 x 0, y 0 Pivovar vaří světlé a tmavé pivo. Na 1hl světlého piva je potřebí 2 jednotky sladu, 4 jednotky chmele a 2 jednotky kvasnic. Na 1hl tmavého piva jsou potřebí 3 jednotky sladu, 1 jednotka chmele a 9 jednotek kvasnic. Zisk z prodeje světlého a tmavého piva je v poměru 21:31. Je k dispozici 25 jednotek sladu, 32 jednotek chmele a 54 jednotek kvasnic. Jaký má být výrobní program pro maximální zisk? 37

38 Příklad hl 2x+3y=25 4x+y=32 21x+31y = z (7,1 3,6) 2x+9y= hl 38

39 Příklad, pokračování Moret & Shapiro x výroba světlého piva, sudů y výroba tmavého piva, sudů 21x + 31y max. 2x + 3y 25 4x + y 32 2x + 9y 54 Pivo se prodává ve 100l sudech. x 0, y 0 x, y celé 39

40 2x+3y=25 4x+y= ,7 2x+9y=

41 Metoda sečných nadrovin ,7 přídavná omezení, volená tak, aby některé neceločíselné vrcholy byly vyloučeny

42 Metoda větví a hranic (7,25 3) 245,25 y 3 máme lepší původní úloha y 4 (6,5 4) 260,5 (7,1 3,6) 260,7; x 7 x 8 x 6 x 7 (4 6) nemá není třeba zkoumat, 250 řešení budou horší než 245,25 prohledávat prostor úloh tak, aby prořezávání eliminovalo co nejvíce větví 42

43 Duální úloha otoč co můžeš c T x max. b T y min. Ax b A T y c x 0 y 0 Věty: x,y řešení c T x b T y x,y optimální řešení c T x = b T y 43

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

f ( x) = 5x 1 + 8x 2 MAX, 3x x ,

f ( x) = 5x 1 + 8x 2 MAX, 3x x , 4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n. 7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Cvičení z Numerických metod I - 12.týden

Cvičení z Numerických metod I - 12.týden Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

1 Duální simplexová metoda

1 Duální simplexová metoda 1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní

Více

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi): Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 2 Katedra ekonometrie FEM UO Brno Euklidovský prostor E n Pod pojmem n-rozměrný euklidovský prostor budeme rozumnět prostor, jehož prvky jsou uspořádané n-tice reálných čísel X = (x 1, x 2,...,

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

6 Simplexová metoda: Principy

6 Simplexová metoda: Principy 6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

Výběr báze. u n. a 1 u 1

Výběr báze. u n. a 1 u 1 Výběr báze Mějme vektorový prostor zadán množinou generátorů. To jest V = M, kde M = {u,..., u n }. Pokud je naším úkolem najít nějakou bázi V, nejpřímočařejším postupem je napsat si vektory jako řádky

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

6. Lineární nezávislost a báze p. 1/18

6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU Distanční opora RNDr. Miroslav Liška, CSc. OSTRAVA 2002 1 Simplexová metoda je iterační výpočetní postup pro nalezení optimálního

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová

Více

9. Soustava lineárních rovnic

9. Soustava lineárních rovnic @097 9. Soustava lineárních rovnic Definice: Nechť x, y, z, t,... jsou reálné proměnné, a, b, c, d,... jsou reálné konstanty. Kombinace proměnných a konstant tvaru ax+b=0, ax+by+c=0, ax+by+cz+d=0, ax+by+cz+dt+e=0,

Více

Systémové modelování. Ekonomicko matematické metody I. Lineární programování

Systémové modelování. Ekonomicko matematické metody I. Lineární programování Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Optimalizace & soft omezení: algoritmy

Optimalizace & soft omezení: algoritmy Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Celočíselné lineární programování(ilp)

Celočíselné lineární programování(ilp) Celočíselné lineární programování(ilp) Zdeněk Hanzálek, Přemysl Šůcha {hanzalek}@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 2. března 2010 Z. Hanzálek (ČVUT FEL) Celočíselné lineární programování(ilp)

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu

Více

pro řešení soustav lineárních rovnic. Gaussova eliminační metoda pro řešení soustavy lineárních rovnic sestává ze dvou kroků:

pro řešení soustav lineárních rovnic. Gaussova eliminační metoda pro řešení soustavy lineárních rovnic sestává ze dvou kroků: Kapitola 2 Gaussova eliminace Název druhé kapitoly je současně názvem nejčastěji používané metody (algoritmu) pro řešení soustav lineárních rovnic. Gaussova eliminační metoda pro řešení soustavy lineárních

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008 Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0 Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Aproximativní algoritmy UIN009 Efektivní algoritmy 1

Aproximativní algoritmy UIN009 Efektivní algoritmy 1 Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více