Teorie her a ekonomické rozhodování. 2. Maticové hry

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie her a ekonomické rozhodování. 2. Maticové hry"

Transkript

1 Teorie her a ekonomické rozhodování 2. Maticové hry

2 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících tahů, přičemž hráči se v tazích střídají 2

3 2.1 Maticová hra Hra v normálním tvaru je dána: množinou hráčů {1, 2,, N} předpokládejme pro jednoduchost, že N = 2 množinou prostorů strategií {X1, X2,, XN}, kde Xi označuje prostor strategií i-tého hráče předpokládejme pro jednoduchost prostory X a Y, strategie x a y množinou výplatních funkcí {f1(x1, x2,, xn), f2(x1, x2,, xn),, fn(x1, x2,, xn)} předpokládejme pro jednoduchost f1(x,y) a f2(x,y) 3

4 2.1 Maticová hra Hráči jsou inteligentní: Maximalizují užitek (hodnotu své výplatní funkce) Mají dokonalé informace o hře, tzn. znají Množinu hráčů Svůj prostor strategií a svou výplatní funkci Prostory strategií a výplatní funkce ostatních hráčů Všichni provádí rozhodnutí najednou 4

5 2.1 Maticová hra Antagonistický konflikt = co jeden získá, to druhý ztratí (spolupráce nemá smysl) Hra s konstantním součtem: f 1 x, y + f 2 x, y = K Hra s nulovým součtem (ekvivalentní): f 1 x, y + f 2 x, y = 0, a tedy f 1 x, y = f 2 x, y f x, y 5

6 2.1 Maticová hra Konečný prostor strategií obou hráčů 1. hráč X = {x1, x2,, xm} 2. hráč Y = {y1, y2,, yn} Celkem tedy existuje m x n možných kombinací strategií a každé lze přiřadit výhru f(x,y) Všechny tyto výhry lze uspořádat do matice 6

7 2.1 Maticová hra A = a 11 a 1n a m1 a mn 1. hráč xi 2. hráč yj 1. hráč získá aij 2. hráč získá aij (ztratí aij) 7

8 2.2 Dominování Příklad A = hráč volí řádek: X = {x1, x2, x3} 2. hráč volí sloupec: Y = {y1, y2, y3} Kterou strategii 1. hráč určitě nezvolí? Kterou strategii 2. hráč určitě nezvolí? Optimální strategie (x3, y3) 8

9 2.2 Dominování 1. hráč nebude volit řádek se všemi prvky menšími, než jsou odpovídající prvky v jiném řádku (měl by s jistotou nižší zisk) 2. hráč nebude volit sloupec se všemi prvky většími, než jsou odpovídající prvky v jiném sloupci (měl by s jistotou vyšší ztrátu) Hráč nikdy nezvolí silně dominovanou strategii silná dominovanost 9

10 2.2 Dominování Slabá dominovanost: Prvky v odpovídajícím řádku jsou menší nebo rovny prvkům v jiném řádku (1. hráč) či Prvky v odpovídajícím sloupci jsou větší nebo rovny prvkům v jiném sloupci (2. hráč) Využívat budeme pouze silnou dominovanost 10

11 2.2 Dominování Pomocí silné dominovanosti lze redukovat rozměr matice hry najít ve speciálních případech optimální strategii (jen zřídka viz předchozí případ) 11

12 2.3 Nashova rovnováha Nashova rovnováha = návod, jak najít optimální strategie hráčů ve hře (maticové) John F. Nash, Jr Nobelova cena za ekonomii 12

13 2.3 Nashova rovnováha Pokud se některý z hráčů odchýlí od své optimální strategie (zatímco soupeř se své optimální strategie držet bude), nepolepší si Tzn. pokud se hráč nedrží optimální strategie, pohorší si (a v nejlepším případě na tom bude stejně) 13

14 2.3 Nashova rovnováha Nashova rovnováha: x o X, y o Y f 1 (x, y o ) f 1 (x o, y o ) a f 2 (x o, y) f 2 (x o, y o ) Pro hru s nulovým součtem: f 1 (x, y) f(x, y) a f 2 x, y f(x, y o ) f(x o, y o ) a f x o, y f x o, y o f(x, y), a tedy f x o, y f x o, y o 14

15 2.3 Nashova rovnováha Pro hru s nulovým součtem: f(x, y o ) f(x o, y o ) a f x o, y f x o, y o Neboli: f x, y o f x o, y o f x o, y Nashova rovnováha (Nashovo rovnovážné řešení, rovnovážné strategie) 15

16 2.3 Nashova rovnováha Nashovu rovnováhu získáme nalezením Sedlového prvku (sedlového bodu) Sedlový prvek = číslo největší ve svém sloupci a nejmenší ve svém řádku Vysvětlení: ve hře s nulovým součtem chce 2. hráč minimalizovat výhru prvého hráče a 1. hráč chce maximalizovat ztrátu druhého 16

17 2.3 Nashova rovnováha Pokud aij je sedlový prvek xi je optimální strategie prvého hráče yj je optimální strategie druhého hráče aij je cena hry Toto řešení nazýváme Nashova rovnováha (Nashovo rovnovážné řešení) v ryzích strategiích optimální strategii hrajeme ve 100 % případů 17

18 2.3 Nashova rovnováha Příklad sedlový bod (x o, y o ) = (x 3, y 1 ) 18

19 2.3 Nashova rovnováha Příklad sedlové body (x o, y o ) = (x 2, y 1 ) (x o, y o ) = (x 3, y 1 ) 19

20 2.3 Nashova rovnováha Příklad žádný sedlový bod 20

21 2.3 Nashova rovnováha Maticová hra může mít: 1 sedlový prvek rovnovážné strategie přímo více sedlových prvků všechny mají stejnou cenu hry a jako optimální strategii mohu volit kteroukoliv navrženou žádný sedlový prvek neexistuje Nashova rovnováha v ryzích strategiích Pro hráče neexistují žádné rovnovážné strategie? 21

22 Příklad 5 Kámen nůžky papír K N P K N P

23 Hra Kámen nůžky papír nemá sedlový prvek Tzn. nemá Nashovu rovnováhu v ryzích strategiích Přesto známe optimální strategii hráčů Jak vyhrát? hrát každou z možností s pravděpodobností 1/3 23

24 Pro každého hráče je tedy rovnovážnou strategií vektor (1/3, 1/3, 1/3) Čísla představují pravděpodobnosti, se kterými hráč hraje jednotlivé strategie Takto formulované strategie se nazývají smíšené (pravděpodobnostní) strategie 24

25 Základní věta maticových her: Každá maticová hra má Nashovo rovnovážné řešení (ve smíšených strategiích) 25

26 Postup hledání Nashova rovnovážného řešení ve smíšených strategiích se nazývá smíšené rozšíření maticové hry Smíšené rozšíření použijeme, neexistuje-li řešení v ryzích strategiích (tj. neexistuje-li sedlový prvek) 26

27 X = {x; x T = (x 1 ; x 2 ; ; x m ); m i=1 x i = 1; x 0} Y = {y; y T = (y 1 ; y 2 ; ; y n ); n j=1 y j = 1; y 0} 27

28 Hodnota výplatní funkce 1. hráče: f x, y = m i=1 n j=1 x i a ij y j = x T Ay Hodnota výplatní funkce 2. hráče má pouze opačné znaménko (hra s nulovým součtem) Ryzí strategie = speciální případ smíšených strategií (jednotkové vektory) 28

29 Podle ZVMH existují optimální strategie (x o, y o ) ve smíšeném rozšíření, neboli existuje Nashova rovnováha Musí tedy platit: x T Ay o x ot Ay o x ot Ay Hledáme tedy (x o, y o ) splňující uvedené nerovnosti 29

30 Označme cenu hry v = x ot Ay o Přičtení konstanty c ke všem prvkům v matici nezmění optimální strategie strategicky ekvivalentní hry Změní však cenu hry na v + c Tento trik umožňuje např. převést hru s konstantním součtem na hru s nulovým součtem 30

31 Pokud jsou všechny prvky matice A kladné, můžeme pokračovat v řešení Jsou-li některé prvky nekladné, je třeba přičíst vhodnou konstantu tak, aby se všechny prvky staly kladnými 31

32 Příklad = A co dál? Jak najít optimální strategie? 32

33 Hledáme Nashovu rovnováhu ve smíšených strategiích: x T Ay o x ot Ay o x ot Ay Uvedené vztahy ale musí platit i pro ryzí strategie x T = 1,0,, 0, x T = 0,1,, 0,, x T = 0,0,, 1 x T Ay o v + c: a 11 y o 1 + a 12y o a 1ny o n v + c a m1 y o 1 + a m2y o a mny o v + c n 33

34 a 11 y o 1 + a 12y o a 1ny o v + c n a m1 y o 1 + a m2y o a mny o v + c n Zajistili jsme, že v + c > 0, můžeme tedy všechny nerovnice vydělit výrazem v + c Substituce q j = yo j v+c q j 0 34

35 a 11 q 1 + a 12 q a 1n q n 1 a m1 q 1 + a m2 q a mn q n 1 q j 0 Omezující podmínky úloha lineárního programování Obdobný postup pro druhou nerovnost 35

36 Hledáme Nashovu rovnováhu ve smíšených strategiích: x T Ay o x ot Ay o x ot Ay Uvedené vztahy ale musí platit i pro ryzí strategie y T = 1,0,, 0, y T = 0,1,, 0,, y T = 0,0,, 1 v + c x ot Ay: x o 1a 11 + x o 2a x o ma m1 v + c x o 1a 1n + x o 2a 2n + + x o ma mn v + c 36

37 x o 1a 11 + x o 2a x o ma m1 v + c x o 1a 1n + x o 2a 2n + + x o ma mn v + c Zajistili jsme, že v + c > 0, můžeme tedy všechny nerovnice vydělit výrazem v + c Substituce p i = xo i v+c p i 0 37

38 a 11 p 1 + a 21 p a m1 p m 1 a 1n p 1 + a 2n p a mn p n 1 p i 0 Omezující podmínky úloha lineárního programování Uvedené úlohy = duálně sdružené (vhodná formulace účelových funkcí) 38

39 Primární problém Duální problém n j=1 q j 0, j a ij q j 1, i i=1 m p i 0, i a ij p i 1, j n max j=1 q j min i=1 m p i 39

40 Řešíme tedy klasickou úlohu LP (např. simplexovou metodou) Oba sdružené problémy mají stejnou hodnotu účelové funkce 1 v+c = z Primární úloha: optimum pro 2. hráče Duální úloha: optimum pro 1. hráče (stínové ceny) 40

41 Zpětná substituce q j = yo j v+c p i = xo i v+c y o j = v + c q j = q j z x o i = v + c p i = p i z Podobně hodnota účelové funkce 1 v+c = z v = 1 z c cena hry 41

42 Příklad q 1 + 2q 2 + 5q 3 1 3q 1 + 5q 2 + 4q 3 1 2q 1 + 1q 2 + 4q 3 1 q 1, q 2, q 3 0 max z = q 1 + q 2 + q 3 42

43 Řešení: q T = 0.21, 0.07, 0 p T = 0.14, 0.14, 0 z = 0.28 Po substituci: y T = 3, 1, xt = 1, , 0 v =

44 Poznámky: prvky upravené matice A jsou kladné obě úlohy mají přípustné řešení obě úlohy mají optimální řešení řešení duální úlohy v simplexové tabulce primární úlohy pod přídatnými proměnnými (stínové ceny) 44

45 KONEC 45

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy Kapitola 1 Teorie her Dosud jsme se věnovali jednokriteriální či vícekriteriální optimalizaci, kde ve všech úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí.

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie her RNDr. Magdalena Hykšová, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Optimalizace portfolia a míry rizika. Pavel Sůva

Optimalizace portfolia a míry rizika. Pavel Sůva Základní seminář 6. října 2009 Obsah Úloha optimalizace portfolia Markowitzův model Míry rizika Value-at-Risk Conditional Value-at-Risk Drawdown míry rizika Minimalizační formule Optimalizační modely Empirická

Více

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Varianty Monte Carlo Tree Search

Varianty Monte Carlo Tree Search Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

Rozlišení zisku. Mikroekonomie. Účetní zisk = Ekonomický zisk. Normální zisk. Zisk firmy. Co je důležité pro členění zisku

Rozlišení zisku. Mikroekonomie. Účetní zisk = Ekonomický zisk. Normální zisk. Zisk firmy. Co je důležité pro členění zisku Zisk firmy Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Zisk (π) je rozdíl mezi celkovými příjmy a celkovými náklady. Π = TR - TC Je také vynásobený objem produkce rozdílem průměrného

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

RED GAMES MOD elektronik, s.r.o., Bělisko 1386, Nové Město na Moravě

RED GAMES MOD elektronik, s.r.o., Bělisko 1386, Nové Město na Moravě Herní plán vstup mincí 5, 10, 20, 50 Kč vstup bankovek: 100, 200, 500, 1000, 2000 Kč případně 5000 Kč max. sázka na 1 hru: 5 Kč (5 kreditů) max. výhra: 750 Kč (750 kreditů) v jedné hře výherní podíl: 91

Více

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

jklzxcvbnmqwertyuiop dfghjklzxcvbnmqwerty iopasdfghjklzxcvbnmqw tyuiopasdfghjklzxcvbn

jklzxcvbnmqwertyuiop dfghjklzxcvbnmqwerty iopasdfghjklzxcvbnmqw tyuiopasdfghjklzxcvbn qwertyuiopasdfghjklzxc nmqwertyuiopasdfghjk xcvbnmqwertyuiopasdf Mikroekonomická jklzxcvbnmqwertyuiop analýza dfghjklzxcvbnmqwerty Jindřich Soukup iopasdfghjklzxcvbnmqw 2012 tyuiopasdfghjklzxcvbn qwertyuiopasdfghjklzxc

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky Minulá přednáška - podstatné Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Typologie nákladů firmy Náklady v krátkém období Náklady v dlouhém období Důležité vzorce TC = FC + VC AC =

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Obsah. Poptávka spotřebitele - 1 - Petr Voborník

Obsah. Poptávka spotřebitele - 1 - Petr Voborník Obsah Obsah... Poptávka spotřebitele.... ndividuální poptávka (po statku ).... Vliv změny důchodu spotřebitele na poptávku..... Důchodová spotřební křivka..... Druhy statků... 3 CC, kde je určitým druhem

Více

Obsah. Pouºité zna ení 1

Obsah. Pouºité zna ení 1 Obsah Pouºité zna ení 1 1 Úvod 3 1.1 Opera ní výzkum a jeho disciplíny.......................... 3 1.2 Úlohy matematického programování......................... 3 1.3 Standardní maximaliza ní úloha lineárního

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

strategická desková hra pro dva hráče

strategická desková hra pro dva hráče strategická desková hra pro dva hráče Hrací potřeby: Sada 10 hracích kamenů pro každého hráče: 2 Pěšáci, 2 Rytíři, 1 Věž, 1 Zvěd, 1 Generál, 1 Katapult, 1 Lučištník, 1 Král 1 kámen se symbolem vlajky 4

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Gymnázium, Praha 6, Arabská 14. předmět Programování, vyučující Tomáš Obdržálek. Počítačová hra Fotbalový Manažer. ročníkový projekt.

Gymnázium, Praha 6, Arabská 14. předmět Programování, vyučující Tomáš Obdržálek. Počítačová hra Fotbalový Manažer. ročníkový projekt. Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek Počítačová hra Fotbalový Manažer ročníkový projekt Jan, 1E květen 2014 Anotace: Fotbalový Manažer je strategická hra pouze

Více

4.Řešení optimalizačních úloh v tabulkových kalkulátorech

4.Řešení optimalizačních úloh v tabulkových kalkulátorech 4.Řešení optimalizačních úloh v tabulkových kalkulátorech Tabulkové kalkulátory patří mezi nejpoužívanější a pro běžného uživatele nejdostupnější programové systémy. Kromě základních a jim vlastních funkcí

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí Numerické algoritmy KAPITOLA 11 V této kapitole: Vyhledávání nulových bodů funkcí Iterativní výpočet hodnot funkce Interpolace funkcí Lagrangeovou metodou Derivování funkcí Integrování funkcí Simpsonovou

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

EKONOMETRIE 2. přednáška Modely chování výrobce I.

EKONOMETRIE 2. přednáška Modely chování výrobce I. EKONOMETRIE. přednáška Modely hování výrobe I. analýza raionálního hování firmy při rozhodování o objemu výroby, vstupů a nákladů při maimalizai zisku základní prinip při rozhodování výrobů Produkční funke

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Nástroje pro analýzu dat

Nástroje pro analýzu dat 7 Nástroje pro analýzu dat V té to ka pi to le: Ověřování vstupních dat Hledání řešení Řešitel Scénáře Citlivostní analýza Rychlá analýza Kapitola 7 Nástroje pro analýzu dat Součástí Excelu jsou nástroje

Více

HERNÍ PLÁN A POPIS HRY

HERNÍ PLÁN A POPIS HRY Přijímané mince: 10, 20, 50 Kč Přijímané bankovky: 100, 200, 500, 1000, 2000, 5000 Kč Maximální sázka do hry: 50 Kč Maximální výhra z jedné hry: 50 000 Kč Výherní podíl: 93-97 % Výplata kreditu je možná

Více

STRATEGICKÁ HRA MAGNETIC CHALLENGE

STRATEGICKÁ HRA MAGNETIC CHALLENGE STRATEGICKÁ HRA MAGNETIC CHALLENGE Jen chvilka postačí k pochopení pravidel a k jejich vysvětlení příteli. Magnetická výzva je zábavná, strhující, poučná kombinační hra, která kombinuje hru a zábavu s

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Vyplácení: a) Přes Hopper v mincích 10,-- Kč. b) pomocí klíčového spínače a tlačítka VÝPLATA (Handpay - funkce)

Vyplácení: a) Přes Hopper v mincích 10,-- Kč. b) pomocí klíčového spínače a tlačítka VÝPLATA (Handpay - funkce) Fruit Palace II 750 obsahuje 8 různých her (Průběh hry viz. popis hry) Sizzling Hot 750 Fruits n Royals 750 Ultra Hot 750 Supra Gems 750 Xtra Hot 750 Power Stars 750 American Poker II 750 Hi-Lo Hra 750

Více

Data Envelopment Analysis (Analýza obalu dat)

Data Envelopment Analysis (Analýza obalu dat) Data Envelopment Analysis (Analýza obalu dat) Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Optimalizace s aplikací ve financích

Více

APLIKACE ÚHOLY OBCHODNÍHO CESTUJÍCÍHO PRO VÝBĚR OPTIMÁLNÍHO POŘADÍ FÁZÍ SVĚTELNĚ ŘÍZENÝCH KŘIŽOVATEK

APLIKACE ÚHOLY OBCHODNÍHO CESTUJÍCÍHO PRO VÝBĚR OPTIMÁLNÍHO POŘADÍ FÁZÍ SVĚTELNĚ ŘÍZENÝCH KŘIŽOVATEK APLIKACE ÚHOLY OBCHODNÍHO CESTUJÍCÍHO PRO VÝBĚR OPTIMÁLNÍHO POŘADÍ FÁZÍ SVĚTELNĚ ŘÍZENÝCH KŘIŽOVATEK APPLICATION OF TRAVEL SALESMAN PROBLEM FOR OPTIMAL ORDER OF PHASES OF LIGHT CONTROLLED INTERSECTIONS

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

GOLDEN BANK 300. Universe games, s.r.o., U Habrovky 247/11, 140 00 Praha 4. Herní plán

GOLDEN BANK 300. Universe games, s.r.o., U Habrovky 247/11, 140 00 Praha 4. Herní plán Herní plán vstup mincí: 2, 5, 10, 20 Kč případně 50 Kč vstup bankovek: 100, 200, 500, 1000 Kč případně 2000, 5000 Kč max. SÁZKA na 1 hru : 2 Kč (2 kredity) max. výhra : 300 Kč (300 kreditů) v jedné hře

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI P Ř Í R O D O V Ě D E C K Á F A K U L T A KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY Bakalářská práce Analýza nákladovosti prodejních cest v pojišťovnictví Vedoucí

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

Když vyjde desetinné číslo, není to reálný výsledek, nemůžu říct šéfovi, vyrábět 700,988 židlí.

Když vyjde desetinné číslo, není to reálný výsledek, nemůžu říct šéfovi, vyrábět 700,988 židlí. Úvod do operačního výzkumu Operační výzkum = Výzkum operací. OV je výzkum systémů samostatných disciplín. Vojenské, strategické a taktické opce. Po skončení války přesun do ekonomie, řešení stavebních

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto.

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. A: Koupím-li byt, nekoupím nové auto. B: Koupím byt nebo nekoupím nové auto.

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

MASARYKOVA UNIVERZITA

MASARYKOVA UNIVERZITA MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Bakalářská práce BRNO 2012 VLASTISLAV FORCH MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Pravděpodobný

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více